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ON A THIRD ORDER DIFFERENCE EQUATION

R. ABO-ZEID

ABSTRACT. In this paper, we solve the difference equation

T4l = M, n=0,1,...,
—axy, + bxp,_o
where a and b are positive real numbers and the initial values x_o, x_1 and xq are
real numbers. We find invariant sets and discuss the global behavior of the solutions
of that equation. We show that when a > %bg , under certain conditions there exist
solutions, either periodic or converge to periodic solutions.
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1. INTRODUCTION

In their paper [9], the authors studied some special cases of the difference equation

N a+ Brprn_1 + YTn_1 n—01
n+1 A—i—anxn_l +an_17 y Ly ey

with nonnegative parameters and with arbitrary nonnegative initial conditions such
that the denominator is always positive. In [15], Dehghan, et al. studied the global
attractivity of the positive equilibrium of some special cases that contains at least
one quaderatic term of the second order rational difference equations

Az? + Brpwy—1 +Cx2_ | + Dxy + Expy + F
ary, + 51'”_1 + Y

Tnil = , n=0,1,..,

which has quadratic terms in their numerators and linear terms in their denomina-
tors. In [17], the authors investigated the global behaviour of non-negative solutions
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of the rational difference equation with arbitrary delay and quadratic terms in its
numerator:

Az% + BxpTp—k + Cl’ifk 4+ Dxyp + Ex,_ i
axy + Brp_k + 7

T+l = y 7’L:0,1,...,
with k € {1,2, ...}, where all parameters are non-negative, with A+B+C+D+E > 0
and v > 0.
In [2], we have studied the behavior of the solutions of the difference equation
ATnTn—1
Tpp1 = —— =L =01,
ntl —bxy, + cxp—_o
where a, b, ¢ are positive real numbers and the initial conditions zg, x_1, x_o are
real numbers. Also, in [6] we have studied the global behavior of the fourth order
difference equation
ATpTn—2
x =— n=01,..
n+1 —b%n-¥0$n_3, 3 Ly eeey
where a, b, ¢ are positive real numbers and the initial conditions xg, x_1, x_2, T_3
are real numbers. For more publications on global behavior of the solutions and
forbidden sets, one can see [1]- [23].
In this paper, we shall determine the forbidden set, find the solution and investigate
the behavior of the solutions of the equation

Tndn—2

Tpt1 = n=0,1,..., (1)

—azTy, + bxp_o’

where a and b are positive real numbers and the initial values x_o, x_1 and xq are
real numbers.

2. SOLUTION OF EQUATION (1)

The reciprocal transformation
1

Ty = —
Yn
reduces equation (1) into the third order linear homogeneous difference equation
Yntl — byYn +ayn—2=0, n=01.. (2)

The characteristic equation of equation (2) is

M b\ 4a=0. (3)
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Clear that equation (3) has a negative real root A for all values of (a,b > 0).
Therefore, the roots of equation (3) are

Ao-b V(o —b)2 =4 (Ao — b)
2 2 ‘

>\07 )\i =

The roots of equation (3) depends on the relation between a and b.
Lemma 1. For equation (3), we have the following:

1. If a > %b‘g, then equation (8) has one megative real root and two complex
conjugate roots.

2. Ifa = %bg, then equation (3) has one negative real root and a repeated positive
real Toot.

3. If a < Q%bg, then equation (3) has three real different roots, one of them is
negative and two positive roots.

Proof. 1t is sufficient to see that, the discriminant of the polynomial
pA) =X -\ +a=0

is
A = —4b%a + 27a>.

We shall consider the three cases given in lemma (1).
Case a > %b?’:
When a > 2%()3, the roots of equation (3) are

— ANg(MNg — b) — (Mg — b)?
)\0<—g, Ai:_AOZ b:l:l\/ 0( 0 2) (0 ) )

Then the solution of equation (1) is

1
Tn = n —a\2 . ’ (4)
c1Ag + (x) 2 (cg cosn + c3sinnyp)

[~ b
’)\i‘ — )\D()\O — b) e )\a and o= tanil( 3:\0 +b ) E]O’ g[
0 0—
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Using the initials z_o,x_1 and x¢, the values of ¢1, co and c3 are:

1 1 1 1
c1 E<611%+612E+013E)’
A e L 1 1
€2 Ay (21 z0o T Ca2 T_1 T C3 x72) (5)
and
1 1 1 1
3 = a-(esigs teseg tessgs)

Ao Ao . Ao . Ao .
ci1=—\/——sinp, c2=——sin2p, c3=—1/——singy,
a a a a
1. 1 Ao . Ao . Ao .
Co1 = ——sin2p — 5\/——siny, c2 = —sin 2¢, co3=1/——siny,
a S a a a
1 5 1/ X o 2% + 1 [ Ao 1
C31 = ——COS2(p — —54/ ——COS Y, C32 = — COS —, €33 =14/——COS(Q — —
31 a 2 )\% a ¥ 32 a ¥ )\% 33 p ¥ Ao

(6)

and
1 1 0
A = )%0 —% CoS —’\a—o sin | . (7)
% —% cos 2¢p % sin 2¢

By simple calculations, we can write the solution of equation (1) as

1
In = a1, - s (8)
o
where
n ar(C11Af 4 e21(52)2 cosng + e31(52) 2 sinng),
Qo A%(clg)\g + c22(55) 2 cosny + ca2(57) 2 sinngp) ()
and
azn = ac(c3Ap+ 623(%5)% cos Ny + 033(;7?)% sin ng)
are such that ¢;;, 7,7 = 1,2, 3 are given in (6).
Case a = b
27
When a = %b?’, equation (3) has a negative root \g = —g and a repeated positive

root %b.
Then the solution of equation (1) is

(10)

1
In = .
Ta(=hr a3+ a(P)n
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Using the initials x_o, x_1 and xg, the values of ¢1,co and cs in this case are:

c1 é@llzi*o"‘cl%; +C13$);
c2 5(621% + 2 +C2SE) (11)
and
3 = A%(C:ﬂ% + 632:13: + 0339%2),
where
27 9 3
C11 8?’ C12 ﬁ’ C13 2%’
27 9 3
C21 _b73’ C22 ﬁ’ C23 %7 (12)
81 27 9
C31 = ——753, C32= 75, C33= 77
4b3 4b2 2b
and
1 1 0
3

1 (13)
Tn = 4 ~ -,
TR
where
o = g len(=5" +en(F)" +en(F),
agp = %2(012(_%)” + 022(%{))71 + ng(%b)nn (14)
and
azn = g;(c13(=3)" +eas(F)" +es3(F)"n
are such that c;j, 7,7 = 1,2, 3 are given in (12).
Case a < %63:
When a < %b‘g, the roots of equation (3) are
b A —b Ao — b)2 —4Xg( Mg — b
N> g, Ar=- 02 L V(o—b) . 0(Ao )7

where
Ay > A > |[Ng| > 0.

Then the solution of equation (1) is
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1
= . 15
in Cl)\g + oA + 03)\3_ ( )

Using the initials x_o,z_1 and xg, the values of ¢1,co and cs in this case are:

€1 %3(611;*0—%0127:4—613%),
2 A%(Cm% +022ri1 +023ﬁ) (16)
and
3 = az(caig + e + e,
where
A=) S A=)
C11 = A%Ai y C12 = A%Ai y C13 = A_A+ ’
Ay — Ao A%—V At — o
Co1 = W, Co2 = T)‘%Jr7 C23 = Wa (17)
Ao — A A2 — )\ Ao — A
€31 = —5v9 > 032~ 59 5 0€383= V71—
A3N2 A3N2 AoA—
and
1 1 1
11 1
As=|% *- XS
1 1 1
3 OAZ

By simple calculations, we can write the solution of equation (1) in this case as

1
xn = n n T ? (18)
TTETE
where

a1y A%(Cn)\g + e A + ez A\l),
Qon %3(012)\8 + e A" + 632)\1) (19)
and
oz, = A%(Cw)\g + €23\ + 3377

are such that ¢;;, i, j = 1,2, 3 are given in (17).
Using equations (8), (13) and (18), we can write the forbidden set of equation
(1) as
oo
F = U {(zo,z_1,2_9) €R3: Dn 4 Zom D 0},

o T_1 T_o
n=-—2
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where a1y, o, and as, are given as follows:

Q1n, a2, and as, are given in (9), a > %b‘g’;
Q1p, 2, and as, are given in (14), a = %bg’;
Q1p, a2, and as, are given in (19), a < Q%b?’.

3. GLOBAL BEHAVIOR OF EQUATION (1)

Consider the set \2 \
D= R3: 2 %24
with
{ A=X, a> %b?’ ;

__b _ 4,3
A=—3, a= 50"

Clear that, when a = %b3, the set D can be written as
9 120  4p*

D= {(z,y,2) €R3: = — ——
{(z,y.2) - y+z

0}.

2
Note that, for the point (z,y, z) € R3, the relation % + &4 %‘0 = 0 is equivalent
to c¢i(z,y, 2) = 0, where ¢; is given by either (5) or (11) according to the relations
a > %bg and a = 2%1)3 respectively.

Theorem 2. The set D is an invariant for equation (1).

Proof. Let (zg,x—1,2—2) € D . We show that (zy,zr_1,25_2) € D for each k € N.
The proof is by induction on k. The point (xg,z_1,2_2) € D, implies

—— — = —=0.
i) r—1 Tr—_9
Now for k£ = 1, we have
A2 a alg A2 a alo
MU e 0 (—azxg +br_9) — — — —
X1 i) Tr_q Tox 2 i) Tr_q
= ! (—aN bAZ A
= ———(—aAjror_1 + bA\jr_12_9 —ax_1x_2 — agTor_2)
TOL_1T—2
_ 1 2 2
= —(—aXjror_1 + (A\gb — a)z_12_2 — aloxoT_2)
T 1T -9
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= 7(—(1)\(2].730$_1 + )\8$_1x_2 — aXgToT_2)
Tl 1T -2

This implies that (x1,z¢,2-1) € D.
Suppose that the (g, xx_1,2p_2) € D. That is

2
N__e e,
Tk Tk—1 Lk—2
Then ) )
A a aXo A a alg
o — — = O (—awp +bry_o) — — —
Th41 T Lh—1 LpTk—2 Tk Tk—1
= ! A2 bAZ A
= —————(—aA\j@pTp—1 + DAJTR—1Zk—2 — ATK_1T—2 — ANOTRTL—2)
LpLp—1Tk—2
-t 2 A2b A
= (—aXgrprr—1 + (A\gh — a)Tp—1Tp—2 — AA0TLTE—2)
LLp—1Tk—2

1
2 3
= —————(—aA\jTRpTh—1 + ANgTh—1Tk—2 — ANOTLTL—2)
LLl—1Tk—2

)\% a alo
Tk Tp—1 Tk—2

) = 0.

Therefore, (rg41, Tk, Tx—1) € D.
This completes the proof.

Now assume that a < %bS. We shall consider the three sets

Aoa al

D; = {(z,y,2) ER?’:;—;—?:o}, i=1,2,3,
with
A=, Ii=1;
A=A, i=2;
AZZ A+, i:ii

By simple calculations, we can see that:

D; is equivalent to ¢i(z,y,z) =0, i=1;
D; is equivalent to ca(z,y,2) =0, i=2;
D; is equivalent to ¢;(z,y,z) =0, =3,

where ¢;, i = 1, 2 and 3 are given by (16).
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Theorem 3. FEach set of the sets D;, i = 1, 2 and 3 is an invariant for equation

(1).
Proof. The proof is similar to that of theorem (2) and will be omitted.

Theorem 4. Let {z,}2° 5 be a solution of equation (1) such that (zo,x_1,x_2) ¢
FUuD. Ifa> %bg, then we have the following:

1. If a > b+ 1, then {z,}° 5 converges to zero.
2. If a < b+ 1, then we have the following:

(a) If a > 1, then {x,}5° _5 converges to zero.
(b) If a < 1, then we have the following:

i. If a> +ab—1> 0, then {x,}5° _, converges to zero.
ii. If a®> 4+ ab—1=0, then {z,}° _, is bounded.
iii. If a®> +ab—1 <0, then {x,}>_, is unbounded.

Proof. The solution of equation (1) when a > 2%63 is

1

Ty = . :
" aAf + (—x5) 2 (c2 cosng + ez sinnp))

1. When a > b+ 1, we have —a < —/a < Ao < —1. That is (53)" — co and \j
is unbounded.
If a = b+1, then we have that —a < —/a < Ao = —1. That is ()" — o0 as
n — oo and the result follows.

2. When a < b+ 1, we have that \g > —1.
(a) If a > 1, then —a < —{/a < —1 < Ap. That is (57)" — oo, from which
the result follows.
(b) If a < 1, then a < /a and we have the following:

i. If a> +ab—1 > 0, then \g > —a > —¥a > —1. This implies that
Ap — 0 and (53)" — oo, from which the result follows.

ii. If a® +ab—1=0, then \g = —a > —a > —1. That is A} — 0.
But as

lc1 Ay + c2 cosnp + ez sinngp| # 0 for all n > 0, (20)

the quantity (20) attains its infemum value say ¢ > 0 and the result
follows.
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iii. If a®> + ab—1 < 0, then —a > X9 > —¥a > —1. This implies that
Ao — 0-and (53)" — 0, from which the result follows.

Theorem 5. Let {z,}2° 5 be a solution of equation (1) such that (zo,x_1,x_2) ¢
FUD. Ifa= %bg, then we have the following:

1. If a > b+ 1, then {x,}2>_, converges to zero.
2. If a < b+ 1, then we have the following:

(a) If 0 <b < 3, then {z,}5° _, is unbounded.
(b) If 2 <b <3, then {x,}°°_, converges to zero.

Proof. The solution of equation (1) when a = %bg is

1
Ty = )
" cl(—%)”—kcg(%b)"-i-c;z,(%b)"n

1. When a > b+ 1, it is sufficient to see that \g = —% < —1 and the result
follows.

2. When a < b+ 1, we have that \y = —g > —1.

(a) f 0 <b< 3, then 2 < 1 and £ < 1, from which the result follows.

(b) If 2 <b <3, then i <2 <1land1l <2 <2 from which the result
follows.

Theorem 6. Let {x,}>2 _, be a solution of equation (1) such that (xo,x_1,7_2) ¢
FUDs. Ifa< %b3, then we have the following:

1. If a > =1+ b, then we have the following:

(a) If 0 <b < 3, then {z,}3° _, is unbounded.

(b) Ifb> 3, then {z,}3° _, converges to zero.
2. If a = —1 4 b, then we have the following:

(a) If 1 <b< 3, then {x,}52_, converges to the é

(b) Ifb> 3, then {z,}32 _, converges to zero.
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3. If a < —1+0b, then {x,}22_4 converges to zero.

Proof. Let f(\) = A3 —bA2+4a. It is clear that f()\) is increasing on | — oo, OU]%I’, oo
and decreasing on |0, %b[ The solution of equation (1) when a < b3 is

1

Ln = .
" Cl)\g 4+ o\ + 63)\3‘_

We have also

2b
0<|>\0]<)\,<§<)\+.
The condition (zg,z_1,2_2) ¢ F U D3 ensures that c3 # 0.
1. When a > —1+ b, we have two cases:

a) If 0 < b < 3, then 2 < X\, < 1 (otherwise a < —1 + b, which is a
2 3 +
contradiction). Then 0 < [\ < A= < %b < A+ < 1, from which the
result follows.

(b) Ifb> 3, then 1 < A— < %b < A4+ and the result follows.
2. If a = —1+b, then either A\_ =1 or Ay = 1.

(a) If 1 <b< 3, then Ay = 1. Thatis 0 < [Ao| < A— < 2 < A, = 1. Then

1
— — as n — 00.

X
"N e\t ez ocs

b) If b > 2, then we have 0 < [Ao| < A— =1 < 2 < Ay, from which the
2 3 +
result follows.

3. Ifa< —1+0b,then \_ <1< ;. That is A’} — oo and the result follows.

In the following results, we show that when a > %b‘? , under certain conditions
there exist solutions, either periodic or converge to periodic solutions for equation
(1).

Suppose that ¢ = PR where p and ¢ are positive relatively prime integers such that
0<p<i.

Theorem 7. Assume that a > b3, a < b+ 1. Let {x,}5_, be a solution of
equation (1) such that (zo,7_1,2_2) ¢ DUF. If a®>+ba —1 = 0, then {z,}

oo
n=—2
converges to a periodic solution with prime period 2q.
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Proof. Assume that {x,,}5° _, is a solution of equation (1) such that (zg,z_1,2_2) ¢
DU F and let the angle ¢ = 27 €]0, .

When a > Q%b?’ and a? +ba —1 =0 (A\g = —a > —1), the solution of equation (1) is
1

Tn = I )\n + 3 3] :
1A) + c2cosne + c3sinnp
Then we can write
1
L2gm+1 =
" clx\gqu + o cos(2gm + 1) + c3sin(2gm + 1)
1
= o , 1=1,2,...,2q.
cl)\oq + cacosly + cgsinlp
As m — oo, we get
1
oy = L 1=1,2,...,2.
P2qmt =7 H ca cosly + c3sinly 4
Therefore, the solution {x,}°° 5 converges to
{"'a M1y 2y oeey 2g—15 H2gy 15 K25 «-vy H2g—15 H2q> } (21)

Simple calculations show that the solution (21) is a period-2¢ solution for equation
(1) and will be omitted.
This completes the proof.

Theorem 8. Assume that a > 5+b%, a <b+1 and a®+ba—1=0. Let {z,}32_, be
a solution of equation (1) such that (xo,z_1,2_2) ¢ F. If (xo,x_1,2_2) € D, then
{zn}2 5 is a periodic solution with prime period 2q.

Proof. Assume that {x,,}5° _, is a solution of equation (1) such that (zg,z_1,2_2) ¢
F and let the angle ¢ = Em €]0, 7[.
When (z9,2_1,2_2) € D, we have that ¢; = 0 and the solution of equation (1) is

1

co cosny + czsinng’

Ty =

Then we have
1

ca cos(n + 2q)p + c3sin(n + 2q)p
1

co cos(ny + 2pm) + c3 sin(np + 2pn)
1

co cos(np) + ez sin(ny)

= zn.

Tn+2q =
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This completes the proof.

Example (1) Figure 1. shows that ifa = b = %, (a > %bg’, a<b+1,a’+ab—1=0
and ¢ = m), then a solution {z,}52 _, of equation (1) with initial conditions
T_o=2,r_1=0.1 and zg = 1 converges to a period-8 solution.

Example (2) Figure 2. shows that if a = %, b= 2% (a > 2%63, a < b+1,

V3
a?+ab—1=0 and ¢ = i), then a solution {z,}%_, of equation (1) with initial
conditions z_p = —%, 21 = —? and zo = 1 ((x_2,2_1,20) € D) is periodic with

prime period-12 solution.

Example (3) Figure 3. shows thatifa =b =1, (a > 24—763, a<b+l,a®+ab—1>0,
then a solution {x,}5° _, of equation (1) with initial conditions z_9 = —0.2, x_; =
2.1 and xg = 2.82 converges to zero.

05F =
05 1

0.0 I
0.0
—05} i

-0.51

. . . . . -0k . . | . i
0 10 20 30 40 50 0 10 20 30 40 50

. LTy — . TnTn—
Figure 1: wzp41 = —/— 272 — Figure 2: z,41 = —/~"3*—
7%xn+%xn,2 *%$n+ﬁ$n—2
02F
0.0
_0‘2,
—oal
o6l
—osl
-1.01
—12F ‘ ‘ ‘ o
0 20 40 60 80

TnTn—2

Figure 3: Tn+1l = T
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