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1 Introduction

Classical measure and integration theory is based upon additive (even more, σ-additive) mea-
sures.

Recently, it was seen that more varied tools, other than additive measures, are necessary in
order to describe a multitude of phenomena. These tools are the generalized measures, which
are monotone and possibly non additive. Here is a rough discussion pertaining to this type of
measures: superadditivity indicates a cooperative action or synergy between the measured items
(sets); subadditivity indicates lack of cooperation, inhibitory effects or incompatibility between
the measured items (sets); additivity can express non interaction or indifference. In this spirit,
it is perhaps worth remembering the fact that already the economist Shackle proposed non
additive measures in 1949 (Review of Economic Studies).

Concerning ”the way of speaking”, we feel obliged to point out that the general ”trend” was
to call both non additive measures and nonlinear integrals ”fuzzy”. Nowadays, more varied
expressions are in use, e.g. ”generalized” measures and integrals a.s.o.

It is generally accepted that the most important generalized measures are the λ-measures,
introduced by M. Sugeno in his doctoral thesis [14] which actually is the starting point of
generalized measure and integration theory. An important result, due to Z. Wang (see [17])
states that any λ-measure can be obtained from a classical measure via composition with a
special increasing function (see also [18] and [19]). We called the generalized measures which
can be obtained in such a way representable measures (see [1]). In the same paper it was
pointed out that λ-measures appear naturally also within the framework of functional equations.
In the recent papers [15] and [16] M. Sugeno calls (in a more particular setting) the representable
measures distorted measures. The discrete countable λ-measures with preassigned values were
completely characterized in [3]. Interesting considerations concerning the theory of generalized
measures can be found in [10].

In a natural way, integrals with respect to generalized measures appeared. Because of the
possible non additivity of the measures involved, these integrals are possibly nonlinear. The
most popular such integrals are the Sugeno and the Choquet integral. The Sugeno integral
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(introduced and studied in [14]) is very far away from standard integrals (see also [2], [5], [7],
[11], [12], [18], [19]). The Choquet integral is a direct generalization of the abstract Lebesgue
integral. The very roots of this integral are in the classical work [4] of G. Choquet. It seems
that the name ”Choquet integral” was given by D. Schmeidler in [13]. Concerning the Choquet
integral, the reader can consult [11], [18], [19] and also [2], [5], [7]. A very interesting point of
view concerning the computation of Choquet integrals on intervals appears in [15] and [16].

Concerning the applications of the generalized measure and integration theory, we begin by
underlining the importance of the Choquet integral as an aggregation tool (see [6] and [19]) i.e.
as an instrument of compressing a multitude of numerical data into a single numerical date. It
is very important to underline the fact that the use of non additive measures in computing the
integrals allows us to take into consideration the interaction between the generators of data (as
already pointed out). Nonlinear integrals can be used in other directions, e.g. multiregression,
classification, social welfare, decision (qualitative, multiattribute, multicriteria, cost), model eva-
luation, image processing and recognition a.s.o. (see [7] and [19]). To be synthetic, we can use
nonlinear integrals in data mining.

A short presentation of the content follows. Namely, the remainder of the paper is divided in
three parts: the first part is dedicated to generalized (monotone) measures, the second part is
dedicated to Choquet and Sugeno integrals and the third part is dedicated to some computing
devices for Choquet integrals.

2 Monotone Measures

We introduce the generalized (monotone) measures which encompass the usual additive (or
σ-additive) measures. The reader will recognize many properties of usual measures.

We shall write N = {1, 2, . . .}, R+ = [0,∞), R+ = [0,∞] = R+ ∪ {∞}. All sequences will be
indexed either with N or with {i, i+ 1, . . .} for some i ∈ N.

If T is a non empty set, P(T ) is the boolean of T (i.e. the set of all subsets of T ). For any
A ∈ P(T ), ϕA : T → R+ will be the characteristic (indicator function of A).

Throughout this paragraph, T will be a non empty set (the total set).

The main definition of this paragraph follows.

Definition 1 Let T ⊂ P(T ) such that ∅ ∈ T . A monotone measure is a non null function
µ : T → R+ having the properties that µ(∅) = 0 and µ(A) ≤ µ(B), whenever A, B in T are
such that A ⊂ B (of course, any additive measure on a ring is a monotone measure).

Monotone measures can have special properties, as in the following definition.

Definition 2 Let µ : T → R+ be a monotone measure.

1. We say that µ is finite in case µ(A) < ∞ for any A ∈ T (in case T ∈ T , this means that
µ(T ) <∞).

2. We say that µ is continuous if it has the following two properties:

a) µ is continuous from below, i.e. for any increasing sequence (An)n in T such that
⋃
n
An ∈

T , one has µ
(

lim
n
An

)
= lim

n
µ (An), which means µ

(⋃
n
An

)
= sup

n
µ (An);
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b) µ is continuous from above, i.e., for any decreasing sequence (An)n in T such that
⋂
n
An ∈

T and there exists n0 ∈ N with µ (An0) < ∞, one has µ
(

lim
n
An

)
= lim

n
µ (An), which means

µ

(⋂
n
An

)
= inf

n
µ (An).

The reader can see that σ−additive measures on rings are continuous.

We introduced the general definitions which are in use. In the present exposure, we shall simplify
facts, working within the following particular framework :

T will be a non empty set, T ⊂ P(T ) will be a σ−algebra (hence (T, T ) is a measurable space)
and µ : T → R+ is a finite monotone measure (we say that (T, T , µ) is a monotone measure
space). In case µ is also continuous, we say that (T, T , µ) is a continuous monotone measure
space.

As we said, the most important monotone measures are the λ-measures which we introduce now.

Definition 3 Let (T, T , µ) be a monotone measure space. Let λ ∈
(
− 1

µ(T )
,∞
)

(we say that

λ is µ−admissible).

1. We say that µ satisfies the λ-rule (or µ is λ-additive) if

µ(E ∪ F ) = µ(E) + µ(F ) + λµ(E)µ(F )

whenever E, F are in T and E ∩ F = ∅.
2. One can see that µ satisfies the λ-rule if and only if µ satisfies the finite λ-rule, i.e.

µ

(
n⋃
i=1

Ei

)
=

1

λ

(
n∏
i=1

(1 + λµ (Ei))− 1

)
, if λ 6= 0

or

µ

(
n⋃
i=1

Ei

)
=

n∑
i=1

µ (Ei) , if λ = 0

whenever E1, E2, . . . , En are mutually disjoint sets Ei ∈ T .

3. We say that µ satisfies the σ − λ−rule if

µ

( ∞⋃
i=1

Ei

)
=

1

λ

(
n∏
i=1

(1 + λµ (Ei))− 1

)
, if λ 6= 0

or

µ

( ∞⋃
i=1

Ei

)
=
∞∑
i=1

µ (Ei) , if λ = 0

whenever Ei ∈ T are mutually disjoint sets.

Remarks.

1. In case λ = 0, we have additivity (for 1.), finite additivity (for 2.) or σ−additivity (for 3.).

2. For 3. : we have 1 + λµ(A) > 0 for any A ∈ T , hence the infinite product in the definition is
convergent.

3. Another way of speaking: in case there exists a µ−admissible number δ such that µ satisfies
the δ−rule (respectively the finite δ−rule, respectively the δ − σ−rule) we say that µ satisfies
some λ−rule (respectively some finite λ−rule, respectively some σ − λ−rule).



82

Definition 4 Let (T, T , µ) be a monotone measure space.

1. If λ is a µ−admissible number and µ satisfies the σ−λ−rule, we say that µ is a λ−measure.
In case there exists a µ− admissible number δ such that µ is a δ−measure, we say that µ is a
some λ−measure.

2. If µ is a λ−measure and µ(T ) = 1, we say that µ is a λ−Sugeno measure. Clearly, the
0−Sugeno measure are the probabilities on T . In case µ is a some λ−measure with µ(T ) = 1
we say that µ is a Sugeno measure.

An important result, essentially due to Z. Wang (see [17], [18] and [19]) asserts that λ−additive
measures are representable (see [1] for the terminology). More precisely, we have

Theorem 1 Let (T, T , µ) be a monotone measure space with µ(T ) = A > 0 and assume that µ

satisfies the λ−rule with λ 6= 0 (hence − 1

A
< λ <∞).

Then, for any 0 < α < ∞, there exists an additive measure m : T → R+such that m(T ) = α
and µ = hλ ◦m where hλ : [0, a]→ [0, A] acts via

hλ(x) =
1 + λA)

x
α − 1

λ
.

Namely, the measure m is obtained from µ via the formula

m = h−1λ ◦ µ

where h−1λ : [0, A]→ [0, α] acts via

h−1λ (y) =
α ln(1 + λy)

ln(1− λA)
.

In case α = A = 1 (the most popular case), the formulae from above (0 6= λ > −1) become, for
hλ, h−1λ : [0, 1]→ [0, 1]:

hλ(x) =
(1 + λ)x − 1

λ

hλ(x)−1(y) =
ln(1 + λy)

ln(1 + λ)
.

This result can be interpreted as follows.

Theorem 1.5.’ Assume that (T, T ) is a measurable space.

Let 0 < a < ∞ and 0 < A < ∞. Let also 0 6= λ ∈
(
− 1

A
,∞
)

. Denote by P the set of all

σ−additive measures m : T → R+ such that m(T ) = a. Also, denote by P(λ) the set of all
λ−measures µ : T → R+ such that µ(T ) = A.

Then (see notations of Theorem 1) there exists a bijection Ω : P → P(λ), acting via Ω(m) =
hλ ◦m. The inverse Ω−1 : P(λ)→ P acts via Ω−1(µ) = h−1λ ◦ µ.

Disregarding a and A, we shall denote hλ ◦m
def
== u(λ,m).

An interesting problem is whether there exist some λ−measures having preassigned values. For
instance, this problem can be raised in the case of the discrete measures, where T = P(T ), T
being either a finite set or N. In this case, one is asked to find a some λ−measure µ : T → R+

with µ({a}) given, for any a ∈ T .

Under certain conditions this is possible in case T is finite (see [18] and [19]) . In case T = N,
the problem was positively solved in [3].
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3 Choquet and Sugeno Integrals

In this paragraph we shall integrate positive measurable functions.

We start with a measurable space (T, T ) and let us consider the set M(T ) of all T −measurable
functions f : T → R+. For any such function f and any α ∈ [0,∞), one can consider the sets

Fα(f)
def
== Fα = {t ∈ T | f(t) ≥ a} ∈ T

Fα+(f)
def
== Fα+ = {t ∈ T | f(t) > α} ∈ T .

Considering also a monotone measure µ : T → R+ (i.e. the monotone measure space (T, T , µ))
we have, for any A ∈ T , the decreasing functions

ϕ : [0,∞)→ [0,∞), ϕ(α) = µ(Fα ∩A)

ϕ+ : [0,∞)→ [0,∞), ϕ+(α) = µ(Fα+ ∩A).

A. The Sugeno Integral

Let (T, T , µ) be a monotone measure space.

We consider f ∈M(T ) and A ∈ T .

Definition 5 The Sugeno integral of f with respect to µ on A is

(S)

∫
A
fdµ

def
== sup

α∈R+

(α ∧ µ (Fα ∩A)) ≤ µ(T ) <∞.

In case A = T , we write only

(S)

∫
fdµ = sup

α∈R+

(α ∧ µ (Fα)) ≤ (µ(T ) <∞

(this is the Sugeno integral of f with respect to µ).

Here, as usual, x ∧ y def
== min(x, y), if x, y are real numbers.

Remarks.

1. One has the formula

(S)

∫
A
fdµ = (S)

∫
fϕAdµ ≤ (S)

∫
fdµ

2. In case µ.(T ) ≤M , one has

(S)

∫
A
fdµ = sup

α∈[0,M ]
(α ∧ µ (Fα ∩A))

because, for α > M , one has

α ∧ µ (Fα ∩A) = µ (Fα ∩A) ≤ µ (FM ∩A) = M ∧ µ (FM ∩A) .

3. In case µ is continuous, we have a practical device to compute the Sugeno integral. Namely,
in this case the function ϕ (i.e. the function α 7→ µ (Fα ∩A)) is continuous, hence the function u
given via α 7→ ϕ(α) –α is strictly decreasing and continuous, with u(0) ≥ 0 and lim

α→∞
u(α) = −∞.

The unique zero of u, call it α0, is exactly the Sugeno integral: α0 = (S)

∫
A

dµ.

Here are some properties of the Sugeno integral (f1, f2, f in M(T ), A,B in T and a in [0,∞)).
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Theorem 2 1. If µ(A) = 0, then (S)
∫
A

fdµ = 0.

2. If µ is continuous and (S)
∫
A

fdµ = 0 then µ(A ∩ {t ∈ T | f(t) > 0}) = 0.

3. If f1 ≤ f2 , then (S)
∫
A

f1dµ ≤ (S)
∫
A

f2dµ.

4. If A ⊂ B, then (S)
∫
A

fdµ ≤ (S)
∫
B

fdµ.

5. (S)
∫
A

adµ = a ∧ µ(A).

6. (S)
∫

(f + a)dµ ≤ (S)
∫
fdµ+ (S)adµ.

Theorem 3 (Analogue of Beppo Levi’s Theorem.) Assume that (T, T , µ) is a continuous
monotone measure space.

Let (fn)n be a monotone sequence in M(T ) and let f = lim
n
fn(pointwise).

Then, for any A ∈ T , one has

(S)

∫
A

fdµ = lim
n

(S)

∫
A

fndµ

(in case (fn)n is increasing, this means

(S)

∫
A

fdµ = sup
n

(S)

∫
A

fndµ

and in case (fn)n is decreasing, this means

(S)

∫
A

fdµ = inf
n

(S)

∫
A

fndµ.

Theorem 4 (Analogue of Fatou’s Lemma.) Assume that (T, T , µ) is a continuous mono-
tone measure space.

For any sequence (fn)n in M(T ), one has

(S)

∫
A

lim inf
n

fndµ ≤ lim inf
n

(S)

∫
A

fndµ.

Theorem 5 (Uniform Convergence/) Assume that (fn)n is a sequence in M(T ) and that

fn
u−→ f (uniform convergence), and fn, f take only finite values.

Then, for any A ∈ T , one has

(S)

∫
A

fdµ = lim
n

(S)

∫
A

fdµ.

B. The Choquet Integral

We consider f ∈ M(T ) and A ∈ T . Again, we consider the decreasing functions ϕ : [0,∞) →
[0,∞), ϕ(α) = µ (Fα ∩A) and ϕ+ : [0,∞)→ [0,∞), ϕ+(α) = µ (Fα+ ∩A) .

Let L be the Lebesgue measure on [0,∞). Then, we can integrate ϕ with respect to L and we
shall write ∫

ϕdL
def
== µ (Fα ∩A) dα.
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Definition 6 The Choguet integral of f with respect to u on A is

(C)

∫
A

fdµ =

∞∫
0

µ (Fα ∩A) dα.

In case A = T , we write only

(C)

∫
fdµ =

∞∫
0

µ (Fα) dα.

(this is the Choquet integral of f with respect to µ).

In case (C)
∫
fdµ <∞, we say that f is the Choquet integrable with respect to µ.

Remarks.

1. We have the formula

(C)

∫
A

fdµ = (C)

∫
ϕdµ ≤ (C)

∫
fdµ.

2. The definition of the Choquet integral is a generalization of the usual abstract Lebesgue
integral. Indeed, if µ is a classic measure (i.e. µ is σ−additive), then we have the equality

(C)

∫
A

fdµ =

∫
A

fdµ

the last integral being classic.

3. We have the formula

(C)

∫
A

fdµ =

∞∫
0

µ (Fα+ ∩A) dα.

Here are some properties of the Choquet integral (f1, f2 in M(T ), A, B in T and a in [0,∞)).

Theorem 6 1. If µ(A) = 0, then (C)
∫
A

fdµ = 0.

2. If µ(A ∩ {t ∈ T ||f(t) > 0}) = 0, then (C)
∫
A

fdµ = 0. Conversely, if µ is continuous and

(C)
∫
A

fdµ = 0, then µ(A ∩ {t ∈ T ||f(t) > 0}) = 0.

3. If f1 ≤ f2, then (C)
∫
A

f1dµ ≤
∫
A

f2dµ.

4. If A ⊂ B, then
∫
A

fdµ ≤
∫
B

fdµ.

5.
∫
A

1dµ = µ(A).

6. (C)
∫
A

afdµ = a(C)
∫
A

fdµ.

7. (C)
∫
A

(f + a)dµ = (C)
∫
A

fdµ+ aµ(A).
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Theorem 7 (Analogue of Beppo Levi’s Theorem) Assume that (T, T , µ) is a continuous
monotone measure space.

Let (fn)n be a monotone sequence in M(T ) and let f = lim
n
fn (pointwise).

Then, for any A ∈ T , one has

(C)

∫
A

fdµ = lim
n

(C)

∫
A

fndµ

(see also Theorem 3).

Theorem 8 (Analogue of Lebesgue’s Dominated Convergence Theorem) Assume
that (T, T , µ) is a continuous monotone measure space.

Let (fn)n be a sequence in M(T ), f and g in M(T ) and A ∈ T . Assume that fn −→
n
f pointwise,

g is Choquet integrable with respect to µ and fn ≤ g for any n. Then fn and f are Choquet
integrable with respect to µ and

(C)

∫
A

fdµ = lim
n

(C)

∫
A

fndµ.

Theorem 9 (Uniform Convergence) Let f ∈M(T ) be Choquet integrable with respect to µ.
Assume that (fn)n is a sequence in M(T ) such that fn

u−→ f (uniform convergence) and fn, f
take only finite values.

Then:

1. There exists n0 such that fn is Choquet integrable with respect to µ for any n ≥ n0.

2. For any ε > 0, there exists n0 ∈ N, such that, for any n ≥ n0 , one has∣∣∣∣(C)

∫
fdµ− (C)

∫
fndµ

∣∣∣∣ ≤ εµ(T ).

4 Computing Devices for Choquet Integrals

Throughout this paragraph we shall deal with a continuous monotone measure space (T, T , µ)
and a function f ∈M(T ). We shall try to compute (C)

∫
fdµ with a preassigned precision.

It is known that, in case f is a simple function, one can write f in the form

f =
n∑
i=1

aiϕAi

with ai ∈ (R+) and Ai ∈ T mutually disjoint this form is unique in case f is not null and we
stipulate to have the numbers ai distinct). Moreover, we can rewrite f such that a1 ≤ a2 ≤
. . . ≤ an.
Then, we have the formula

(C)

∫
fdµ =

n∑
i=1

(ai − ai−1)µ

 n⋃
p=i

Ap

 (4.1)

with the convention a0 = 0. Notice that the result in formula (4.1) does not depend upon the
representation of f .
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We shall extend formula (4.1) for more general functions, namely elementary functions, which
are of the form (pointwise convergence)

f =

∞∑
i=1

aiϕAi

with Ai ∈ T mutually disjoint and ai ∈ R+.

In case 0 ≤ a1 < a2 < a3 < . . . and all Ai are non empty (hence f is not null) we say that f is
a canonical elementary function. In this case, one has the formula (same convention a0 = 0)

(C)

∫
fdµ =

∞∑
i=1

(ai − ai−1)µ

 ∞⋃
p=i

Ap

 . (4.2)

This formula (4.2) remains valid even in case some Ai are empty (one can skip the respective
ϕAi in the representation of the non null f).

We shall present in the sequel the fundamental devices for computing (C)
∫
fdµ. These proce-

dures are: discretization and truncation.

Discretization

For our general f ∈ M(T ), let us fix i ∈ N . We shall construct a positive elementary function
u(i) as follows.

For any n = 0, 1, 2, 3, . . . , and any p ∈ {1, 2, . . . , i}, write

B(n, i, p) =

[
n+

p− 1

i
, n+

p

i

)

α(n, i, p) = n+
p− 1

i
= minB(n, i, p)

(the disjoint intervals B(n, i, p) with length
1

i
have union equal to [0,∞) ).

Then we get the disjoint sets

A(n, i, p) = f−1(B(n, i, p)) ∈ T

having union T (some A(n, i, p) can be empty). Now, it is possible to define (pointwise conver-
gence) the elementary function u(i) : T → R+

u(i) =

∞∑
n=0

i∑
p=1

a(n, i, p)ϕA(n,i,p).

Clearly, u(i) is an elementary function whose (possible) values can be arranged in strictly in-
creasing order: a(0, i, 1) = 0 < a(0, i, 2) = 1

i < . . . < a(0, i, i) = i−1
i < a(1, i, 1) = 1 < a(1, i, 2) =

1 + 1
i < . . .

The sequence (u(i))i converges uniformly to f , because, for any t ∈ T and any i ∈ N:

|f(t)− u(i)(t)| = u(t)− u(i)(t) ≤ 1

i
.

We call u(i) the i−discretization of f .
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Using previous results, we get, for any i ∈ N∣∣∣∣(C)

∫
fdµ− (C)

∫
u(i)dµ

∣∣∣∣ ≤ 1

i
µ(T )

hence

lim
i

(C)

∫
u(i)dµ = (C)

∫
fdµ.

Truncation

Again fix i ∈ N and let us define another new function u(i).

Namely u(i) = f ∧ i, i.e. u(i)(t) = f(t), if f(t) ≤ i and u(i)(t) = i, if f(t) > i. We shall call u(i)
the i−truncation of f .

Assume that f is Choquet integrable. Then we have

∣∣∣∣(C)

∫
fdµ− (C)

∫
u(i)dµ

∣∣∣∣ =

∞∫
i

µ (Fα) dα

which implies that

lim
i

(C)

∫
u(i)dµ = (C)

∫
fdµ.

Unified notations

From now on we shall consider that f is Choquet integrable with respect to µ. Write

v
def
== (C)

∫
fdµ

(v is our ”target“).

We shall construct the numerical sequence (v(i))i and then, for any i ∈ N, the numerical sequence
(v(i, n))n as follows (two types of construction):

Strategy Truncation Discretization (STD)

v(i)
def
== (C)

∫
f(i)dµ

where f(i) is the i−truncation of f ;

v(i, n)
def
== (C)

∫
f(i, n)dµ

where f(i, n) is the n−discretization of f(i).

Strategy Discretization-Truncation (SDT)
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v(i)
def
== (C)

∫
f(i)dµ

where f(i) is the i−discretization of f ;

v(i, n)
def
== (C) ∈ f(i, n)dµ

where f(i, n) is the n−truncation of f(i).

For STD:

|v − v(i)| ≤
∞∫
i

µ (Fα) dα and |v(i)− v(i, n)| ≤ 1

n
µ(T ). (4.3)

For SDT:

|v − v(i)| ≤ 1

i
µ(T ) and |v(i)− v(i, n)| ≤

∞∫
n

µ (Fα) dα. (4.4)

Hence, for both strategies (use (4.3) and (4.4):

lim
n
v(i, n) = v(i) for any i and lim

i
v(i) = v. (4.5)

Relations (4.5) are the key of the forthcoming computations.

Now we have the formulae of future approximation.

Theorem 10 1. We work for STD. One has, if i and n are in N:

v(i, n) =
1

n

i·n∑
p=1

µ
(
f−1

([ p
n
,∞
)))

. (4.6)

In case min
t∈T

f(t) = 1, (4.6) becomes

v(i, n) = µ(T ) +
1

n

(i−1)·n∑
p=1

µ
(
f−1

([
1 +

p

n
,∞
)))

. (3.6)′

2. Let ε > 0 and assume that i(ε) and n(ε) in N are such that (see (4.3)):

1

n(ε)
µ(T ) <

ε

2
and

∞∫
i(ε)

µ (Fα) dα <
ε

2
. (4.7)

Then, for any i ≥ i(ε) and n ≥ n(ε), one has

|v − v(i, n)| = v − v(i, n) < ε

i.e. v(i(ε), n(ε)) is a ”good” approximation of v = (C)
∫
fdµ.
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Theorem 11 We work for SDT.

1. One has, for i and n in N:

v(i, n) =
1

i

n·i∑
p=1

µ
(
f−1

([p
i
,∞
)))

. (4.8)

(dual of formula (4.6)).

In case min
t∈T

f(t) = 1, (4.8) becomes

v(i, n) = µ(T ) +
1

i

(n−1)·i∑
p=1

µ
(
f−1

([
1 +

p

i
,∞
)))

(3.8)′

(dual of the formula (3.6)’).

2. Let ε > 0 and assume that i(ε) and n(ε) in N are such that (see (4.4)):

1

i(ε)
µ(T ) <

ε

2
and

∞∫
n(ε)

µ (Fα) dα <
ε

2
. (4.9)

Then, for any i ≥ i(ε) and n ≥ n(ε), one has

|v − v(i, n)| = |v − v(i, n)| < ε

i.e. v(i(ε), n(ε)) is a ”good” approximation of v = (C)
∫
fdµ.

We want to close with a numerical exemplification. To this end, we shall use the following result.

Theorem 12 (Transfer of Integrability) We use the notations of Theorem 1.5′.

Assume that f is m−integrable. Then, for any 0 6= λ ∈
(
− 1
A ,∞

)
, the function f is Choquet

integrable with respect to µ = u(λ,m).

Numerical Exemplification

Take T = (0, 1] and T =the Borel sets of T .

The measure µ : T → R+ will be the 1−Sugeno measure defined via

µ(A) = 2m(A) − 1

for any A ∈ T , where m : T → R+ is the Lebesgue measure. Hence µ = u(1,m) = h1 ◦m, with
previous notations.

The function f will be defined with the aid of a fixed 0 < θ < 1. Namely f : (0, 1] → R+ acts
via

f(t) = t−θ.

In order to see that f is Choquet integrable with respect to µ, one can use Theorem 12, because
f is m−integrable.

A short computation shows that

(C)

∫
dµ = 1 +

∞∫
1

(
2α

−1/θ − 1
)

dα
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hence one cannot compute (C)
∫
fdµ exactly.

We have the evaluation

1 +
θ

1− θ
ln 2 ≤ (C)

∫
fdµ <≤ 1 +

1

1− θ
ln 4

which gives, for θ =
1

2
:

1.6931471 ≤ (C)

∫
fdµ ≤ 2.386294.

In the sequel, we shall work for θ =
1

2
, computing an approximate value for (C)

∫
dµ = ν. The

error will be less than
1

100
, so we shall work for ε =

1

100
.

First, we use STD.

One can prove that, for i ≥ 1, one has

∞∫
i

µ (Fα) dα ≤ (ln 4)

∞∫
i

α−1/θdα = (ln 4) · θ

1− θ
· 1

i
1−θ
θ

.

So, in order to have (4.7) (write n instead of n(ε) and i instead of i(ε)), it will be sufficient to
have (because µ(T ) = 1):

1

n
<
ε

2
and (ln 4) · θ

1− θ
· 1

i
1−θ
θ

<
ε

2
.

In our case, this means
1

n
≤ 1

200
and (ln 4) · 1

i
<

1

200

i.e. n > 200 and i > 200 · ln 4 ≈ 277.2588.

We take n = 201 and i = 278. The approximate value v(i, n) of (C)
∫
fdµ is (see formula (3.6)’

because min
t∈T

f(t) = 1):

v(i, n) = 1 +
1

n

(i−1)·n∑
p=1

(
2(1+ p

n)
−1/θ

− 1

)
= 2− i+

1

n

(i−1)·n∑
p=1

2(1+ p
n)

−1/θ

and we have

|v − v(278, 201)| < 1

100
.

Using a JavaScript program, we get the desired approximation:

v(278, 201) = 2− 278 +
1

201

201·(278−1)∑
p=1

2(1+ p
201)

−2

= 1.780885.

Now, we use SDT.

As previously, for n > 1 one has

∞∫
n

µ(Fα)dα < (ln 4) · θ

1− θ
· 1

n
1−θ
θ

.
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So, in order to have (4.9) (again write n instead of n(ε) and i instead of i(ε)), it will be sufficient
to have

1

i
<
ε

2
and (ln 4) · θ

1− θ
· 1

n
1−θ
θ

<
ε

2
.

In our case, this means
1

i
<

1

200
and (ln 4) · 1

n
<

1

200
.

Mutatis mutandis we get i = 201 and n = 278. The good approximation is ν(201, 278):

[ν − ν(201, 278)] <
1

100
,

with v(201, 278) = 1.780885 (see formula (3.8)’).

In the paper “Computing Choquet Integrals” (jointly with A. Plăviţu), which recently appeared
in the Journal Fuzzy Sets and Systems, vol. 327, 2017, p. 46-68, we develop the computing
devices for Choquet integrals presented here and we introduce some new ones.
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