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Abstract. In this work, we study some classes of rotational surfaces in the
pseudo–Euclidean space E4

t with profile curves lying in 2–dimensional planes. First,
we determine all such surfaces in the Minkowski 4–space E4

1 with pointwise 1–type
Gauss map of the first kind and second kind. Then, we obtain rotational surfaces
in E4

2 with zero mean curvature vector and having pointwise 1–type Gauss map of
second kind.
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1. Introduction

In late 1970, B.-Y. Chen introduced the concept of finite type submanifolds of Eu-
clidean space, [3]. Since then many works have been done to characterize or classify
submanifolds of Euclidean space or pseudo–Euclidean space in terms of finite type.
Then the notion of finite type was extended to differentiable maps, in particular
Gauss map of submanifolds by B.-Y. Chen and P. Piccinni, [4]. A smooth map φ
on a submanifold M of a Euclidean space or a pseudo Euclidean space is said to be
finite type if φ has a finite spectral resolution, that is, φ = φ0 +

∑k
t=1 φt, where φ0

is a constant vector and φt’s are non–constant maps such that ∆φt = λtφt, λt ∈
R, t = 1, 2, · · · , k.

If a submanifold M of a Euclidean space or a pseudo–Euclidean space has 1–type
Gauss map ν, then ν satisfies ∆ν = λ(ν +C) for some λ ∈ R and for some constant
vector C. Also, it has been seen that the equation

∆ν = f(ν + C) (1)

is satisfied for some smooth function f on M and some constant vector C by the
Gauss map of some submanifolds such as helicoid, catenoid, right cones in E3 and
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Enneper’s hypersurfaces in En+1
1 , [7, 11]. A submanifold of a Euclidean or a pseudo–

Euclidean space is said to have pointwise 1–type Gauss map if it satisfies (1). A
submanifold with pointwise 1–type Gauss map is said to be of the first kind if C is
the zero vector. Otherwise, it is said to be of the second kind.

Remark 1. For an n–dimensional plane M in a pseudo–Euclidean space, the Gauss
map ν is constant and ∆ν = 0. For f = 0 if we write ∆ν = 0.ν, then M has
pointwise 1–type Gauss map of the first kind. If we choose C = −ν for any nonzero
smooth function f , then (1) holds. In this case, M has pointwise 1–type Gauss map
of the second kind. Therefore, we say that an n–dimensional plane M in a pseudo–
Euclidean space is a trivial pseudo–Riemannian submanifold with pointwise 1–type
Gauss map of the first kind and the second kind.

The classification of ruled surfaces and rational surfaces in E3
1 with pointwise 1–

type Gauss map were studied in [5, 10]. Also, in [7] and [13], a characterization of ro-
tational hypersurface and a complete classification of cylindrical and non–cylindrical
surfaces in Em

1 were obtained, respectively.
The complete classification of Vranceanu rotational surfaces in the pseudo–

Euclidean E4
2 with pointwise 1–type Gauss map was obtained in [12], and it was

proved that a flat rotational surface in E4
2 with pointwise 1–type Gauss map is ei-

ther the product of two plane hyperbolas or the product of a plane circle and a plane
hyperbola.

Recently, a classification of flat spacelike and timelike rotational surfaces in E4
1

with pointwise 1–type Gauss map were given in [1, 8]. Also, in [6] Lorentzian surfaces
in 4–dimensional Minkowski space E4

1 with pointwise 1–type Gauss map were studied
and some classification theorems were obtained.

In this article, we present some results on rotational surfaces in the pseudo–
Euclidean space E4

t with profile curves lying in 2–dimensional planes and having
pointwise 1–type Gauss map. First, we give classification of all such surfaces in the
Minkowski space E4

1 defined by (10), called double rotational surface, with pointwise
1–type Gauss map of the first kind. Then, we show that there exists no a non–planar
timelike double rotational surface in E4

1 with flat normal bundle and pointwise 1–
type Gauss map of the second kind. Finally, we determine the rotational surfaces in
the pseudo–Euclidean E4

2 defined by (22) and (23) with zero mean curvature vector
and pointwise 1–type Gauss map of the second kind.
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2. Preliminaries

Let Em
t denote m–dimensional pseudo–Euclidean space with the canonical metric

given by

g =
m−t∑
i=1

dx2i −
m∑

j=m−t+1

dx2j ,

where (x1, x2, . . . , xm) is a rectangular coordinate system in Em
t .

We put

Sm−1t (x0, r
2) =

{
x ∈ Em

t | 〈x− x0, x− x0〉 = r−2
}
, (2)

Hm−1
t−1 (x0,−r2) =

{
x ∈ Em

t | 〈x− x0, x− x0〉 = −r−2
}
, (3)

where 〈, 〉 is the indefinite inner product associated to g. Then Sm−1t (x0, r
2) and

Hm−1
t−1 (x0,−r2) are complete pseudo–Riemannian manifolds of constant curvature r2

and −r2, respectively. We denote Sm−1t (x0, r
2) and Hm−1

t−1 (x0,−r2) by Sm−1t (r2) and

Hm−1
t−1 (−r2) when x0 is the origin. In particular, Em

1 , Sm−11 (x0, r
2) and Hm−1

1 (x0,−r2)
are known as the Minkowski, de Sitter, and anti–de Sitter spaces, respectively.

A vector v ∈ Em
t is called spacelike (resp., timelike) if 〈v, v〉 > 0 or v = 0 (resp.,

〈v, v〉 < 0). A vector v is called lightlike if 〈v, v〉 = 0, and v 6= 0.
Let M be an oriented n–dimensional pseudo–Riemannian submanifold in an m–

dimensional pseudo–Euclidean space Em
t . We choose an oriented local orthonormal

frame {e1, . . . , em} on M with εA = 〈eA, eA〉 = ±1 such that e1, . . . , en are tangent
to M and en+1, . . . , em are normal to M . We use the following convention on the
range of indices: 1 ≤ i, j, k, . . . ≤ n, n+ 1 ≤ r, s, t, . . . ≤ m.

Let ∇̃ be the Levi–Civita connection of Em
t and ∇ the induced connection on

M . Denote by {ω1, . . . , ωm} the dual frame and by {ωAB}, A,B = 1, . . . ,m, the
connection forms associated to {e1, . . . , em}. Then we have

∇̃ekei =
n∑

j=1

εjωij(ek)ej +
m∑

r=n+1

εrh
r
iker,

∇̃eker =−Ar(ek) +
m∑

s=n+1

εsωrs(ek)es, Deker =
m∑

s=n+1

εsωrs(ek)es,

where D is the normal connection, hrij the coefficients of the second fundamental
form h, and Ar the Weingarten map in the direction er.

The mean curvature vector H and the squared length ‖h‖2 of the second funda-
mental form h are defined, respectively, by

H =
1

n

∑
i,r

εiεrh
r
iier (4)
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B.Bektaş, E.Ö.Canfes, U.Dursun – Rotational surfaces with 1–type Gauss map

and
‖h‖2 =

∑
i,j,r

εiεjεrh
r
ijh

r
ji. (5)

A submanifold M is said to have parallel mean curvature vector H if DH = 0
identically.

The gradient of a smooth function f on M is defined by ∇f =
n∑

i=1
εiei(f)ei, and

the Laplace operator acting on M is ∆ =
n∑

i=1
εi(∇eiei − eiei).

The Codazzi equation of M in Em
t is given by

hrij,k = hrjk,i,

hrjk,i = ei(h
r
jk)−

n∑
`=1

ε`
(
hr`kωj`(ei) + hr`jωk`(ei)

)
+

m∑
s=n+1

εsh
s
jkωsr(ei).

(6)

Also, from the Ricci equation of M in Em
t , we have

RD(ej , ek; er, es) = 〈[Ar, As](ej), ek〉 =

n∑
i=1

εi
(
hrikh

s
ij − hrijhsik

)
, (7)

where RD is the normal curvature tensor.
A submanifold M in Em

t is said to have flat normal bundle if RD vanishes iden-
tically.

Let G(m−n,m) be the Grassmannian manifold consisting of all oriented (m−n)–
planes through the origin of an m–dimensional pseudo–Euclidean space Em

t with
index t and

∧m−n Em
t the vector space obtained by the exterior product of m − n

vectors in Em
t . Let fi1 ∧ · · · ∧ fim−n and gi1 ∧ · · · ∧ gim−n be two vectors in

∧m−n Em
t ,

where {f1, f2, . . . , fm} and {g1, g2, . . . , gm} are two orthonormal bases of Em
t . Define

an indefinite inner product 〈〈, 〉〉 on
∧m−n Em

t by

〈〈fi1 ∧ · · · ∧ fim−n , gi1 ∧ · · · ∧ gim−n〉〉 = det(〈fi` , gjk〉). (8)

Therefore, for some positive integer s, we may identify
∧m−n Em

t with some pseudo–
Euclidean space EN

s , where N =
(

m
m−n

)
. The map ν : M → G(m−n,m) ⊂ EN

s from
an oriented pseudo–Riemannian submanifold M into G(m− n,m) defined by

ν(p) = (en+1 ∧ en+2 ∧ · · · ∧ em)(p) (9)

is called the Gauss map of M which assigns to a point p in M the oriented (m−n)–
plane through the origin of Em

t and parallel to the normal space of M at p, [12].
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We put ε = 〈〈ν, ν〉〉 = εn+1εn+2 · · · εm = ±1 and

M̃N−1
s (ε) =

{
SN−1s (1) in EN

s if ε = 1

HN−1
s−1 (−1) in EN

s if ε = −1.

Then the Gauss image ν(M) can be viewed as ν(M) ⊂ M̃N−1
s (ε).

2.1. Rotational surfaces in E4
1 with profile curves lying in 2–planes

We consider timelike rotational surfaces in the Minkowski space E4
1 whose profile

curves lie in timelike 2–planes. By choosing a profile curve γ(s) = (x(s), 0, 0, w(s))
in the xw–plane defined on an open interval I in R. We can parametrize a timelike
rotational surface in E4

1 as follows

M : r(s, t) = (x(s) cos at, x(s) sin at, w(s) sinh bt, w(s) cosh bt), (10)

where s is the arc lenght parameter of γ, s ∈ I and t ∈ (0, 2π). The rotational
surface M is called a double rotational surface in E4

1. Then, x′2(s) − w′2(s) = −1
and the curvature κ of γ is given by κ(s) = w′(s)x′′(s)− x′(s)w′′(s).

We form the following orthonormal moving frame field {e1, e2, e3, e4} on M such
that e1, e2 are tangent to M , and e3, e4 are normal to M :

e1 =
∂

∂s
, e2 =

1

q

∂

∂t
, (11)

e3 = (w′(s) cos at, w′(s) sin at, x′(s) sinh bt, x′(s) cosh bt), (12)

e4 =
1

q
(bw(s) sin at,−bw(s) cos at, ax(s) cosh bt, ax(s) sinh bt), (13)

where q =
√
a2x2(s) + b2w2(s) and ε1 = −1, ε2 = ε3 = ε4 = 1.

By a direct computation, we have the components of the second fundamental
form and the connection forms as follows

h311 = κ(s), h322 = −a
2x(s)w′(s) + b2w(s)x′(s)

a2x2(s) + b2w2(s)
, (14)

h312 = h411 = h422 = 0, h412 =
ab(x(s)w′(s)− w(s)x′(s))

a2x2(s) + b2w2(s)
, (15)

ω12(e1) = 0, ω12(e2) =
a2x(s)x′(s) + b2w(s)w′(s)

a2x2(s) + b2w2(s)
, (16)

ω34(e1) = 0, ω34(e2) =
ab(x(s)x′(s)− w(s)w′(s))

a2x2(s) + b2w2(s)
. (17)
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Hence we obtain the mean curvature vector and the normal curvature of M from
(4) and (7), respectively, as

H =
1

2
(h322 − h311)e3, (18)

RD(e1, e2; e3, e4) = h412(h
3
11 + h322). (19)

On the other hand, from the Codazzi equation (6) we have

e1(h
3
22) = −ω12(e2)

(
h311 + h322

)
− h412ω34(e2), (20)

e1(h
4
12) = −2h412ω12(e2) + h311ω34(e2). (21)

2.2. Rotational surfaces in E4
2 with profile curves lying in 2–planes

In the pseudo–Euclidean space E4
2, we consider two rotational surfaces whose profile

curves lie in 2–planes.
First, we choose a profile curve α in the yw–plane as α(s) = (0, y(s), 0, w(s))

defined on an open interval I ⊂ R. Then the parametrization of the rotational
surface M1(b) in E4

2 is given by

M1(b) : r1(s, t) = (w(s) sinh t, y(s) cosh(bt), y(s) sinh(bt), w(s) cosh t), (22)

for some constant b > 0, where s ∈ I and t ∈ R.
Secondly, we choose a profile curve β in the xz–plane as β(s) = (x(s), 0, z(s), 0)

defined on an open interval I ⊂ R. Then the parametrization of the rotational
surface M2(b) in E4

2 is given by

M2(b) : r2(s, t) = (x(s) cos t, x(s) sin t, z(s) cos(bt), z(s) sin(bt)), (23)

for some constant b > 0, where s ∈ I and t ∈ (0, 2π).
Now, for the rotational surface M1(b) defined by (22), we consider the following

orthonormal moving frame field {e1, e2, e3, e4} on M1(b) such that e1, e2 are tangent
to M1(b), and e3, e4 are normal to M1(b):

e1 =
1

q

∂

∂t
, e2 =

1

A

∂

∂s
, (24)

e3 =
1

A
(y′(s) sinh t, w′(s) cosh(bt), w′(s) sinh(bt), y′(s) cosh t), (25)

e4 = −εε
∗

q
(by(s) cosh t, w(s) sinh(bt), w(s) cosh(bt), by(s) sinh t), (26)

where A =
√
ε(y′2(s)− w′2(s)) 6= 0, q =

√
ε∗(w2(s)− b2y2(s)) 6= 0, and

ε = sgn(y′2(s)− w′2(s)), ε∗ = sgn(w2(s) − b2y2(s)). Then, ε1 = −ε4 = ε∗ and
ε2 = −ε3 = ε.
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By a direct calculation, we have the components of the second fundamental form
and the connection forms as follows

h311 =
1

Aq2
(b2y(s)w′(s)− w(s)y′(s)), h322 =

1

A3
(w′(s)y′′(s)− y′(s)w′′(s)),

(27)

h412 =
εε∗b

Aq2
(w(s)y′(s)− y(s)w′(s)), h312 = h411 = h422 = 0, (28)

ω12(e1) =
1

Aq2
(b2y(s)y′(s)− w(s)w′(s)), ω12(e2) = 0, (29)

ω34(e1) =
εε∗b

Aq2
(w(s)w′(s)− y(s)y′(s)), ω34(e2) = 0. (30)

Similarly, for the rotational surface M2(b) defined by (23), we consider the fol-
lowing orthonormal moving frame field {e1, e2, e3, e4} on M2(b) such that e1, e2 are
tangent to M2(b), and e3, e4 are normal to M2(b):

e1 =
1

q̄

∂

∂t
, e2 =

1

Ā

∂

∂s
, (31)

e3 =
1

Ā
(z′(s) cos t, z′(s) sin t, x′(s) cos(bt), x′(s) sin(bt)), (32)

e4 = −εε
∗

q̄
(bz(s) sin t,−bz(s) cos t, x(s) sin(bt),−x(s) cos(bt)), (33)

where Ā =
√
ε(x′2(s)− z′2(s)) 6= 0, q̄ =

√
ε∗(x2(s)− b2z2(s)) 6= 0,

ε = sgn(x′2(s)− z′2(s)), and ε∗ = sgn(x2(s) − b2z2(s)). Then, ε1 = −ε4 = ε∗

and ε2 = −ε3 = ε.
By a direct computation, we have the components of the second fundamental

form and the connection forms as follows

h311 =
1

Āq̄2
(b2z(s)x′(s)− x(s)z′(s)), h322 =

1

Ā3
(z′(s)x′′(s)− x′(s)z′′(s)), (34)

h412 =
εε∗b

Āq̄2
(z(s)x′(s)− x(s)z′(s)), h312 = h411 = h422 = 0, (35)

ω12(e1) =
1

Āq̄2
(b2z(s)z′(s)− x(s)x′(s)), ω12(e2) = 0, (36)

ω34(e1) =
εε∗b

Āq̄2
(z(s)z′(s)− x(s)x′(s)), ω34(e2) = 0. (37)

Therefore, we have the mean curvature vector and normal curvature for the
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rotational surfaces M1(b) and M2(b) as follows

H = −1

2
(εε∗h311 + h322)e3, (38)

RD(e1, e2; e3, e4) = h412(εh
3
22 − ε∗h311). (39)

On the other hand, by using the Codazzi equation (6) we obtain

e2(h
3
11) = ε∗h412ω34(e1) + ω12(e1)(ε

∗h311 − εh322), (40)

e2(h
4
12) = −εh322ω34(e1) + 2ε∗h412ω12(e1). (41)

The rotational surfaces M1(b) and M2(b) defined by (22) and (23) for b = 1,
x(s) = y(s) = f(s) sinh s and z(s) = w(s) = f(s) cosh s are also known as Vranceanu
rotational surface, where f(s) is a smooth function, [9].

3. Rotational surfaces in E4
1 with pointwise 1–type Gauss map

In this section, we study rotational surfaces in the Minkowski space E4
1 defined by

(10) with pointwise 1–type Gauss map.
By a direct calculation, the Laplacian of the Gauss map ν for an n–dimensional

submanifold M in a pseudo–Euclidean space En+2
t is obtained as follows:

Lemma 1. Let M be an n–dimensional submanifold of a pseudo–Euclidean space
En+2
t . Then, the Laplacian of the Gauss map ν = en+1 ∧ en+2 is given by

∆ν =||h||2ν + 2
∑
j<k

εjεkR
D(ej , ek; en+1, en+2)ej ∧ ek

+∇(trAn+1) ∧ en+2 + en+1 ∧∇(trAn+2)

+ n

n∑
j=1

εjω(n+1)(n+2)(ej)H ∧ ej ,

(42)

where ||h||2 is the squared length of the second fundamental form, RD the normal
curvature tensor, and ∇(trAr) the gradient of trAr.

Let M be a surface in the pseudo–Euclidean space E4
t . We choose a local or-

thonormal frame field {e1, e2, e3, e4} on M such that e1, e2 are tangent to M , and
e3, e4 are normal to M . Let C be a vector field in Λ2E4

t ≡ E6
s. Since the set

{eA ∧ eB|1 ≤ A < B ≤ 4} is an orthonormal basis for E6
s, the vector C can be

expressed as

C =
∑

1≤A<B≤4
εAεBCAB eA ∧ eB, (43)
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where CAB = 〈C, eA ∧ eB〉.

Lemma 2. A vector C in Λ2E4
t ≡ E6

s written by (43) is constant if and only if the
following equations are satisfied for i = 1, 2

ei (C12) =ε3h
3
i2C13 + ε4h

4
i2C14 − ε3h3i1C23 − ε4h4i1C24, (44)

ei (C13) =− ε2h3i2C12 + ε4ω34(ei)C14 + ε2ω12(ei)C23 − ε4h4i1C34, (45)

ei (C14) =− ε2h4i2C12 − ε3ω34(ei)C13 + ε2ω12(ei)C24 + ε3h
3
i1C34, (46)

ei (C23) =ε1h
3
i1C12 − ε1ω12(ei)C13 + ε4ω34(ei)C24 − ε4h4i2C34, (47)

ei (C24) =ε1h
4
i1C12 − ε1ω12(ei)C14 − ε3ω34(ei)C23 + ε3h

3
i2C34, (48)

ei (C34) =ε1h
4
i1C13 − ε1h3i1C14 + ε2h

4
i2C23 − ε2h3i2C24. (49)

Using (42) the following results can be stated for the characterization of timelike
surfaces in E4

1 with pointwise 1–type Gauss map of the first kind.

Theorem 3. Let M be an oriented timelike surface with zero mean curvature in E4
1.

Then M has pointwise 1–type Gauss map of the first kind if and only if M has flat
normal bundle. Hence, the Gauss map ν satisfies (1) for f = ‖h‖2 and C = 0.

Theorem 4. Let M be an oriented timelike surface with non–zero mean curvature
in E4

1. Then M has pointwise 1–type Gauss map of the first kind if and only if M
has parallel mean curvature vector.

We will classify timelike rotational surface in E4
1 defined by (10) with pointwise

1–type Gauss map of the first kind by using the above theorems.

Theorem 5. Let M be a timelike rotational surface in E4
1 defined by (10). Then M

has zero mean curvature vector, and its normal bundle is flat if and only if M is an
open part of a timelike plane in E4

1.

Proof. Let M be a timelike rotational surface in E4
1 given by (10). Then, there exists

a frame field {e1, e2, e3, e4} defined on M given by (11)–(13), and the components
of the second fundamental form are given by (14) and (15). Since M has zero mean
curvature, and its normal bundle is flat, then (18) and (19) imply, respectively,

h322 − κ = 0, (50)

h412(κ+ h322) = 0 (51)

as h311 = κ, where κ is the curvature of the profile curve of M . By using (50) and
(51) we obtain h412κ = 0 which implies either κ = 0 or h412 = 0.
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Case 1. κ = 0. Then, the profile curve of M is a line. We can parametrize the line
as

x(s) = x0s+ x1, w(s) = w0s+ w1 (52)

for some constants x0, x1, w0, w1 ∈ R with x20−w2
0 = −1. From (50), we also have

h322 = 0. By using the second equation in (14) and (52) we obtain

h322 = −(a2 + b2)x0w0s+ a2x1w0 + b2x0w1

a2(x0s+ x1)2 + b2(w0s+ w1)2
= 0

which gives

(a2 + b2)x0w0 = 0, (53)

a2x1w0 + b2w1x0 = 0. (54)

From (53) if w0 = 0, then x20 = −1 which is inconsistent equation. Hence, w0 6= 0
and x0 = 0, and thus w0 = ±1. Also, from (54) we get x1 = 0. Thus, x = 0 which
implies that M is an open part of the timelike zw–plane.
Case 2. h412 = 0. From the first equation in (15) we have the differential equation
xw′−wx′ = 0 that gives x = c0w where c0 is a constant. Therefore, the profile curve
of M is an open part of a line passing through the origin. Since the curvature κ is
zero, we have h311 = 0, and thus h322 = 0 because of (50). From the second equation
in (14) we get c0(a

2 + b2)ww′ = 0 which implies that c0 = 0, i.e., x = 0. Therefore
M is an open part of the timelike zw–plane.

In view of Remark 1, the converse of the proof is trivial.

By Theorem 3 and Theorem 5, we state

Corollary 6. There exists no non–planar timelike surface with zero mean curvature
in E4

1 defined by (10) with pointwise 1–type Gauss map of the first kind.

Now, we focus on timelike rotational surfaces in E4
1 with parallel non–zero mean

curvature vector to obtain surfaces in E4
1 defined by (10) with pointwise 1–type

Gauss map of the first kind.

Theorem 7. A timelike rotational surface in E4
1 defined by (10) has parallel non–

zero mean curvature if and only if it is an open part of the timelike surface defined
by

r(s, t) = (r0 cosh(
s

r0
) cos at, r0 cosh(

s

r0
) sin at, r0 sinh(

s

r0
) sinh bt,

r0 sinh(
s

r0
) cosh bt)

(55)

which has zero mean curvature in the de Sitter space S31
(

1
r20

)
⊂ E4

1.
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Proof. Let M be a timelike rotational surface in E4
1 defined by (10). Then, we

have an orthonormal moving frame {e1, e2, e3, e4} on M in E4
1 given by (11)–(13),

and the components of the second fundamental form are given by (14) and (15).
Suppose that the mean curvature vector H is parallel, i.e., DeiH = 0 for i = 1, 2.
By considering (17) and (18) we have

De2H =
ab(h322 − h311)(xx′ − ww′)

2(a2x2 + b2w2)
e4 = 0.

Since M has nonzero mean curvature, this equation reduces xx′ − ww′ = 0 that
implies x2 − w2 = µ0, where µ0 is a real number. Since γ is a timelike curve with
parametrized by arc length parameter s, we can choose µ0 = r20 and the components
of γ as

x(s) = r0 cosh
s

r0
, w(s) = r0 sinh

s

r0
.

Therefore, M is an open part of the timelike surface given by (55) which is minimal

in the de Sitter space S31
(

1
r20

)
⊂ E4

1.

The converse of the proof follows from a direct calculation.

Considering Theorem 4 and Theorem 7 we state the following:

Corollary 8. A timelike rotational surface M with non–zero mean curvature in E4
1

defined by (10) has pointwise 1–type Gauss map of the first kind if and only if it is
an open part of the surface given by (55).

By combining (5) and (7) we obtain the following classification theorem:

Theorem 9. Let M be a timelike rotational surface in E4
1 defined by (10). Then M

has pointwise 1–type Gauss map of the first kind if and only if M is an open part of
a timelike plane or the surface given by (55). Moreover, the Gauss map ν = e3 ∧ e4
of the surface (55) satisfies (1) for C = 0 and the function

f = ‖h‖2 =
2

r20

(
1− a2b2

(a2 cosh2( s
r0

) + b2 sinh2( s
r0

))2

)
.

Note that there is no non–planar timelike rotational surface in E4
1 defined by

(10) with global 1–type Gauss map of the first kind.
Now, we investigate timelike rotational surfaces in E4

1 defined by (10) with point-
wise 1–type Gauss map of the second kind.

Theorem 10. A timelike rotational surface M in E4
1 defined by (10) with flat normal

bundle has pointwise 1–type Gauss map of the second kind if and only if M is an
open part of a timelike plane in E4

1.
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Proof. Let M be a timelike rotational surface with flat normal bundle in E4
1 defined

by (10). Thus, we have RD(e1, e2; e3, e4) = h412(h
3
11 + h322) = 0 which implies that

h412 = 0 or h311 = −h322 6= 0.
Case 1. h412 = 0. Now considering the second equation in (15) the general solution
of xw′ − wx′ = 0 is x = c0w, where c0 is constant. Hence, M is a timelike regular
cone in the Minkowski space E4

1. For c0 = 0, it can be easily seen that M is an open
part of the timelike zw–plane. We suppose that c0 6= 0. If we parametrize the line
x = c0w with respect to arc length parameter s, we then have w(s) = ± 1√

1−c20
s+w0

and x(s) = ± c0√
1−c20

s + c0w0, w0, c0 ∈ R with c20 < 1. Thus, from (14)–(17) we

obtain that

h311 = 0, h322 = ∓ c0(a
2 + b2)√

1− c20(a2c20 + b2)w
,

h312 = 0, h4ij = 0, i, j = 1, 2,

ω12(e1) = 0, ω12(e2) = ± 1√
1− c20w

,

ω34(e1) = 0, ω34(e2) = ∓ ab
√

1− c20
(a2c20 + b2)w

.

(56)

Therefore, using equations (20) and (42) the Laplacian of the Gauss map ν = e3∧e4
is given by

∆ν = ||h||2ν + h322ω12(e2)e1 ∧ e4 − h322ω34(e2)e2 ∧ e3. (57)

Assume that M has pointwise 1–type Gauss map of the second kind. Then, there
exists a smooth function f and non–zero constant vector C such that (1) is satisfied.
Therefore, from (1) and (57) we get

f(1 + C34) =‖h‖2 = (h322)
2, (58)

fC14 =− h322ω12(e2), (59)

fC23 =− h322ω34(e2), (60)

C12 =C13 = C24 = 0. (61)

It follows from (56), (59) and (60) that C14 6= 0 and C23 6= 0.
Now, from (59) and (60) we have

ω34(e2)C14 − ω12(e2)C23 = 0. (62)

On the other hand, for i = 2 equation (45) implies

ω34(e2)C14 + ω12(e2)C23 = 0. (63)
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Thus, considering (56) the solution of equations (62) and (63) gives C14 = C23 = 0
which is a contradiction. That is, c0 = 0, and thus x = 0. Therefore M is an open
part of a timelike zw–plane.
Case 2. h322 = −h311 6= 0, that is, M is a pseudo–umbilical timelike surface in E4

1.
Now we will show that M has no pointwise 1–type Gauss map of the second kind.
Note that for this case h412 6= 0. If it were zero, then M would be a cone obtained
in Case 1 which is not pseudo–umbilical. Similarly, considering (42) and using the
Codazzi equation (20) we obtain the Laplacian of the Gauss map ν as

∆ν =||h||2ν + 2h412ω34(e2)e1 ∧ e4 + 2h311ω34(e2)e2 ∧ e3. (64)

Suppose that M has pointwise 1–type Gauss map of the second kind. Thus, (1)
is satisfied for some function f 6= 0 and nonzero constant vector C. From (1), (43)
and (64) we have

f(1 + C34) =‖h‖2, (65)

fC14 =− 2h412ω34(e2), (66)

fC23 =2h311ω34(e2), (67)

C12 =C13 = C24 = 0. (68)

From (66) and (67) it is seen that C14 6= 0 and C23 6= 0. Equations (66) and (67)
imply that

h311C14 + h412C23 = 0. (69)

From (44) for i = 1, we also obtain that

h412C14 − h311C23 = 0. (70)

Hence, equations (69) and (70) give that h412 = h311 = 0, (h322 = 0), that is, M is an
open part of the timelike zw–plane.

From Remark 1, the converse of the proof is trivial.

Corollary 11. There exists no a non–planar timelike rotational surface in E4
1 de-

fined by (10) with flat normal bundle and pointwise 1–type Gauss map of the second
kind.

Using Proposition 3.2 in [6], we get the following:

Corollary 12. A timelike rotational surface with zero mean curvature and non–
flat normal bundle in E4

1 defined by (10) has no pointwise 1–type Gauss map of the
second kind.
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4. Rotational surfaces in E4
2 with pointwise 1–type Gauss map

In this section, we determine the rotational surfaces in the pseudo–Euclidean space
E4
2 defined by (22) and (23) with pointwise 1–type Gauss map.

Theorem 13. Let M1(b) be a non–planar regular rotational surface with zero mean
curvature in E4

2 defined by (22). Then,

i. for some constants λ0 6= 0 and µ0, the regular surface M1(1) with the profile
curve α whose components satisfy

(w(s) + y(s))2 + λ0(w(s)− y(s))2 = µ0 (71)

has pointwise 1–type Gauss map of the second kind.

ii. for b 6= 1, the timelike surface M1(b) has pointwise 1–type Gauss map of the
second kind if and only if the profile curve α is given by y(s) = b0(w(s))±b for
some constant b0 6= 0.

Proof. Assume that M1(b) is a non–planar regular rotational surface with zero mean
curvature in E4

2 defined by (22). From equation (42), the Laplacian of the Gauss
map of the rotational surface M1(b) is given by

∆ν =||h||2ν + 2h412(ε
∗h322 − εh311)e1 ∧ e2

+ ω34(e1)(εh
3
11 + ε∗h322)e1 ∧ e3 + (εε∗e2(h

3
11) + e2(h

3
22))e2 ∧ e4. (72)

Since the mean curvature of M1(b) is zero, equation (72) becomes

∆ν = ||h||2ν − 4εh311h
4
12e1 ∧ e2. (73)

Suppose that M1(b) has pointwise 1–type Gauss map of second kind. Comparing
(1) and (73), we get

f(1 + εε∗C34) = ||h||2, (74)

fC12 = −4ε∗h311h
4
12, (75)

C13 = C14 = C23 = C24 = 0. (76)

For i = 1, 2, from (45) and (46), we have

h311C12 + h412C34 = 0, (77)

h412C12 + h311C34 = 0. (78)

Since the Gauss map ν is of the second kind, equations (77) and (78) must have
non–zero solution which implies (h311)

2− (h412)
2 = 0. Considering the first equations

56
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in (27) and (28) we have (b2 − 1)(b2y2(s)w′2(s)−w2(s)y′2(s)) = 0, that is, b = 1 or
b2y2(s)w′2(s)− w2(s)y′2(s) = 0.

If b = 1, it was shown that the components of the profile curve α of the surface
M1(1) with zero mean curvature satisfy equation (71), [2]. In this case, from (27)
and (28) it can be seen easily that h412 = −εε∗h311. Hence, by using equations (74),
(75) and (77), we find C12 = −1

2 , C34 = − εε∗

2 and f = −8ε(h322)
2. Since α is

a plane curve, h322 = κ, where κ is a curvature of the curve α. Thus, the Gauss
map ν of M1(1) satisfies (1) for the function f = −8εκ2 and the constant vector
C = − εε∗

2 e1 ∧ e2 −
1
2e3 ∧ e4. This completes the proof of (a).

If b2y2(s)w′2(s) − w2(s)y′2(s) = 0 and b 6= 1, then we have y(s) = b0(w(s))±b,
where b0 is non–zero constant. Also, the rotational surface M1(b) with this profile
curve α is timelike, i.e., εε∗ = −1. Hence, from the first equations in (27) and (28),
we get h412 = ±h311. By using equations (74), (75) and (77), we get the function
f = −8εκ2 and the constant vector C = ±1

2e1 ∧ e2 −
1
2e3 ∧ e4.

The converse of the proof is followed from a direct calculation. This completes
the proof of (b).

Similarly, we can state the following theorem for the rotational surface M2(b)
defined by (23) in the pseudo–Euclidean space E4

2.

Theorem 14. Let M2(b) be a non–planar regular rotational surface with zero mean
curvature in E4

2 defined by (23). Then,

i. for some constants λ0 6= 0 and µ0, the regular surface M2(1) with the profile
curve β whose components satisfy

(x(s) + z(s))2 + λ0(x(s)− z(s))2 = µ0 (79)

has pointwise 1–type Gauss map of the second kind.

ii. for b 6= 1, the spacelike surface M2(b) has pointwise 1–type Gauss map of the
second kind if and only if the profile curve β is given by z(s) = b̄0(x(s))±b for
some constant b̄0 6= 0.

Note that considering equation (73), if the Gauss map ν of the rotational surface
M1(b) and M2(b) were of the first kind which implies that h311 = 0 or h412 = 0, then
M1(b) and M2(b) would be lying in 3–dimensional pseudo–Euclidean space.

Corollary 15. A rotational surface in the pseudo–Euclidean space E4
2 defined by

(22) or (23) with zero mean curvature has no pointwise 1–type Gauss map of the
first kind.
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