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metric spaces. We derive some results about existence and uniqueness of a fixed
point for this class of self mappings in fuzzy metric spaces. We also give some
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1. Introduction and Preliminaries

The concept of fuzzy sets was introduced initially by Zadeh [27] in 1965. Since then,
using this concept in topology and analysis many authors have expansively developed
the theory of fuzzy sets and application. George and Veeramani [8] and Kramosil
and Michalek [16] have introduced the concept of fuzzy topological spaces induced by
fuzzy metric, which have very important applications in quantum particle physics,
particularly in connections with both string and ε∞ theory, given and studied by El
Naschie [6, 7].

The contraction type mappings in fuzzy metric spaces play a crucial role in fixed
point theory. In 1988, Grabiec [9] first defined the Banach contraction in a fuzzy
metric space and extended fixed point theorems of Banach and Edelstein to fuzzy
metric spaces. Following Grabiec’s approach, Mishra et al. [21] obtained some
common fixed point theorems for asymptotically commuting mappings on fuzzy
metric spaces in 1994. In 1998, Vasuki [26] offered a generalization of Grabiec’s
fuzzy Banach contraction theorem and proved a common fixed point theorem for
a sequence of mappings in a fuzzy metric space. Afterwards, Gregori and Sapena
[10] introduced the notion of fuzzy contractive mapping and gave some fixed point
theorems for complete fuzzy metric spaces in the sense of George and Veeramani,
and also for Kramosil and Michalek’s fuzzy metric spaces which are complete in
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Grabiec’s sense. Soon after, Mihet [18] proposed a fuzzy Banach theorem for (weak)
B-contraction in M-complete fuzzy metric spaces. Recently, further studies have
been done by different authors [1, 2, 19, 20, 23, 24, 25].

First, we recall some well-known definitions and results in the theory of fuzzy
metric space (abbreviated, FM space) which are used later in this paper.

Throughout this paper, we denote R the set of all real numbers, and by R+ the
set of all nonnegative real numbers.

Definition 1. A mapping ∆ : [0, 1] × [0, 1] → [0, 1] is called a triangular norm
(abbreviated, t-norm) if the following conditions are satisfied:

(i) ∆(a, b) = ∆(b, a),

(ii) ∆(a,∆(b, c)) = ∆(∆(a, b), c),

(iii) ∆(a, b) ≥ ∆(c, d), whenever a ≥ c and b ≥ d,

(iv) ∆(a, 1) = a,

for every a, b, c, d ∈ [0, 1].

Two typical examples of continuous t-norm are ∆p(a, b) = ab and ∆m(a, b) =
min{a, b}. It is evident that, as regards the pointwise ordering, ∆ ≤ ∆m, for each
t-norm ∆.

An arbitrary t-norm ∆ can be extended (by (iii)) in a unique way to an n-ary
operation. For (a1, · · · , an) ∈ [0, 1]n (n ∈ N), the value ∆n(a1, · · · , an) is defined by
∆1(a1) = a1 and ∆n(a1, · · · , an) = ∆(∆n−1(a1, · · · , an−1), an). For each a ∈ [0, 1],
the sequence (∆n(a)) is defined by ∆n(a) = ∆n(a, · · · , a).

Definition 2. A t-norm ∆ is said to be of Hadžić type (H-type) if the sequence of
functions (∆n(a)) is equicontinuous at a = 1, that is

∀ε ∈ (0, 1) ∃ δ ∈ (0, 1) : a > 1− δ ⇒ ∆n(a) > 1− ε (n ∈ N).

The t-norm ∆m is a trivial example of a t-norm of H-type, but there are t-norms
∆ of H-type with ∆ 6= ∆m, see [11]. It is easy to see that if ∆ is of H-type, then ∆
satisfies supa∈(0,1) ∆(a, a) = 1.

Definition 3. (George and Veeramani [8]) The 3-tuple (X,M,∆) is said to be a
fuzzy metric space (abbreviated, FM space) if X is a nonempty set, ∆ is a continuous
t-norm and M is a fuzzy set on X ×X × (0,∞) satisfying the following conditions:

(FM1) M(x, y, t) > 0,

(FM2) M(x, y, t) = 1 iff x = y,
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(FM3) M(x, y, t) = M(y, x, t),

(FM4) ∆(M(x, y, t),M(y, z, s)) ≤M(x, z, t+ s),

(FM5) M(x, y, .) : (0,∞)→ [0, 1] is continuous.

for every x, y, z ∈ X and t, s > 0.

Example 1. [8] Let (X, d) be a metric space. Define

M(x, y, t) =
ktn

ktn +md(x, y)
, k,m, n ∈ R+,

then (X,M,∆m) is a FM space.

Proposition 1. [9] Let (X,M,∆) be a FM space. Then for all x, y ∈ X, M(x, y, ·)
is nondecreasing.

Definition 4. Let (X,M,∆) be a FM space. An open ball with center x and radius
λ (0 < λ < 1) in X is the set Ux(ε, λ) = {y ∈ X : M(x, y, ε) > 1 − λ}, for all
ε > 0. It is easy to see that U = {Ux(ε, λ) : x ∈ X, ε > 0, λ ∈ (0, 1)} determines a
Hausdorff topology for X [8].

Definition 5. A sequence (xn) in a FM space (X,M,∆) is said to be convergent to
a point x ∈ X if and only if for every ε > 0 and λ ∈ (0, 1), there exists n0(ε, λ) ∈ N
such that M(xn, x, ε) > 1− λ for all n ≥ n0(ε, λ) or limn→∞M(xn, x, t) = 1 for all
t > 0, in this case we say that limit of the sequence (xn) is x.

Definition 6. A sequence (xn) in a FM space (X,M,∆) is said to be Cauchy se-
quence if and only if for every ε > 0 and λ ∈ (0, 1), there exists n0(ε, λ) ∈ N such that
M(xn+p, xn, ε) > 1−λ for all n ≥ n0(ε, λ) and every p ∈ N or limn→∞M(xn+p, xn, t) =
1, for all t > 0 and p ∈ N.

Also, a FM space (X,M,∆) is said to be complete if and only if every Cauchy
sequence in X, is convergent.

Proposition 2. The limit of a convergent sequence in a FM space (X,M,∆) is
unique.

Proof. It is obvious.

Lemma 1. [9] If lim
n→∞

xn = x and lim
n→∞

yn = y, then lim
n→∞

M(xn, yn, t) = M(x, y, t)

for all t > 0.

Lemma 2. [15] Let n ∈ N, gn : (0,∞) → (0,∞) and Fn, F : R → [0, 1]. Assume
that sup{F (t) : t > 0} = 1 and for any t > 0, lim

n→∞
gn(t) = 0 and Fn(gn(t)) ≥ F (t).

If each Fn is nondecreasing, then lim
n→∞

Fn(t) = 1 for any t > 0.
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Lemma 3. Let (X,M,∆) be a FM space and ϕ : (0,∞) → (0,∞) be a mapping
such that lim

n→∞
ϕn(t) = 0. If x, y ∈ X and M(x, y, ϕ(t)) ≥ M(x, y, t) for all t > 0.

Then x = y.

Proof. By using the above lemma, the result follows.

Proposition 3. Let n ∈ N, M : (0,∞) → [0, 1], g1, g2, . . . , gn : R → [0, 1] and
M, gi are nondecreasing, left continuous and lim

t→∞
M(t) = 1 (i = 1, 2, . . . , n). If

ϕ : (0,∞)→ (0,∞) is a mapping such that ϕ(t) < t, lim
n→∞

ϕn(t) = 0 and

M(ϕ(t)) ≥ min{g1(t), g2(t), . . . , gn(t),M(t)}, ∀t > 0.

Then M(ϕ(t)) ≥ min{g1(t), g2(t), . . . , gn(t)} for all t > 0.

Proof. By way of contradiction, we assume that the conclusion is false. Hence, there
exists t0 > 0 such that min{g1(t0), g2(t0), . . . , gn(t0)} > M(ϕ(t0)). So by the hypoth-
esis we have M(ϕ(t0)) ≥M(t0). As M is nondecreasing and ϕ(t0) < t0, one then has
that M(t) = M(t0) for all ϕ(t0) ≤ t ≤ t0. So in fact min{g1(t0), g2(t0), . . . , gn(t0)} >
M(t0). Let m = sup{t > 0 : M(t) = M(t0)}, by the hypothesis we have m < ∞.
Choose t1 ∈ (ϕ(m),m) and t2 > m such that ϕ(t2) < t1, so we have, as M is
nondecreasing and t1 < m,

M(ϕ(t2)) ≤M(t1) ≤M(t0) < M(t2).

This implies
M(ϕ(t2)) ≥ min{g1(t2), g2(t2), . . . , gn(t2)},

(as M(ϕ(t2)) ≥ min{g1(t2), g2(t2), . . . , gn(t2),M(t2)}). Since

min{g1(t0), g2(t0), . . . , gn(t0)} > M(t0),

we have

min{g1(t0), g2(t0), . . . , gn(t0)} > M(t0) ≥M(ϕ(t2))

≥min{g1(t2), g2(t2), . . . , gn(t2)}
≥min{g1(t0), g2(t0), . . . , gn(t0)},

a contradiction, the result follows.

Banach in 1922 proved the celebrated result which is well-known in the literature
as the classical Banach’s fixed point principle or the classical Banach’s contraction
principle. The classical Banach’s contraction principle has been generalized in many
ways over the years. In 1988, Grabiec [9] introduced a fixed point of a contraction
mapping on a FM space and proved a fixed point theorem which is generalization
of the classical Banach’s contraction principle.
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Theorem 4. [9] Let (X,M,∆) be a complete FM space such that for all x, y ∈ X,
limt→∞M(x, y, t) = 1. If T is a contraction mapping of X into itself, that is there
exists a constant 0 < c < 1 such that

M(Tx, Ty, ct) ≥M(x, y, t), ∀t > 0,∀x, y ∈ X.

Then there is a unique x∗ ∈ X such that Tx∗ = x∗.

In 1968, Browder [4] proved the following distinguished generalization of classical
Banach’s contraction principle.

Theorem 5. [4] Let (X, d) be a complete metric space. If T : X → X is a ϕ-
contraction, that is,

d(Tx, Ty) ≤ ϕ(d(x, y)),

for all x, y ∈ X, where ϕ : R+ → R+ is a nondecreasing and right continuous
function satisfying 0 < ϕ(t) < t, for all t > 0. Then T has a unique fixed point x0
and limn→∞ T

nx = x0 for any x ∈ X.

Subsequently, his result was extended in 1969 by Boyd and Wong [3] by weak-
ening the hypothesis on ϕ it suffices that ϕ is right upper semicontinuous (not
necessarily monotonic); i.e.,

lim sup
s→t+

ϕ(s) ≤ ϕ(t), ∀t ∈ R+.

In 1975, Matkowski [17] showed that sometimes in Theorem 5, the condition of the
right continuous ϕ may be omitted.

Theorem 6. [17] Let (X, d) be a complete metric space and T : X → X be a
ϕ-contraction, where ϕ : R+ → R+ is a nondecreasing function satisfying lim

n→∞
ϕn(t) =

0 for all t > 0. Then T has a unique fixed point x0 and limn→∞ T
nx = x0 for any

x ∈ X.

In the following Jachymski [15] obtained nice fuzzy version of Matkowski’s the-
orem.

Theorem 7. [15] Let (X,M,∆) be a complete FM space under a t-norm ∆ of
H-type. If T : X → X is a ϕ-fuzzy contraction, that is,

M(Tx, Ty, ϕ(t)) ≥M(x, y, t), ∀t > 0, ∀x, y ∈ X, (1)

where ϕ : R+ → R+ is a mapping such that, for any t > 0, 0 < ϕ(t) < t and
lim
n→∞

ϕn(t) = 0. Then T has a unique fixed point x0 and limn→∞ T
nx = x0 for any

x ∈ X.
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Recently, Ricarte and Romaguera [22] established the following new fuzzy version
of Matkowski’s theorem by using a type of contraction introduced in the fuzzy
intuitionistic context by Huang et al. [14], and that generalizes C-contractions as
defined by Hicks in [13].

Theorem 8. [22] Let (X,M,∆) be a complete FM space and T : X → X a self-map
such that

M(x, y, t) > 1− t =⇒ M(Tx, Ty, ϕ(t)) > 1− ϕ(t),

for all x, y ∈ X and t > 0, where ϕ : R+ → R+ is a nondecreasing function satisfying
lim
n→∞

ϕn(t) = 0 for all t > 0. Then T has a unique fixed point.

In 2014, Castro-Company et al. [5] obtained a generalization of Theorem 8
to preordered fuzzy quasi-metric spaces which is applied to deduce, among other
results, a procedure to show in a direct and easy way the existence of solution for
the recurrence equations that are typically associated to Quicksort and Divide and
Conquer algorithms, respectively.

Definition 7. Let (X,M,∆) be a FM space and T : X → X. We say that T is
generalized ϕ-fuzzy contraction if for every x, y ∈ X and t > 0,

M(Tx, Ty, ϕ(t)) ≥ min{M(x, y, t),M(x, Tx, t),M(y, Ty, t),

M(x, Ty, t),M(Tx, y, t)},
(2)

where ϕ : (0,∞)→ (0,∞) is a mapping.

The following example shows that a generalized ϕ-fuzzy contraction need not be
a ϕ-fuzzy contraction.

Example 2. Let X = [0,∞), T : X → X be defined by Tx = x + 1, and let
ϕ : (0,∞)→ (0,∞) be defined by

ϕ(t) =

{
t

1+t , 0 < t ≤ 1,

t− 1, 1 < t.

For each x, y ∈ X, let M(x, y, t) = t
t+|x−y| for all t > 0. Since for all x, y ∈ X,

max{|x− y − 1|, |y − x− 1|} = |x− y|+ 1, then

M(Tx, Ty, ϕ(t)) ≥ min{M(x, Ty, t),M(Tx, y, t)}.

Thus,

M(Tx, Ty, ϕ(t)) ≥ min{M(x, y, t),M(x, Tx, t),M(y, Ty, t),

M(x, Ty, t),M(Tx, y, t)},
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which satisfies (2). If t = 2, x = 0 and y = 3
2 , then M(T0, T 3

2 , ϕ(2)) = 2
5 and

M(0, 32 , 2) = 4
7 . Thus, M(T0, T 3

2 , ϕ(2)) < M(0, 32 , 2), which does not satisfy (1).

As the following example shows, there exists T that does not satisfy (2) with
ϕ(t) = kt, 0 < k < 1.

Example 3. Let X = [0,∞), T : X → X be defined by Tx = 2x, and let ϕ :
(0,∞) → (0,∞) be defined by ϕ(t) = kt, 0 < k < 1. Let M(x, y, t) = t

t+|x−y| for

each x, y ∈ X and for all t > 0. If x = 0, y = 1 and t = 2
k > 0, then for simple

calculations, M(T0, T1, ϕ( 2k )) = 1
2 and,

min{M(0, 1,
2

k
),M(0, T0,

2

k
),M(1, T1,

2

k
),M(0, T1,

2

k
),M(T0, 1,

2

k
)}

=
2

2 + k
>

1

2
.

Therefore, for x = 0, y = 1 and t = 2
k > 0, the mapping T does not satisfy

(2). Thus, we showed that there exists T that does not satisfy (2) with ϕ(t) = kt,
0 < k < 1.

Definition 8. Let (X,M,∆) be a FM space. For every x0 ∈ X, let O(x0, T ) =
{Tnx0 : n ∈ N ∪ {0}}. The set O(x0, T ) is the orbit of the mapping T : X → X
at x0. Let DO(x0,T ) : R → [0, 1] be a diameter of O(x0, T ), i.e., DO(x0,T )(t) =
sups<t infx,y∈O(x0,T )M(x, y, s). If supt∈RDO(x0,T )(t) = 1, then the orbit O(x0, T ) is
a fuzzy bounded subset of X. Hence O(x0, T ) is a fuzzy bounded set if and only if
limt→∞DO(x0,T )(t) = 1.

In this paper, we introduce generalized ϕ-fuzzy contraction in FM spaces. We
derive some results about existence and uniqueness of a fixed point for this class of
self mappings in FM spaces. We show that if ϕ : (0,∞)→ (0,∞) is a injective map-
ping such that ϕ(t) < t and lim

n→∞
ϕn(t) = 0 for each t > 0. Then every generalized

ϕ-fuzzy contraction with the bounded orbit has unique fixed point. Finally, we give
some examples which support our main results.

2. Main results

Now we state and prove our main theorem about existence and uniqueness of a fixed
point for generalized ϕ-fuzzy contraction in FM space under certain conditions.

Theorem 9. Let (X,M,∆) be a complete FM space such that limt→∞M(x, y, t) = 1,
for all x, y ∈ X and let T : X → X be a generalized ϕ-fuzzy contraction mapping
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where ϕ : (0,∞)→ (0,∞) is a injective mapping such that ϕ(t) < t and lim
n→∞

ϕn(t) =

0 for each t > 0. If there exists x0 ∈ X with the bounded orbit, then there is a unique
x∗ ∈ X such that Tx∗ = x∗. Moreover, (Tnx0) converges to x∗.

Proof. Let un = Tnx0, if there exists n ∈ N, such that un+1 = un, then there is a
x∗ ∈ X such that Tx∗ = x∗ and (Tnx0) converges to x∗. So we can assume that
un+1 6= un for all n ∈ N.

Now by the condition (2), we have

M(un, un+1, ϕ(t)) ≥ min{M(un−1, un, t),M(un−1, un, t),M(un, un+1, t),

M(un−1, un+1, t),M(un, un, t)},

for all t > 0, so

M(un, un+1, ϕ(t)) ≥ min{M(un−1, un, t),M(un, un+1, t),M(un−1, un+1, t)},

for all t > 0. By Proposition 3 we have

M(un, un+1, ϕ(t)) ≥ min{M(un−1, un, t),M(un−1, un+1, t)}, (∀t > 0). (3)

In the following we show by induction that for each n ∈ N and for each t > 0, there
exists 1 ≤ m ≤ n+ 1 such that

M(un, un+1, ϕ
n(t)) ≥M(u0, um, t). (4)

If n = 1, then by (3), we have

M(u1, u2, ϕ(t)) ≥ min{M(u0, u1, t),M(u0, u2, t)}
= M(u0, um, t),

for some 1 ≤ m ≤ 2 and for all t > 0. Thus (4) holds for n = 1. Assume towards a
contradiction that (4) is not true and take n0 > 1, be the least natural number such
that (4) does not hold. So there exists t0 > 0, such that for all 1 ≤ m ≤ n0 + 1, we
have

M(un0 , un0+1, t0) < M(u0, um, ϕ
−n0(t0)). (5)

If min{M(un0−1, un0 , ϕ
−1(t0)),M(un0−1, un0+1, ϕ

−1(t0))} = M(un0−1, un0 , ϕ
−1(t0)),

then by the hypothesis we have

M(un0 , un0+1, t0) ≥M(un0−1, un0 , ϕ
−1(t0)) ≥M(u0, um, ϕ

−n0(t0)),

for some 1 ≤ m ≤ n0, a contradiction. Thus

min{M(un0−1, un0 , ϕ
−1(t0)),M(un0−1, un0+1, ϕ

−1(t0))} = M(un0−1, un0+1, ϕ
−1(t0)).
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Also form (3), we have

M(un0 , un0+1, t0) ≥M(un0−1, un0+1, ϕ
−1(t0)). (6)

By the condition (2), we get

M(un0−1, un0+1, ϕ
−1(t)) ≥ min{M(un0−2, un0 , ϕ

−2(t)),M(un0−2, un0−1, ϕ
−2(t)),

M(un0 , un0+1, ϕ
−2(t)),M(un0−2, un0+1, ϕ

−2(t)),

M(un0 , un0−1, ϕ
−2(t))},

(7)

for all t > 0. If

min{M(un0−2, un0 , ϕ
−2(t0)),M(un0−2, un0−1, ϕ

−2(t0)),M(un0−2, un0+1, ϕ
−2(t0)),

M(un0 , un0+1, ϕ
−2(t0)),M(un0 , un0−1, ϕ

−2(t0))}
=M(un0 , un0−1, ϕ

−2(t0)),

then from (6) and the above, we have

M(un0 , un0+1, t0) ≥M(un0−1, un0+1, ϕ
−1(t0))

≥M(un0 , un0−1, ϕ
−2(t0)) = M(un0−1, un0 , ϕ

−2(t0))

≥M(un0 , um, ϕ
−(n0+1)(t0))

≥M(un0 , um, ϕ
−n0(t0)),

for some 1 ≤ m ≤ n0, a contradiction. If

min{M(un0−2, un0 , ϕ
−2(t0)),M(un0−2, un0−1, ϕ

−2(t0)),M(un0 , un0+1, ϕ
−2(t0)),

M(un0−2, un0+1, ϕ
−2(t0))} = M(un0 , un0+1, ϕ

−2(t0)),

then form (6), (7) and the above, we have

M(un0 , un0+1, t0) ≥M(un0 , un0+1, ϕ
−2(t0)),

since ϕ−2(t0) > t0, then M(un0 , un0+1, t0) = M(un0 , un0+1, ϕ
−2(t0)). By (3),

M(un0 , un0+1, ϕ
−2(t0)) ≥ min{M(un0−1, un0 , ϕ

−3(t0)),M(un0−1, un0+1, ϕ
−3(t0))}.

If min{M(un0−1, un0 , ϕ
−3(t0)),M(un0−1, un0+1, ϕ

−3(t0))} = M(un0−1, un0 , ϕ
−3(t0)),

then by the hypothesis we have

M(un0 , un0+1, t0) ≥M(un0−1, un0 , ϕ
−3(t0)) ≥M(u0, um, ϕ

−(n0+2)(t0))

≥M(u0, um, ϕ
−n0(t0)),
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for some 1 ≤ m ≤ n0, a contradiction. Thus

min{M(un0−1, un0 , ϕ
−3(t0)),M(un0−1, un0+1, ϕ

−3(t0))} = M(un0−1, un0+1, ϕ
−3(t0)).

Also form (3), we have

M(un0 , un0+1, t0) = M(un0 , un0+1, ϕ
−2(t0)) ≥M(un0−1, un0+1, ϕ

−3(t0)). (8)

By the condition (2), we get

M(un0−1, un0+1, ϕ
−3(t0)) ≥ min{M(un0−2, un0 , ϕ

−4(t0)),M(un0−2, un0−1, ϕ
−4(t0)),

M(un0 , un0+1, ϕ
−4(t0)),M(un0−2, un0+1, ϕ

−4(t0)),

M(un0 , un0−1, ϕ
−4(t0))}.

If

min{M(un0−2, un0 , ϕ
−4(t0)),M(un0−2, un0−1, ϕ

−4(t0)),M(un0 , un0+1, ϕ
−4(t0)),

M(un0−2, un0+1, ϕ
−4(t0)),M(un0 , un0−1, ϕ

−4(t0))}
=M(un0 , un0−1, ϕ

−4(t0)),

then from (8) and the above, we obtain

M(un0 , un0+1, t0) ≥M(un0−1, un0+1, ϕ
−3(t0)) ≥M(un0−1, un0 , ϕ

−4(t0))

≥M(u0, um, ϕ
−(n0+3)(t0)) ≥M(u0, um, ϕ

−n0(t0)),

for some 1 ≤ m ≤ n0, a contradiction. If

min{M(un0−2, un0 , ϕ
−4(t0)),M(un0−2, un0−1, ϕ

−4(t0)),M(un0 , un0+1, ϕ
−4(t0)),

M(un0−2, un0+1, ϕ
−4(t0)),M(un0 , un0−1, ϕ

−4(t0))} = M(un0 , un0+1, ϕ
−4(t0)),

then from (8) and the above, we have

M(un0 , un0+1, t0) = M(un0 , un0+1, ϕ
−4(t0)).

Again by (3), we have

M(un0 , un0+1, ϕ
−4(t0)) ≥ min{M(un0−1, un0 , ϕ

−5(t0)),M(un0−1, un0+1, ϕ
−5(t0))}.

Therefore by continuing this process, we see that if

min{M(un0−2, un0 , ϕ
−k(t0)),M(un0−2, un0−1, ϕ

−k(t0)),M(un0 , un0+1, ϕ
−k(t0)),

M(un0−2, un0+1, ϕ
−k(t0)),M(un0 , un0−1, ϕ

−k(t0))}
=M(un0 , un0−1, ϕ

−k(t0)),

10
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for some k ≥ 2, then

M(un0 , un0+1, t0) ≥M(u0, um, ϕ
−(n0+k−1)(t0)) ≥M(u0, um, ϕ

−n0(t0)),

for some 1 ≤ m ≤ n0, a contradiction. If

min{M(un0−2, un0 , ϕ
−k(t0)),M(un0−2, un0−1, ϕ

−k(t0)),M(un0 , un0+1, ϕ
−k(t0)),

M(un0−2, un0+1, ϕ
−k(t0)),M(un0 , un0−1, ϕ

−k(t0))}
=M(un0 , un0+1, ϕ

−k(t0)),

for all k ≥ 2, thenM(un0 , un0+1, t0) = M(un0 , un0+1, ϕ
−k(t0)). Now letting k →∞, then

M(un0 , un0+1, t0) = 1, which is contradiction with (5). Otherwise, if there exists
k ≥ 2 such that

min{M(un0−2, un0 , ϕ
−k(t0)),M(un0−2, un0−1, ϕ

−k(t0)),M(un0 , un0+1, ϕ
−k(t0)),

M(un0−2, un0+1, ϕ
−k(t0)),M(un0 , un0−1, ϕ

−k(t0))} ≥
min{M(un0−2, un0 , ϕ

−k(t0)),M(un0−2, un0−1, ϕ
−k(t0)),M(un0−2, un0+1, ϕ

−k(t0))},

since t < ϕ−1(t) < ϕ−2(t) < · · · , then we have

min{M(un0−2, un0 , ϕ
−k(t0)),M(un0−2, un0−1, ϕ

−k(t0)),M(un0 , un0+1, ϕ
−k(t0)),

M(un0−2, un0+1, ϕ
−k(t0)),M(un0 , un0−1, ϕ

−k(t0))} ≥
min{M(un0−2, un0 , ϕ

−2(t0)),M(un0−2, un0−1, ϕ
−2(t0)),M(un0−2, un0+1, ϕ

−2(t0))}.

Therefore

M(un0−1, un0+1, ϕ
−1(t0)) ≥ min{M(un0−2, un0 , ϕ

−2(t0)),M(un0−2, un0−1, ϕ
−2(t0)),

M(un0−2, un0+1, ϕ
−2(t0))}.

From (6) and the above, we get

M(un0 , un0+1, t0) ≥M(un0−1, un0+1, ϕ
−1(t0))

≥min{M(un0−2, un0 , ϕ
−2(t0)),M(un0−2, un0−1, ϕ

−2(t0)),

M(un0−2, un0+1, ϕ
−2(t0))}

=M(un0−2, um, ϕ
−2(t0)),

(9)

for some 1 ≤ m ≤ n0 + 1. Therefore by continuing this process, we see that for each
1 ≤ k ≤ n0, there exists 1 ≤ m ≤ n0 + 1 such that

M(un0 , un0+1, t0) ≥M(un0−k, um, ϕ
−k(t0)). (10)

11
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If k = n0 in (10), then this is a contradiction by (5). So (4) holds for all n ∈ N.
Then from (4) we get

M(un, un+1, t) ≥M(un, un+1, ϕ
n(t)) ≥M(u0, um, t) ≥ DO(x0,T )(t).

Let ε > 0 and λ ∈ (0, 1) be given, since DO(x0,T )(t)→ 1 as t→∞, then there exists
t1 > 0 such that

DO(x0,T )(t1) > 1− λ.

Since ϕn(t1) → 0 as n → ∞, then there is N ∈ N such that ϕn(t1) < ε whenever
n ≥ N . So

M(un, un+1, ε) ≥M(un, un+1, ϕ
n(t1))

≥ DO(x0,T )(t1)

> 1− λ.

Thus we proved that for each ε > 0 and for each λ ∈ (0, 1), there exists a positive
integer N such that

M(un, un+1, ε) > 1− λ, ∀n ≥ N.

This means that lim
n→∞

M(un, un+1, t) = 1 for all t > 0. On the other hand

M(un, un+p, t) ≥ ∆

(
M(un, un+1,

t

p
),M(un+1, un+2,

t

p
), . . . ,M(un+p−1, un+p,

t

p
)

)
,

for all p ≥ 1, now taking the limits as n→∞, by the hypothesis we get

lim
n→∞

M(un, un+p, t) = 1.

Hence (un) is a Cauchy sequence and by the hypothesis there exists an element
x∗ ∈ X such that lim

n→∞
un = x∗. Again by (2) we have

M(Tun, Tx
∗, ϕ(t)) ≥ min{M(un, x

∗, t),M(un, Tun, t),M(x∗, Tx∗, t),

M(un, Tx
∗, t),M(x∗, Tun, t)}.

Since lim
n→∞

Tun = lim
n→∞

un+1 = x∗, then by Lemma 1 we get

M(x∗, Tx∗, ϕ(t)) ≥M(x∗, Tx∗, t),

12
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for all t > 0 now by Lemma 3, Tx∗ = x∗. Let y∗ ∈ X such that Ty∗ = y∗ then from
(2) we have

M(Tx∗, Ty∗, ϕ(t)) ≥min{M(x∗, y∗, t),M(Tx∗, x∗, t),M(Ty∗, y∗, t),

M(Tx∗, y∗, t),M(x∗, T y∗, t)}
=M(x∗, y∗, t),

then M(x∗, y∗, ϕ(t)) ≥M(x∗, y∗, t), now by Lemma 3, x∗ = y∗, so the desired result
is obtained.

Example 4. Consider X = [−1, 1] and define M(x, y, t) = t
t+d(x,y) for all x, y ∈ X

and for all t > 0, where d is Euclidean metric. Then (X,M,∆m) is a complete FM
space. Define self mapping T on X as follows:

Tx =


0 ; −1 ≤ x < 0,

x
16(1+x) ; 0 ≤ x < 4

5 or 7
8 < x ≤ 1,

x
16 ; 4

5 ≤ x ≤
7
8 .

To verify T is generalized ϕ-fuzzy contraction with ϕ(t) = 1
8 t, we need to consider

several possible cases.
Case 1. Let x, y ∈ [−1, 0). Then

d(Tx, Ty) = |Tx− Ty| = 0 ≤ 1

8
|x− y| = 1

8
d(x, y).

Case 2. Let x ∈ [−1, 0) and y ∈ [0, 45) ∪ (78 , 1]. Then

d(Tx, Ty) = |Tx− Ty| = y

16(1 + y)
≤ 1

8
|y − 0| = 1

8
d(y, Tx).

Case 3. Let x ∈ [−1, 0) and y ∈ [45 ,
7
8 ]. Then

d(Tx, Ty) = |Tx− Ty| = y

16
≤ 1

8
|y − 0| = 1

8
d(y, Tx).

Case 4. Let x, y ∈ [0, 45) ∪ (78 , 1]. Then

d(Tx, Ty) = |Tx− Ty| = | x

16(1 + x)
− y

16(1 + y)
| ≤ 1

8
|x− y| = 1

8
d(x, y).

Case 5. Let x ∈ [0, 45) ∪ (78 , 1] and y ∈ [45 ,
7
8 ]. Then

d(Tx, Ty) = |Tx− Ty| = | x

16(1 + x)
− y

16
| ≤ 1

16
(

x

1 + x
+ y) ≤ 1

16
(
1

2
+

7

8
) ≤ 11

128
,

13
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and
123

160
=

4

5
− 1

16

1

2
≤ y − x

16(1 + x)
≤ |y − x

16(1 + x)
| = d(y, Tx).

Thus

d(Tx, Ty) ≤ 11

128
≤ 123

1280
=

1

8
× 123

160
≤ 1

8
d(y, Tx).

Case 6. Let x, y ∈ [45 ,
7
8 ]. Then

d(Tx, Ty) = |Tx− Ty| = | x
16
− y

16
| ≤ 1

8
|x− y| = 1

8
d(x, y).

Hence, we obtain

d(Tx, Ty) ≤ 1

8
max{d(x, y), d(x, Tx), d(y, Ty), d(x, Ty), d(y, Tx)}, (x, y ∈ [−1, 1]),

or in other words

M(Tx, Ty,
1

8
t) ≥ min{M(x, y, t),M(x, Tx, t),M(y, Ty, t),M(x, Ty, t),M(y, Tx, t)},

for every x, y ∈ X and t > 0. Also, 0 ∈ X has the bounded orbit, so T has a unique
fixed point 0 in X, by Theorem 9.

Example 5. Let X = [−1, 1], T : X → X and ϕ : (0,∞) → (0,∞) be mappings
defined as follows:

T (x) =


0, −1 ≤ x < 0,

x
1+x , 0 ≤ x < 4

5 or 7
8 < x ≤ 1,

−1
16 x,

4
5 ≤ x ≤

7
8 ,

ϕ(t) =

t−
t2

8 , 0 < t ≤ 1,

7
8 t, 1 < t.

Let M(x, y, t) = t
t+|x−y| for all t > 0 and all x, y ∈ X. Then (X,M,∆m) is a

complete FM space. It is easy to see that all of the assumptions of Theorem 9 are
satisfied, and so T has a unique fixed point (x = 0 is a unique fixed point of T ). On
the other hand, we can show that T does not satisfy (1).

Lemma 10. [12] Let X be a nonempty set and T : X → X a mapping. Then there
exists a subset E ⊆ X such that T (E) = T (X) and T : E → X is one-to-one.

Theorem 11. Let (X,M,∆) be a complete FM space such that limt→∞M(x, y, t) =
1, for all x, y ∈ X and let self mappings T and S satisfy the following condition:

M(Tx, Ty, ϕ(t)) ≥ min{M(Sx, Sy, t),M(Sx, Tx, t),M(Sy, Ty, t),

M(Sx, Ty, t),M(Tx, Sy, t)},

14
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for all x, y ∈ X, where ϕ : (0,∞)→ (0,∞) is a mapping the same as in Theorem 9.
If TX ⊆ SX and SX is a complete subset of X and there is a sequence (xn) ⊆ X
such that Txn−1 = Sxn and supt∈RD{Tnxn−1: n∈N}(t) = 1, then T and S have a
unique coincidence point in X. Moreover, if T and S are weakly compatible (i.e.,
they commut at their coincidence points), then T and S have a unique common fixed
point.

Proof. By Lemma 10, there exists E ⊆ X such that SE = SX and S : E → X is
one-to-one. Now, define a mapping U : SE → SE by U(Sx) = Tx. Since S is one
to one on E, U is well defined. Also we have

M(U(Sx), U(Sy), ϕ(t)) =M(Tx, Ty, ϕ(t))

≥min{M(Sx, Sy, t),M(Sx, Tx, t),M(Sy, Ty, t),

M(Sx, Ty, t),M(Tx, Sy, t)},

for all Sx, Sy ∈ SE. Since Txn−1 = Sxn, so we get Un(Sx0) = Tnxn−1. By our
assumptions supt∈RDO(Sx0,U)(t) = supt∈RD{Tnxn−1: n∈N}(t) = 1. Since SE = SX
is complete, by using Theorem 9, there exists x∗ ∈ X such that U(Sx∗) = Sx∗.
Then Tx∗ = Sx∗, and so T and S have a coincidence point, which is also unique.

If T and S are weakly compatible, since Tx∗ = Sx∗, then we have

T (Tx∗) = TSx∗ = STx∗ = S(Sx∗).

Thus, Tx∗ = Sx∗ is also a confidence point of T and S. By uniqueness of coincidence
point of T and S, we get Tx∗ = Sx∗ = x∗.

Theorem 12. Let (X,M,∆) be a complete FM space such that limt→∞M(x, y, t) =
1, for all x, y ∈ X. Suppose that T : X → X is a mapping satisfy the following
condition:

M(Tx, Ty, α(t)t) ≥ min{M(x, y, t),M(x, Tx, t),M(y, Ty, t),

M(x, Ty, t),M(Tx, y, t)},
(11)

for all t > 0 and x, y ∈ X, where α : (0,∞)→ (0, 1) is strictly decreasing function.
If there exists x0 ∈ X with the bounded orbit, then there is a unique x∗ ∈ X such
that Tx∗ = x∗. Moreover, (Tnx0) converges to x∗.

Proof. Set ϕ(t) = α(t)t, it is sufficient to prove that ϕ satisfying the hypothesis of
Theorem 9. In fact, since α(t) < 1, then ϕ(t) < t, for all t > 0. On the other hand,
for all n ∈ Z+, we see that 0 < ϕn+1(r) = ϕ(ϕn(r)) < ϕn(r), thus the sequence

15
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{ϕn(r)} is convergent for each r > 0. Let lim
n→∞

ϕn(r) = a ≥ 0, then lim
t→a+

ϕ(t) = a.

Suppose that a > 0, then by the monotony of α, we have

a = lim
t→a+

ϕ(t) = lim
t→a+

α(t)t ≤ lim
t→a+

α
(a

2

)
t = α

(a
2

)
a < a.

This is a contradiction. Thus lim
n→∞

ϕn(r) = 0. Then by Theorem 9, the result

follows.

Example 6. Consider X = [0, 3] and define M(x, y, t) = t
t+|x−y| for all x, y ∈ X

and for all t > 0. Then (X,M,∆m) is a complete FM space. Let ϕ(t) = t
2 , define

continuous self mappings S and T on X as

Tx =
1

6
x+ 1, Sx =

1

3
(x+

12

5
), (x ∈ X).

Thus we have

M(Tx, Ty, ϕ(t)) =
t
2

t
2 + 1

6 |x− y|
=

t

t+ 1
3 |x− y|

= M(Sx, Sy, t).

It is easy to see that TX ⊆ SX, T and S are weakly compatible. Hence, we conclude
that all the conditions of Theorem 11 hold, so T and S have a unique common fixed
point 6

5 in X.

Example 7. Let X = [0,∞) and

M(x, y, t) =

{
t

t+|x−y| , t ≤ |x− y|,
1, t > |x− y|.

Then (X,M,∆m) is a complete FM space. Define Tx = x
1+x and α(t) = 1

1+t . By
definition of T we have

|Tx− Ty| = |x− y|
1 + |x− y|+ 2 min{x, y}+ xy

≤ |x− y|
1 + |x− y|

.

Clearly, if α(t)t > |Tx− Ty|, then (11) holds. Suppose now that α(t)t ≤ |Tx− Ty|.
Then we have

t

1 + t
≤ |Tx− Ty| ≤ |x− y|

1 + |x− y|
,

16
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so t ≤ |x− y| and by definition of M we get

M(Tx, Ty, α(t)t) =
α(t)t

α(t)t+ |Tx− Ty|

=
t

t+ (1 + t)|Tx− Ty|

≥ t

t+ (1 + t) |x−y|1+|x−y|

≥ t

t+ (1 + |x− y|) |x−y|1+|x−y|

=
t

t+ |x− y|
= M(x, y, t).

Thus we proved that T satisfies (11). Therefore, we showed that the mapping T
satisfies all hypotheses of Theorem 12 and has a unique fixed point 0.
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