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Abstract. We introduce a subclass of uniformly starlike and convex functions
with negative coefficients defined by Sălăgean operator. In this paper, we obtain
coefficient estimates, distortion theorems, closure theorems and radii of close-to-
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are obtained. Finally, distortion theorems for fractional calculus functions are also
considered.
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1. Introduction

Let Aj denote the class of the functions of the from

f (z) = z +
∞∑

k=j+1

ak z
k (j ∈ N = {1, 2, 3, ....}), (1.1)

which are analytic in the open unit disc U={z : |z| < 1} . We note that A1 = A. For
a function f (z) ∈ Aj ,let

D0f (z) = f (z) ,

D1f (z) = Df (z) = zf ′ (z) ,

Dnf (z) = D
(
Dn−1f (z)

)
= z +

∞∑
k=j+1

knak z
k , n ∈ N0 = N ∪ {0} . (1.2)
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The differential operator Dn was introduced by Sălăgean [9]. With the help of the
differential operator Dn, for 0 ≤ α < 1, 0 ≤ λ ≤ 1, β ≥ 0 , n ∈ N0 and m ∈ N, let
Sj (n,m, λ, α, β) denote the subclass of Aj consisting of functions f (z) of the form
(1.1) and satisfying condition

Re

{
(1− λ) z (Dnf(z))

′
+ λz (Dn+mf (z))

′

(1− λ)Dnf(z) + λDn+mf (z)
− α

}
>

β

∣∣∣∣∣(1− λ) z (Dnf (z))′ + λz (Dn+mf (z))
′

(1− λ)Dnf (z) + λDn+mf (z)
− 1

∣∣∣∣∣ , z ∈ U. (1.3)

The operator Dn+m was studied by Sekine [11], Hossen et al. [6] and Aouf and
Sălăgean [4] .We denote by Tj the subclass of Aj consisting of the functions of the
form

f (z) = z −
∞∑

k=j+1

ak z
k (ak ≥ 0, k ≥ j + 1; j ∈ N) . (1.4)

Further, we define the class Qj (m,n, λ, α, β) by

Qj (m,n, λ, α, β) = Sj (m,n, λ, α, β) ∩ Tj .

We note that, specializing the parameters α, β, λ, n and m, we obtain the following
subclasses studied by various authors:

(i) Q1 (1, n, λ, α, β) = TSλ (n, α, β) (see Aouf et al. [2]) ;
(ii) Q1 (m,n, 0, α, β) = T (n, α, β) (see Aouf [1]);
(iii) Qj (m,n, λ, α, 0) = Tj (m,n, λ, α) (see Aouf et al. [3]);
(iv) Qj (1, n, λ, α, 0) = P (j, n, λ, α) (see Aouf and Srivastava [5]);
(v) Qj (1, n, λ, β, k) = Uj (n, λ, α, β) (see Shanmugam et al. [12]);
(vi) Qj (m, 0, 0, α, β) = TS (m,α, β) (see Rosy and Murugusudaramoorthy [8]);

(vii) Qj (1, 0, 0, α, 0) = Cα (j) (see Srivastava et al. [15]);
(viii) Q1 (0, 0, 0, α, 0) = T ∗ (α) and Qj (0, 1, 0, α, 0) = C (α) (see Silverman [13]).

2. Coefficient estimates

Theorem 1. Let the function f (z) be defined by (1.4).Then f (z) ∈ Qj (m,n, λ, α, β)
if and only if

∞∑
k=j+1

kn [k (1 + β)− (α+ β)] [1 + (km − 1)λ] ak ≤ 1− α. (2.1)
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Proof. Assume that ( 2.1) holds.Then we must show that

β

∣∣∣∣∣(1− λ) z (Dnf (z))′ + λz (Dn+mf (z))
′

(1− λ)Dnf (z) + λDn+mf (z)
− 1

∣∣∣∣∣−
Re

{
(1− λ) z (Dnf (z))′ + λz (Dn+mf (z))

′

(1− λ)Dnf (z) + λDn+mf (z)
− α

}
≤ 1− α.

We have

β

∣∣∣∣∣(1− λ) z (Dnf (z))′ + λz (Dn+mf (z))
′

(1− λ)Dnf (z) + λDn+mf (z)
− 1

∣∣∣∣∣−
Re

{
(1− λ) z (Dnf (z))′ + λz (Dn+mf (z))

′

(1− λ)Dnf (z) + λDn+mf (z)
− α

}

≤
(1 + β)

∞∑
k=j+1

kn (k − 1) [1 + (km − 1)λ] akz
k−1

1−
∞∑

k=j+1

kn [1 + (km − 1)λ] akzk−1

≤
(1 + β)

∞∑
k=j+1

kn (k − 1) [1 + (km − 1)λ] ak

1−
∞∑

k=j+1

kn [1 + (km − 1)λ] ak

≤ 1− α.

Hence, f (z) ∈ Qj (m,n, λ, α, β) .
Conversely, let f (z) ∈ Qj (m,n, λ, α, β). Then we have

1−
∞∑

k=j+1

kn+1 [1 + (km − 1)λ] akz
k−1

1−
∞∑

k=j+1

kn [1 + (km − 1)λ] akzk−1
− α ≥

β

∣∣∣∣∣∣∣∣∣
∞∑

k=j+1

kn (k − 1) [1 + (km − 1)λ] akz
k−1

1−
∞∑

k=j+1

kn [1 + (km − 1)λ] akzk−1

∣∣∣∣∣∣∣∣∣ .
Letting z → 1− along the real axis, we obtain the desired inequality

∞∑
k=j+1

kn [k (1 + β)− (α+ β)] [1 + (km − 1)λ] ak ≤ 1− α. (2.3)
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This completes the proof of Theorem 1.

Corollary 1. Let the function f (z) be define by (1.4) be in the class Qj(m,n, λ, α, β),
Then

ak ≤
1− α

kn [k (1 + β)− (α+ β)] [1 + (km − 1)λ]
(k ≥ j + 1) . (2.4)

The result is sharp for the function

f (z) = z − 1− α
kn [k (1 + β)− (α+ β)] [1 + (km − 1)λ]

zk (k ≥ j + 1) . (2.5)

3. Distortion theorems

Theorem 2. Let the function f(z) defined by (1.4) be in the class Qj(m,n, λ, α, β).Then
for |z| = r < 1,we have∣∣Dif (z)

∣∣ ≥ r − 1− α
(j + 1)n−i [j (1 + β) + (1− α)] [1 + [(1 + j)m − 1]λ]

rj+1, (3.1)

∣∣Dif (z)
∣∣ ≤ r +

1− α
(j + 1)n−i [j (1 + β) + (1− α)] [1 + ((1 + j)m − 1)λ]

rj+1 , (3.2)

for z ∈ U and 0 ≤ i ≤ n. The equalities in (3.1)and (3.2) are attained for the
function f(z) given by

f (z) = z − 1− α
(j + 1)n [j (1 + β) + (1− α)] [1 + [(1 + j)m − 1]λ]

zj+1 (z = ±r) .

(3.3)

Proof. Note that f(z) ∈ Qj(m,n,λ, α, β) if and only if Dif(z) ∈ Qj(m,n− i, λ, α, β)
and that

Dif (z) = z −
∞∑

k=j+1

kiakz
k. (3.4)

By Theorem 1,we have

(j + 1)n−i [j (1 + β) + (1− α)] [1 + ((j + 1)m − 1)λ]
∞∑

k=j+1

kiak
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≤
∞∑

k=j+1

kn [k (1 + β)− (α+ β)] [1 + (km − 1)λ] ak ≤ 1− α,

that is, that

∞∑
k=j+1

kiak ≤
1− α

(j + 1)n−i [j (1 + β) + (1− α)] [1 + [(1 + j)m − 1]λ]
. (3.5)

The assertions (3.1) and (3.2) of Theorem 2 would now follow readily form (3.4)
and (3.5). Finally, we note that equalities in (3.1) and (3.2) are attained for the
function f(z) defined by

Dif (z) = z − 1− α
(j + 1)n−i [j (1 + β) + (1− α)] [1 + [(1 + j)m − 1]λ]

zj+1. (3.6)

This completes the proof of Theorem 2.

Corollary 2. Let the function f(z) defined by (1.4)be in the class Qj(m,n,λ, α, β
).Then for |z| = r < 1

|f (z)| ≥ r − 1− α
(j + 1)n [j (1 + β) + (1− α)] [1 + [(1 + j)m − 1]λ]

rj+1 (3.7)

and.

|f (z)| ≤ r +
1− α

(j + 1)n [j (1 + β) + (1− α)] [1 + [(1 + j)m − 1]λ]
rj+1. (3.8)

The equalities in (3.7) and(3.8) are attained for the function f(z) given by (3.3).

Proof. Taking i = 0 in Theorem 2, we immediately obtain (3.7) and (3.8).

Corollary 3. Let the function f(z) defined by (1.4) be in the class Qj(m,n,λ, α, β
). Then, for |z| = r < 1∣∣f ′ (z)∣∣ ≥ 1− 1− α

(j + 1)n−1 [j (1 + β) + (1− α)] [1 + [(1 + j)m − 1]λ]
rj (3.9)

and ∣∣f ′ (z)∣∣ ≤ 1 +
1− α

(j + 1)n−1 [j (1 + β) + (1− α)] [1 + [(1 + j)m − 1]λ]
rj . (3.10)

The equalities in (3.9) and (3.10)are attained for the function f(z) given by (3.3).

Proof. Setting i = 1 in Theorem 2, and making use of (1.3), we arrive at Corollary
3.
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4. Convex linear combination

In this section, we shall prove that the class Qj(m;n,λ, α, β) is closed under convex
linear combination.

Theorem 3. . Qj(m,n, λ, α, β) is a convex set.

Proof. Let the functions

fν (z) = z −
∞∑

k=j+1

aν,k z
k (aν,k ≥ 0; ν = 1, 2) (4.1)

be in the class Qj(m,n, λ, α, β ). It is sufficient to show that the function h (z)
defined by

h (z) = µf1 (z) + (1− µ) f2 (z) (0 ≤ µ ≤ 1) (4.2)

is also in the class Qj(m,n,λ, α, β). Since, for 0 ≤ µ ≤ 1,

h (z) = z −
∞∑

k=j+1

{µak,1 + (1− µ) ak,2} zk, (4.3)

with the aid of Theorem 1, we have

∞∑
k=j+1

kn [k (1 + β)− (α+ β)] [1 + (km − 1)λ] {µak,1 + (1− µ) ak,2} ≤ 1− α, (4.4)

which implies that h (z) ∈ Qj(m,n,λ, α, β). Hence Qj(m,n,λ, α, β) is a convex
set.

Theorem 4. Let fj (z) = z and

fk (z) = z− 1− α
kn [k (1 + β)− (α+ β)] [1 + (km − 1)λ]

zk (k ≥ j + 1;n ∈ N0;m ∈ N)

(4.5)
for 0 ≤ α < 1, β ≥ 0 and 0 ≤ λ ≤ 1, then f (z) is in the class Qj(m,n,λ, α, β), if
and only if it can be expressed in the form

f (z) =

∞∑
k=j

υk fk (z) , (4.6)

where υk ≥ 0 (k ≥ j) and
∞∑
k=j

υk = 1.
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Proof. Assume that

f (z) =
∞∑
k=j

υk fk (z)

= z −
∞∑

k=j+1

1− α
kn [k (1 + β)− (α+ β)] [1 + (km − 1)λ]

υk z
k . (4.7)

Then it follows that

∞∑
k=j+1

{
kn [k (1 + β)− (α+ β)] [1 + (km − 1)λ]

1− α
.

.
1− α

kn [k (1 + β)− (α+ β)] [1 + (km − 1)λ]
υk

}

=
∞∑

k=j+1

υk = 1− υj ≤ 1. (4.8)

So, by Theorem 1, f (z) ∈ Qj(m,n, λ, α, β ).
Conversely, assume that the function f (z) defined by (1.4) belongs to the class

Qj(m,n,λ, α, β). Then

ak ≤
1− α

kn [k (1 + β)− (α+ β)] [1 + (km − 1)λ]
(k ≥ j + 1; n ∈ N0;m ∈ N) .

Setting

υk =
kn [k (1 + β)− (α+ β)] [1 + (km − 1)λ]

1− α
ak (k ≥ j + 1; n ∈ N0;m ∈ N)

(4.9)
and

υj = 1−
∞∑

k=j+1

υk

we can see that f (z) can be expressed in the form (4.4) .This completes the proof
of Theorem 4.
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5. Radii of close-to-convexity, starlikeness and convexity

Theorem 5. Let the function f (z) defined by (1.4) be in the class Qj(m,n, λ, α, β).Then
f (z) is close-to-convex of order ρ (0 ≤ ρ < 1) in |z| < r1, where

r1 = r1(m,n, λ, α, β, ρ)

inf
k

{
(1− ρ) kn−1 [k (1 + β)− (α+ β)] [1 + (km − 1)λ]

1− α

} 1
k−1

(k ≥ j + 1) . (5.1)

The result is sharp, the extremal function f (z) being given by (2.5) .

Proof. We must show that∣∣f ′(z)− 1
∣∣ ≤ 1− ρ for |z| < r1(m,n, λ, α, β, ρ),

where r1(m,n, λ, α, β, p) is given by (5.1) . Indeed we find from (1.4) , that∣∣f ′(z)− 1
∣∣ ≤ ∞∑

k=j+1

kak |z|k−1 .

Thus ∣∣f ′(z)− 1
∣∣ ≤ 1− ρ

if
∞∑

k=j+1

(
k

1− ρ

)
ak |z|k−1 ≤ 1. (5.2)

But, by Theorem 1, (5.2) will be true if(
k

1− ρ

)
|z|k−1 ≤ kn [k (1 + β)− (α+ β)] [1 + (km − 1)λ]

1− α
,

that is, if

|z| ≤
[

(1− ρ) kn−1 [k (1 + β)− (α+ β)] [1 + (km − 1)λ]

1− α

] 1
k−1

. (5.3)

Theorem 5 follows easily from (5.3) .

Theorem 6. Let the function f (z) defined by (1.4) be in the class Qj(m,n,λ, α, β).Then
f (z) is starlike of order ρ (0 ≤ ρ < 1) in |z| < r2, where

r2 = r2(m,n, λ, α, β, ρ) =

inf
k

{
(1− ρ) kn [k (1 + β)− (α+ β)] [1 + (km − 1)λ]

(k − ρ)(1− α)

} 1
(k−1)

(k ≥ j + 1) . (5.4)

The result is sharp, with the extremal function f (z) given by (2.5) .
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Proof. It is sufficient to show that∣∣∣∣z f ′ (z)f (z)
− 1

∣∣∣∣ ≤ 1− ρ for |z| < r2(m,n, λ, α, β, ρ),

where r2(m,n, λ, α, β, ρ) is given by (5.4) . Indeed we find, again from (1.4) , that

∣∣∣∣z f ′ (z)f (z)
− 1

∣∣∣∣ ≤
∞∑

k=j+1

(k − 1) ak |z|k−1

1−
∞∑

k=j+1

ak |z|k−1
.

Thus ∣∣∣∣z f ′ (z)f (z)
− 1

∣∣∣∣ ≤ 1− ρ

if
∞∑

k=j+1

(
k − ρ
1− ρ

)
ak |z|k−1 ≤ 1. (5.5)

But, by Theorem 1, (5.5) will be true if(
k − ρ
1− ρ

)
|z|k−1 ≤ kn [k (1 + β)− (α+ β)] [1 + (km − 1)λ]

1− α
,

that is ,if

|z| ≤
[

(1− ρ) kn [k (1 + β)− (α+ β)] [1 + (km − 1)λ]

(k − ρ)(1− α)

] 1
(k−1)

(k ≥ j + 1) . (5.6)

Theorem 6 follows easily from (5.6).

Corollary 4. Let the function f (z) defined by (1.4) be in the class Qj(m,n, λ, α, β).
Then f (z) is convex of order ρ (0 ≤ ρ < 1) in |z| < r3, where

r3 = r3(m,n, λ, α, β, ρ) = (5.7)

inf
k

{
(1− ρ) kn−1 [k (1 + β)− (α+ β)] [1 + (km − 1)λ]

(k − ρ)(1− α)

} 1
k−1

(k ≥ j + 1) .

The result is sharp, with the extremal function f(z) given by (2.5).
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6. A family of integral operators

Theorem 7. Let the function f (z) defined by (1.4) be in the class Qj(m,n,λ, α, β
), let c be a real number such that c > −1. Then the function F (z) defined by

F (z) =
c+ 1

zc

z∫
0

tc−1f (t) dt (c > −1) (6.1)

also belongs to the class Qj (m,n, λ, α, β ).

Proof. From the representation (6.1) of F (z) , it follows that

F (z) = z −
∞∑

k=j+1

bk z
k,

where

bk =

(
c+ 1

c+ k

)
ak.

Therefore,we have

∞∑
k=j+1

kn [k (1 + β)− (α+ β)] [1 + (km − 1)λ] bk

=
∞∑

k=j+1

kn [k (1 + β)− (α+ β)] [1 + (km − 1)λ]

(
c+ 1

c+ k

)
ak

≤
∞∑

k=j+1

kn [k (1 + β)− (α+ β)] [1 + (km − 1)λ] ak ≤ 1− α,

since f(z) ∈ Qj(m,n, λ, α, β). Hence, by Theorem 1, F (z) ∈ Qj(m,n, λ, α, β).

Theorem 8. Let the function

F (z) = z −
∞∑

k=j+1

ak z
k ( ak ≥ 0 )

be in the class Qj(m,n,λ, α, β). And let c be a real number such that c > −1.Then
the function f(z) given by (6.1), is univalent in |z| < R∗, where

R∗ = inf
k

[
kn−1 [k (1 + β)− (α+ β)] [1 + (km − 1)λ] (c+ 1)

(c+ k) (1− α)

] 1
(k−1)

(k ≥ j + 1) .

(6.2)
The result is sharp.
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Proof. From (6.1), we have

f(z) =
z1−c {zcF (z)}′

c+ 1
= z −

∞∑
k=j+1

(
c+ k

c+ 1

)
ak z

k.

In order to obtain the required result, it suffices to show that∣∣f ′(z)− 1
∣∣ ≤ 1 whenever |z| < R∗,

where R∗is given by (6.2) . Now

∣∣f ′(z)− 1
∣∣ ≤ ∞∑

k=j+1

k(c+ k)

c+ 1
ak |z|k−1 .

Thus |f ′(z)− 1| ≤ 1 if

∞∑
k=j+1

k(c+ k)

c+ 1
ak |z|k−1 ≤ 1. (6.3)

But Theorem 1 confirms that

kn [k (1 + β)− (α+ β)] [1 + (km − 1)λ]

1− α
ak ≤ 1. (6.4)

Hence (6.3) will be satisfied if

k(c+ k)

c+ 1
|z|k−1 < kn [k (1 + β)− (α+ β)] [1 + (km − 1)λ]

1− α
,

that is, if

|z| <
[
kn−1 [k (1 + β)− (α+ β)] [1 + (km − 1)λ] (c+ 1)

(c+ k) (1− α)

] 1
(k−1)

(k ≥ j + 1) . (6.5)

Therefore, the function f(z) given by ( 6.1) is univalent in |z| < R∗. Sharpness of
the result follows if we take

f(z) = z − (c+ k) (1− α)

kn [k (1 + β)− (α+ β)] [1 + (km − 1)λ] (c+ 1)
zk (k ≥ j + 1) .
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7. Modified Hadamard products

Let the functions fν(z) (ν = 1, 2) be defined by (4.1). The modified Hadamard
product (or convolution) of the functions f1(z) and f2(z) is defined by

(f1 ∗ f2) (z) = z −
∞∑

k=j+1

ak,1ak,2z
k. (7.1)

Theorem 9. Let the functions fν(z)(ν = 1, 2) defined by (4.1) be in the class
Qj(m,n,λ, α, β).Then (f1 ∗ f2) (z) ∈ Qj(m,n, λ, δ(m,n, λ, α, β), β), where

δ(m,n, λ, α, β) =

1− j (1 + β) (1− α)2

(j + 1)n [(j + 1) (1 + β)− (α+ β)]2 [1 + ((j + 1)m − 1)λ]− (1− α)2
. (7.2)

The result is sharp.

Proof. Employing the technique used earlier by Schild and Silverman [10], we need
to find the largest δ = δ(m,n, λ, α, β) such that

∞∑
k=j+1

kn [k (1 + β)− (δ + β)] [1 + (km − 1)λ]

1− δ
ak,1ak,2 ≤ 1. (7.3)

Since
∞∑

k=j+1

kn [k (1 + β)− (α+ β)] [1 + (km − 1)λ]

1− α
ak,1 ≤ 1 (7.4)

and
∞∑

k=j+1

kn [k (1 + β)− (α+ β)] [1 + (km − 1)λ]

1− α
ak,2 ≤ 1, (7.5)

then by the Cauchy-Schwarz inequality, we have

∞∑
k=j+1

kn [k (1 + β)− (α+ β)] [1 + (km − 1)λ]

1− α
√
ak,1ak,2 ≤ 1. (7.6)

Thus it is sufficient to show that

kn [k (1 + β)− (δ + β)] [1 + (km − 1)λ]

1− δ
ak,1ak,2
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≤ kn [k (1 + β)− (α+ β)] [1 + (km − 1)λ]

1− α
√
ak,1ak,2

(k ≥ j + 1) , (7.7)

that is, that

kn [k (1 + β)− (δ + β)]

1− δ
ak,1ak,2 ≤

kn [k (1 + β)− (α+ β)]

1− α
√
ak,1ak,2

or
√
ak,1ak,2 ≤

[k (1 + β)− (α+ β)] (1− δ)
[k (1 + β)− (δ + β)] (1− α)

(k ≥ j + 1) . (7.8)

Note that

√
ak,1ak,2 ≤

1− α
kn [k (1 + β)− (α+ β)] [1 + (km − 1)λ]

(k ≥ j + 1) . (7.9)

Consequently, we need only to prove that

1− α
kn [k (1 + β)− (α+ β)] [1 + (km − 1)λ]

(7.10)

≤ [k (1 + β)− (α+ β)] (1− δ)
[k (1 + β)− (δ + β)] (1− α)

( k ≥ j + 1)

or, equivalently, that

δ ≤ 1− (k − 1) (1 + β) (1− α)2

kn [k (1 + β)− (α+ β)]2 [1 + (km − 1)λ]− (1− α)2
(k ≥ j + 1) . (7.11)

Since

φ (k) = 1− (k − 1) (1 + β) (1− α)2

kn [k (1 + β)− (α+ β)]2 [1 + (km − 1)λ]− (1− α)2
(k ≥ j + 1)

(7.12)
is an increasing function of k (k ≥ j + 1) then letting k = j + 1 we obtain

δ ≤ φ (j + 1) = 1− j (1 + β) (1− α)2

(j + 1)n [j (1 + β) + (1− α)]2 [1 + ((j + 1)m − 1)λ]− (1− α)2

(7.13)
which proves the main assertion of Theorem 9. Finally, by taking the functions

fν (z) = z − 1− α
(j + 1)n [j (1 + β) + (1− α)] [1 + ((j + 1)m − 1)λ]

zj+1 (ν = 1, 2) ,

(7.14)
we can see that the result is sharp.
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Remark 1. Putting m = 1 in Theorem 9, we obtain the following corollary
which corrects the result obtained by Shanmugam et al.[12, Theorem 5.1] .

Corollary 5. Let the functions fν (z) (ν = 1, 2) defined by (4.1) be in the class
Uj(n, λ, α, β). Then (f1 ∗ f2) (z) ∈ Uj(n, λ, γ, β), where

γ = 1− j(1 + β)(1− α)2

(j + 1)n[(j + 1)(1 + β)− (α+ β)]2 (1 + jλ)− (1− α)2
. (7.15)

The result is sharp.

Theorem 10. Let f1 (z) ∈ Qj(m,n, λ, α, β) and f2 (z) ∈ Qj(m,n, λ, γ, β). Then
(f1 ∗ f2) (z) ∈ Qj(m,n, λ, ξ(j,m, n, λ, γ, β), β), where

ξ(j,m, n, λ, γ, β) = 1−

[j (1 + β) (1− α) (1− γ)] .

.{(j + 1)n [j (1 + β) + (1− α)] [j (1 + β) + (1− γ)] .

· [1 + ((j + 1)m − 1)λ]− (1− α) (1− γ)}−1 (7.16)

The result is the best possible for the functions

f1 (z) = z − 1− α
(j + 1)n [j (1 + β) + (1− α)] [1 + ((j + 1)m − 1)λ]

zj+1 (7.17)

and

f2 (z) = z − 1− γ
(j + 1)n [j (1 + β) + (1− γ)] [1 + ((j + 1)m − 1)λ]

zj+1 . (7.18)

Proof. Proceeding as in the proof of Theorem 9, we get

ξ ≤ 1− [j (1 + β) (1− α) (1− γ)] .

.{(j + 1)n [j (1 + β) + (1− α)] [j (1 + β) + (1− γ)]

[1 + ((j + 1)m − 1)λ]− (1− α) (1− γ)}−1

(k ≥ j + 1) . (7.19)

Since the right-hand side of (7.19) is an increasing function of k, setting k = j + 1
in (7.19), we obtain (7.16). This completes the proof of Theorem 10.
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Corollary 6. Let the functions fν(z) (ν = 1, 2, 3) defined by (4.1), be in the
class Qj(m,n, λ, α, β). Then (f1 ∗f2 ∗f3) (z) ∈ Qj(m,n, λ, ζ(m,n, λ, α, β), β), where

ζ(m,n, λ, α, β) = 1− {j (1 + β) (1− α)3}.

.{(j + 1)2n [j (1 + β) + (1− α)]3 [1 + ((j + 1)m − 1)λ]− (1− α)3}−1. (7.20)

The result is the best possible for the functions fν(z)(ν = 1, 2, 3) given by (7.14) .

Proof. From Theorem 9, we have

(f1 ∗ f2) (z) ∈ Qj(m,n, λ, δ(m,n, λ, α, β), β),

where δ is given by (7.2). Now, using Theorem 10, we get (f1 ∗ f2 ∗ f3) (z) ∈
Qj(m,n, λ, ζ(m,n, λ, α, β), β), where

ζ(m,n, λ, α, β) = 1− {j (1 + β) (1− α)3}.

.{(j + 1)2n [j (1 + β) (1− α)]3 [1 + ((j + 1)m − 1)λ]− (1− α)3}−1. (7.21)

This completes the proof of corollary 6.

Remark 2. Putting m = 1 in Corollary 6, we obtain similar result for the
class Uj(n, λ, α, β).

Theorem 11. Let the functions fν(z) (ν = 1, 2) be defined by (4.1) be in the class
Qj(m,n, λ, α, β). Then the function

h (z) = z −
∞∑

k=j+1

(
a2k,1 + a2k,2

)
zk (7.22)

belongs to the class Qj(m,n, λ, η(m,n, λ, α, β), β), where

η(m,n, λ, α, β) = 1− {2j (1 + β) (1− α)2}.

.{(j + 1)n [j (1 + β) + (1− α)]2 [1 + ((j + 1)m − 1)λ]− 2 (1− α)2}−1. (7.23)

The result is sharp for the functions fν (z) (ν = 1, 2) defined by (7.14) .

Proof. By virtue of Theorem 1, we obtain

∞∑
k=j+1

[
kn [k (1 + β)− (α+ β)] [1 + (km − 1)λ]

1− α

]2
a2k,1
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≤

 ∞∑
k=j+1

kn [k (1 + β)− (α+ β)] [1 + (km − 1)λ]

1− α
ak,1

2

≤ 1 (7.24)

and
∞∑

k=j+1

[
kn [k (1 + β)− (α+ β)] [1 + (km − 1)λ]

1− α

]2
a2k,2

≤

 ∞∑
k=j+1

kn [k (1 + β)− (α+ β)] [1 + (km − 1)λ]

1− α
ak,2

2

≤ 1. (7.25)

It follows from (7.24) and (7.25) that

∞∑
k=j+1

1

2

[
kn [k (1 + β)− (α+ β)] [1 + (km − 1)λ]

1− α

]2 (
a2k,1 + a2k,2

)
≤ 1. (7.26)

Therefore, we need to fined the largest η = η(m,n, λ, α, β) such that

kn [k (1 + β)− (η + β)] [1 + (km − 1)λ]

1− η
≤

1

2

[
kn [k (1 + β)− (α+ β)] [1 + (km − 1)λ]

1− α

]2
(k ≥ j + 1) ,

that is,
η ≤ 1− {2 (k − 1) (1 + β) (1− α)2}.

.
{
kn [k (1 + β)− (α+ β)]2 [1 + (km − 1)λ]

}
− 2 (1− α)2}−1

(k ≥ j + 1) . (7.27)

Since
D (k) = 1− {2 (k − 1) (1 + β) (1− α)2}.

.
{
kn [k (1 + β)− (α+ β)]2 [1 + (km − 1)λ]

}
− 2 (1− α)2}−1 (7.28)

is an increasing function of k (k ≥ j + 1) , we readily have

η ≤ D(j + 1) = 1− {2j (1 + β) (1− α)2}.

.{(j + 1)n [j (1 + β) + (1− α)]2 [1 + ((j + 1)m − 1)λ]− 2 (1− α)2}−1

and Theorem 11 follows at once.

Remark 3. Putting m = 1 in Theorem 11, we obtain similar result for the
class Uj(n, λ, α, β).

140



M.K. Aouf, A.O. Mostafa, O.M. Algubouri – Uniformly starlike and convex . . .

8. Applications of fractional calculus

We begin with the statements of the following definitions of fractional calculus (that
is , fractional derivative and fractional integral) which were defined by Owa [7](and,
subsequently, by Srivastava and Owa [14]).

Definition 1. The fractional integral of order µ is defined, for a function f (z)
by

D−µz f (z) =
1

Γ (µ)

∫ z

0

f (ζ)

(z − ζ)1−µ
dζ (µ > 0) , (8.1)

where f (z) is an analytic function in a simply-connected region of the z−plane
containing the origin, and the multiplicity of (z − ζ)µ−1 is removed by requiring log
(z − ζ) to be real when z − ζ > 0.

Definition 2. The fractional derivative of order µ is defined, for a function
f (z) , by

Dµ
z f (z) =

1

Γ (1− µ)

d

d (z)

∫ z

0

f (ζ)

(z − ζ)µ
dζ (0 ≤ µ < 1) , (8.2)

where f (z) is constrained, and the multiplicity of (z − ζ)−µ is removed, as in Defi-
nition 1.

Definition 3. Under the hypotheses of Definition 2, the fractional derivative
of order η + µ is defined

Dn+µ
z f (z) =

dn

dzn
Dµ
z f (z) (0 ≤ µ < 1;n ∈ N0) . (8.3)

Theorem 12. Suppose that the function f (z) defined by (1.4) be in the class
Qj(m,n, λ, α, β). Then ∣∣D−µz (Dif (z))

∣∣ ≥ |z|1+µ

Γ (2 + µ)
.

.

{
1− (1− α)Γ (j + 2) Γ (2 + µ)

(j + 1)n−i [j (1 + β) + (1− α)] [1 + [(1 + j)m − 1]λ] Γ (j + 2 + µ)
|z|j
}
(8.4)

and ∣∣D−µz (Dif (z))
∣∣ ≤ |z|1+µ

Γ (2 + µ)
.

.

{
1 +

(1− α)Γ (j + 2) Γ (2 + µ)

(j + 1)n−i [j (1 + β) + (1− α)] [1 + [(1 + j)m − 1]λ] Γ (j + 2 + µ)
|z|j
}
(8.5)
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(µ > 0; 0 ≤ i ≤ n; z ∈ U) .

The result is sharp.

Proof. Let
F (z) = Γ (2 + µ) z−µD−µz (Dif (z)) (8.6)

= z −
∞∑

k=j+1

Γ (k + 1) Γ (2 + µ)

Γ (k + 1 + µ)
kiakz

k = z −
∞∑

k=j+1

Ψ (k) kiakz
k,

where

Ψ (k) =
Γ (k + 1) Γ (2 + µ)

Γ (k + 1 + µ)
(k ≥ j + 1) . (8.7)

Since

0 < Ψ (k) ≤ Ψ (j + 1) =
Γ (j + 2) Γ (2 + µ)

Γ (j + 2 + µ)
, (8.8)

therefore, by using (3.5) and (8.8) , we see that

|F (z)| ≥ |z| −Ψ (j + 1) |z|j+1
∞∑

k=j+1

kiak

≥ |z| − (1− α)Γ (j + 2) Γ (2 + µ)

(j + 1)n−i [j (1 + β) + (1− α)] [1 + [(1 + j)m − 1]λ] Γ (j + 2 + µ)
|z|j+1

(8.9)
and

|F (z)| ≤ |z|+ Ψ (j + 1) |z|j+1
∞∑

k=j+1

kiak

≤ |z|+ (1− α)Γ (j + 2) Γ (2 + µ)

(j + 1)n−i [j (1 + β) + (1− α)] [1 + [(1 + j)m − 1]λ] Γ (j + 2 + µ)
|z|j+1 ,

(8.10)
which proves the inequalities (8.4) and (8.5) of Theorem 12. The equalities in (8.4)
and (8.5) are attained for the function f (z) given by

D−µZ (Dif (z)) =
z1+µ

Γ (2 + µ)
.

.

{
1− (1− α)Γ (j + 2) Γ (2 + µ)

(j + 1)n−i [j (1 + β) + (1− α)] [1 + [(1 + j)m − 1]λ] Γ (j + 2 + µ)
zj

}
(8.11)
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or, equivalently, by

Dif (z) = z − (1− α)

(j + 1)n−i [j (1 + β) + (1− α)] [1 + [(1 + j)m − 1]λ]
zj . (8.12)

Thus we complete the proof of Theorem 12.

Taking i = 0 in Theorem 12, we have

Corollary 7. Let the function f (z) defined by (1.4) be in the class Qj(m,n, λ, α, β).
Then ∣∣D−µz f (z)

∣∣ ≥ |z|1+µ

Γ (2 + µ)
.

.

{
1− (1− α)Γ (j + 2) Γ (2 + µ)

(j + 1)n [j (1 + β) + (1− α)] [1 + [(1 + j)m − 1]λ] Γ (j + 2 + µ)
|z|j
}
(8.13)

and ∣∣∣D−µZ f (z)
∣∣∣ ≤ |z|1+µ

Γ (2 + µ)
.

.

{
1− (1− α)Γ (j + 2) Γ (2 + µ)

(j + 1)n [j (1 + β) + (1− α)] [1 + [(1 + j)m − 1]λ] Γ (j + 2 + µ)
|z|j
}
(8.14)

(µ > 0; z ∈ U) .

The equalities in (8.13) and (8.14) are attained for the function f(z) given by (3.3).
Remark 4. Putting m = 1 in Corollary 7, we obtain the following corollary

which corrects the result obtained by Shanmugam et al. [12, Theorem 6.6] .

Corollary 8. Let the function f (z) defined by (1.4) be in the class Uj(n, λ, α, β).Then

∣∣D−µz f (z)
∣∣ ≥ |z|1+µ

Γ (2 + µ)
.

.

{
1− (1− α)Γ (j + 2) Γ (2 + µ)

(j + 1)n [j (1 + β) + (1− α)] (1 + jλ)Γ (j + 2 + µ)
|z|j
}

(8.15)

and ∣∣∣D−µZ f (z)
∣∣∣ ≤ |z|1+µ

Γ (2 + µ)
.

.

{
1− (1− α)Γ (j + 2) Γ (2 + µ)

(j + 1)n [j (1 + β) + (1− α)] (1 + jλ)Γ (j + 2 + µ)
|z|j
}
. (8.16)

The result is sharp.
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Theorem 13. Let the function f (z) defined by (1.4) be in the class Qj(m,n, λ, α, β).
Then ∣∣Dµ

z (Dif (z))
∣∣ ≥ |z|1−µ

Γ (2− µ)
.

.

{
1− (1− α)Γ (j + 2) Γ (2− µ)

(j + 1)n−i [j (1 + β) + (1− α)] [1 + [(1 + j)m − 1]λ] Γ (j + 2− µ)
|z|j
}

(8.17)
and ∣∣Dµ

z (Dif (z))
∣∣ ≤ |z|1−µ

Γ (2− µ)
.

.

{
1 +

(1− α)Γ (j + 2) Γ (2− µ)

(j + 1)n−i [j (1 + β) + (1− α)] [1 + [(1 + j)m − 1]λ] Γ (j + 2− µ)
|z|j
}

(8.18)
(0 ≤ µ < 1; 0 ≤ i ≤ n− 1; z ∈ U) .

The result is sharp.

Proof. Let

G (z) = Γ (2− µ) zµDµ
z (Dif (z))

= z −
∞∑

k=j+1

Γ (k + 1) Γ (2− µ)

Γ (k + 1− µ)
kiakz

k

= z −
∞∑

k=j+1

Θ (k) ki+1akz
k,

where

Θ (k) =
Γ (k + 1) Γ (2− µ)

Γ (k + 1− µ)
(k ≥ j + 1) . (8.20)

It is easily seen from (8.20) that

0 < Θ (k) ≤ Θ (j + 1) =
Γ (j + 2) Γ (2− µ)

Γ (j + 2− µ)
. (8.21)

Consequently, with the aid of (3.5) and (8.21), we have

|G (z)| ≥ |z| −Θ (j + 1) |z|j+1
∞∑

k=j+1

ki+1ak
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≥ |z| − (1− α)Γ (j + 2) Γ (2− µ)

(j + 1)n−i [j (1 + β) + (1− α)] [1 + [(1 + j)m − 1]λ] Γ (j + 2− µ)
|z|j+1

(8.22)
and

|G (z)| ≥ |z|+ Θ (j + 1) |z|j+1
∞∑

k=j+1

ki+1ak

≤ |z|+ (1− α)Γ (j + 2) Γ (2− µ)

(j + 1)n−i [j (1 + β) + (1− α)] [1 + [(1 + j)m − 1]λ] Γ (j + 2− µ)
|z|j+1

(8.23)
Now (8.17) and (8.18) follow from (8.22) and (8.23), respectively. Since the equalities
in (8.17) and (8.18) are attained for the function f (z) given by

Dµ
z (Dif (z)) =

z1−µ

Γ (2− µ)
.

.

{
1− (1− α)Γ (j + 2) Γ (2− µ)

(j + 1)n−i [j (1 + β) + (1− α)] [1 + [(1 + j)m − 1]λ] Γ (j + 2− µ)
zj

}
(8.24)

or for the function Dif(z) given by (8.12), the proof of Theorem 13 is thus com-
pleted.

Taking i = 0 in Theorem 13, we have

Corollary 9. Let the function f (z) defined by (1.4) be in the class Qj(m,n, λ, α, β).
Then

|Dµ
z f (z)| ≥ z1−µ

Γ (2− µ)
.

.

{
1− (1− α)Γ (j + 2) Γ (2− µ)

(j + 1)n [j (1 + β) + (1− α)] [1 + [(1 + j)m − 1]λ] Γ (j + 2− µ)
zj
}

(8.25)

and

|Dµ
z f (z)| ≤ z1−µ

Γ (2− µ)
.

.

{
1 +

(1− α)Γ (j + 2) Γ (2− µ)

(j + 1)n [j (1 + β) + (1− α)] [1 + [(1 + j)m − 1]λ] Γ (j + 2− µ)
zj
}

(8.26)

The equalities in (8.25) and (8.26) are attained for the function f(z) given by (3.3).

Remark 5. Putting m = 1 in Corollary 9, we obtain the following corollary
which corrects the result obtained by Shanmugam et al.[12, Theorem 6.7] .
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Corollary 10. Let the function f (z) defined by (1.4) be in the class Uj(n, λ, α, β).Then

|Dµ
z f (z)| ≥ z1−µ

Γ (2− µ)

.

{
1− (1− α)Γ (j + 2) Γ (2− µ)

(j + 1)n [j (1 + β) + (1− α)] (1 + jλ)Γ (j + 2− µ)
zj
}

(8.27)

and

|Dµ
z f (z)| ≥ z1−µ

Γ (2− µ)
.

.

{
1− (1− α)Γ (j + 2) Γ (2− µ)

(j + 1)n [j (1 + β) + (1− α)] (1 + jλ)Γ (j + 2− µ)
zj
}
. (8.28)

The result is sharp.
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