
Acta Universitatis Apulensis
ISSN: 1582-5329
http://www.uab.ro/auajournal/

No. 50/2017
pp. 11-18

doi: 10.17114/j.aua.2017.50.02

FEATURES AND DESIGN PATTERNS FOR A FLEXIBLE
COLLECTION FRAMEWORK

D. Lupsa, R. Lupsa

Abstract. A good design of a collections framework allows the programmers
to concentrate on the important parts of their program. In this study, the focus is
on designing an easy to use and to extend collection framework. In order to do this
we use the properties of a container (features) combined with appropriate design
patterns.

2010 Mathematics Subject Classification: 68P05.

Keywords: data structures, collection frameworks, representation.

1. Introduction

Modern programming languages provide collection frameworks. They usually offer
many different data structure implementations, each being suitable for specific sit-
uations. Different design choices are made, some of them stem from the language
features and philosophy.

By providing useful data structures and algorithms, the Collections Framework
frees you to concentrate on the important parts of your program [11]. In order to
provide extensibility and adaptability for the future the introduction of many incre-
mentally different types is needed, but huge hierarchies are hard to understand and
to use [5] and they have little to do with clients’ use of the classes. A possible solu-
tion is seen [5] by placing more emphasis on the user’s (i.e. the client programmer’s)
point of view. As stated in [11], much of the engineering effort should go into the
design of the class and the type system.

Feature-oriented programming is a vision of programming in which individual
features can be defined separately and then composed to build a wide variety of
particular products [3]. In computer science, it was shown that objects can be
composed from individual features in a flexible way [9]. Our work is under the idea
that objects can be created just by selecting the desired features.

11

http://www.uab.ro/auajournal/


D. Lupsa, R. Lupsa – Features and Design Patterns . . .

This paper is organized as follows: section 2 presents the use of features in
building collection framework. Section 3 presents the features we use in this work.
Section 4 investigates some implementation aspects related to features and an effi-
cient implementation. In Section 5 we present some implementation choices as well
as design patterns we use and how they integrate features. Last section present some
conclusions and ideas for future work.

2. Collection Design and the Use of Features

Features can be used to build collection in feature-based generative approaches [2],
[1]. In some papers [9] , feature model is reported to be translated into programming
languages by using inheritance and aggregation with delegation.

Features make the distinctions between the container types. In [6] the imple-
mentation is based on decorator pattern. In order to get a specific collection by
decorating it with feature, an object is built on the top of another object. For ex-
ample, a sorted set can be obtained by decorating base container with Unique and
Sorted features. Containers are built over a basic container.

The work in [5] identifies a small number of software engineering concepts rele-
vant to the design of libraries of collections. They distinguish three basic orthogonal
semantic properties of collections: order (ordered, sorted, userOrdered), duplicates
(duplFree, duplIgnore, duplError) and search (searchable). Particular collection
types should be built by specifying their properties in terms of these basic types.

Yet Another Collections Library (YACL) [10] is a collection framework based on
set theory. The project YACL considers a model in which Function extends Relation
extends Set. Bags and Sequences extend Function. Hence a Function (equivalent to
Java Map class/interface) is a type of Set. [10] is a collections library built on the
top of Set in Java collections framework.

3. Features in our work

The starting idea of this work is that the user has to specify properties he needs in
terms of features. Internally the framework will decide on the data structure to be
used. The design is made such that the specifications of the properties should be
easily extended and in a flexible way.

A modern approach in software design is user centered design that requires de-
signers to analyze how users would like to use a product. On one hand, developers are
encouraged to use abstractions, that permits them to quickly use library functions.
In this way, one can easily write code without deeply understanding implementation
details. These are users that are centered on the abstract properties of containers.

12



D. Lupsa, R. Lupsa – Features and Design Patterns . . .

There are also programmers with a strong background on data structures. Knowing
what’s behind an abstraction gives a lot of information that most of the time is not
captured entirely on that abstraction description. For example, some users would
prefer to use directly data structures that exists behind this interface.

We consider a feature as being a distinctive property that characterizes the be-
havior of a collection [8]. Features considered for this study are sorted, ordered and
unique. That implies the existence of: no order which is the implicit choice when no
sorted or ordered are chosen, an multiple which is the implicit choice when feature
unique is not chosen. An enumeration class named Feature will collect all these
features and offer names for them.

On the other hand, we can add to the list of possible features to be chosen
properties referring to the data structure implementation. Linked list, array block
data structure, hash, linked hash, red-black tree are considered.

Feature enumeration can look as follows:
enum Feature

SORTED, ORDERED, UNIQUE

fLinkedList, fBlock,

fHash, fLinkedHash, fRBTree

Behind the enumeration, we use a mechanism to decouple interface from im-
plementations. It decides which concrete class based on which data structure is
instantiated.

If user choices are specified by using a list of features, adding new perspective
(set of features) is easy to be done when coupled with an appropriate design. This
way of specifying user choice can be done such that do not add much computation
for any of the features the user wants to use. For example, our intention is that (and
our approach provides it), when user wants to choose himself the data structure to
work with, the complexity is closed to that given by working directly with classes
that implements data structures.

4. Features, Design and Efficiency

Sets of features define specific collection. Each of them should be studied in order
to have an efficient implementation. An implementation should consider selecting a
good, appropriate storage support for a desired collection as an important issue.

After deciding over an interface and the available feature to be chosen, a mech-
anism to choose the appropriate support container should be decided.

We choose design patterns that can be easily extended to integrate different
types of basic containers. We propose a factory based design for a data structure

13



D. Lupsa, R. Lupsa – Features and Design Patterns . . .

framework. It integrates two ways of choosing the needed collection and can easily
extended in this direction.

A Unique feature (no duplicate element values are allowed) influence the add
operation. We will not be allowed to add a new element if an equal element already
exists. That can be treated similarly for all collection and independently of their
implementation.

In this approach we will use a decorator to add this functionality to collections
without having to add more code to them. The decorator will be hidden in collection
factory, so that the user won’t have to be aware of it and not use the specific syntax
needed to get the decorated class (new Unique<...>(new ...) ).

Features Sorted, user Ordered or no order (considered by default) refers to the
order in which elements in the container are iterated. These features are strongly
related to the choice of data structure in order to achieve time performance. We
have to carefully select the support container type in order to optimize operations.

For a non-ordered collection, a hash table can be used. In a hash, search, insert
and delete is performed in O(1) on average, but (usually) in O(n) in worst case. If
we are concerned about improving worst-case, we have the choice of using a sorted
collection.

For ordered collection, the most used are array representations and linked rep-
resentation. Array representation assumes that for each element the user know its
index, and if so, it is an extremely powerful method to access elements: both easy to
use and quick to access (performs in O(1)). But removal of an element is performed
in O(n), and also an insertion of an element on any other position except the last.
In case of our chosen operation this refers to adding an element through the iterator
(next to an existing element). On the contrary, in a doubly linked list adding or
removing an element next to an existing one, as well as on the first and last position,
is performed in O(1). But searching an element is in O(n).

If a Ordered collection is requested, the factory will choose a data structure that
benefit from the advantages of both. A doubled linked list with a hash defined over
it would meet this goal.

An efficient implementation for a Sorted collection is a balanced search tree.
A self-balancing binary search tree structure containing n items allows the lookup,
insertion, and removal of an item in O(log n) worst-case time.

14



D. Lupsa, R. Lupsa – Features and Design Patterns . . .

5. Implementation issues

5.1. Operations

Operations that should exists in collection (when specificity of the collection does not
restrain them) are adding and removing elements and iterating over them. Variations
exist for any operation named above. For example, in existing collection, we can
find an operation to remove an element by given its value. And starting from here,
there are also multiple choices: remove all the elements with given value (if multiple
values are allowed) or only the first of them (if there is some kind of order existing
for the container: sorted or ordered).

Figure 1: Collection and iterator: operations

In this implementation, we choose to consider the collection designed in con-
junction with an iterator and the operations are split among them. Collections are
designed to store elements (not pairs). Considered operations: names, parameters
and their distribution over collection and iterator are illustrated in the figure 1. As
we can see, the operation remove belongs to the iterator, and that implies that the
element to be removed is identified by the current position of the iterator.

5.2. Design patterns

Our choices are conducted by the idea that a collection framework should be easy to
extend by adding new data structure for data storage or by adding new view types
over collection properties to be presented to the user. The importance of decoupling
interface from implementations and ways to do it is presented in numerous papers
([4], [7]).

Factory pattern is used to create objects without exposing the creation logic to
the client and let factory to decide which class to instantiate. It is responsible for
creating a factory of related objects, that shares common interface, without speci-
fying their classes externally. This mechanism allows us to implement a ”hidden”
mechanism to choose the appropriate storage support for a collection, that satisfies

15



D. Lupsa, R. Lupsa – Features and Design Patterns . . .

Figure 2: Class diagram

the user needs (according to the specified features).
Our approach uses a factory to build the concrete collection to be given to the

user based on feature enumeration. Factory can also make decisions on the data
structure to be used.

In our implementation, CollectionFactory has operation createCollection that
creates a Collection object. It uses the information stored in feature list (an array
of Features) to determine the type of object to be returned. In fact, it internally
decides which data structure fits the specification given by the user. For example, for
a container characterized by feature ORDERED, the operation createCollection
internally decides to choose a linked hash data structure in order to optimize all
the operations exposed by the interface. For a container with feature UNIQUE
and ORDERED, the createCollection operation will decorate the linked hash data
structure with Unique and return the new obtained structure.

As described, another design pattern that is useful is decorator. When the
uniqueness of the elements in the collections is needed, the collection is decorated
with Unique that ensures the uniqueness of the elements in the container while the
whole data structure implementation remains unchanged.

6. Conclusions and future directions

Collections can be defined in terms of features. Our approach uses features as a way
to provide easy to use interface for the user.

This work presents an approach to collection framework design that uses features
and factory design pattern and that can be easily extended. Factory design pattern
allows us to create families of objects somehow independent of their concrete classes.
Factory pattern not only that allows us to easily choose between different storage
classes but it also can be used in order to easily extend this framework to integrate

16



D. Lupsa, R. Lupsa – Features and Design Patterns . . .

other storage classes.
Starting from here, future work will include extensions that can be done by

considering other data structures that can be added without modifying the way the
user has to work with them, doubled by an intelligent algorithm that choses among
them.

References

[1] D. Batory, B.J. Geraci, Composition Validation and Subjectivity in GenVoca
Generators, IEEE Transactions on Software Engineering, 1997.

[2] D. Batory, S. O’Malley, The Design and Implementation of Hierarchical Soft-
ware Systems with Reusable Components, ACM Transactions on Software Engineer-
ing and Methodology, 1992.

[3] C. Bruno, S. Oliveira, T. Storm, A. Loh, W. Cook, Feature-Oriented program-
ming with object algebras, In Proceedings of the 27th European conference on Object-
Oriented Programming (ECOOP’13), 27-51, 2013.

[4] G. Czibula, V. Niculescu, Fundamental Data Structures and Algorithms. An
Object-Oriented Perspective, Casa Cartii de Stiinta, 2011 (in Romanian).

[5] J. L. Keedy, A. Schmolitzky, M. Evered, G. Menger, A Useable Collection
Framework for Java, 16th IASTED Intl. Conf. on Applied Informatics, Garmisch
Partenkirchen, 1998.

[6] D. Lupsa, V. Niculescu, R.Lupsa Collections as Combinations of Features, Acta
Universitatis Apulensis, No. 42(2015), 67-78.

[7] V. Niculescu, Storage Independence in Data Structures Implementation, Studia
Universitatis ”Babes-Bolyai”, Informatica, Special Issue, LVI(3), 2011, 21-26.

[8] V. Niculescu, D. Lupsa, A Decorator Based Design for Collections, Studia Uni-
versitatis ”Babes-Bolyai”, Informatica, Special Issue, LVIII(3), 2013, 54-64.

[9] C. Prehofer, Feature-Oriented Programming: A Fresh Look at Objects, Springer,
1997, 419-443.

[10] YACL, http://sourceforge.net/projects/zedlib.

[11] ORACLE Java Documentation https://docs.oracle.com/javase/8/.

Dana Lupsa,
Department of Computer Science, Faculty of Mathematics and Computer Science,
Babeş-Bolyai University,
Address: 1, M. Kogalniceanu, Cluj-Napoca, Romania
email: dana@cs.ubbcluj.ro

17



D. Lupsa, R. Lupsa – Features and Design Patterns . . .

Radu-Lucian Lupsa
Department of Computer Science, Faculty of Mathematics and Computer Science,
Babeş-Bolyai University,
Address: 1, M. Kogalniceanu, Cluj-Napoca, Romania
email: rlupsa@cs.ubbcluj.ro

18


	Introduction
	Collection Design and the Use of Features
	Features in our work
	Features, Design and Efficiency
	Implementation issues
	Operations
	Design patterns

	Conclusions and future directions

