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Abstract. In this paper, linear boundary value problems for fourth-order Ca-
puto fractional Volterra integro-differential equations are solved by variational itera-
tion method and homotopy perturbation method. The solutions of the problems are
derived by infinite convergent series which are easily computable and then graphical
representation shows that both methods are most effective and convenient one to
solve linear boundary value problems for fourth-order fractional integro-differential
equations. In order to show the efficiency of the presented methods, we compare
our results obtained with the exact results.
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1. Introduction

In recent years various numerical and analytical methods have been applied for the
approximate solutions of fractional integro-differential equations. He [7, 8, 9, 10]
was the first to propose the Variational Iteration Method (VIM) and Homotopy
Perturbation Method (HPM) for finding the solutions of linear and nonlinear prob-
lems. VIM is based on Lagrange multiplier and HPM is a coupling of the traditional
perturbation method and homotopy in topology. These methods have been success-
fully applied by many authors [1, 2, 13, 15, 16, 22, 23] for finding the analytical
approximate solutions as well as numerical approximate solutions.

The main objective of this paper is to extend the analysis of VIM and HPM to
construct the approximate solutions of the following linear boundary value problems
for Caputo fractional Volterra integro-differential equations

cDαu(x) = γu(x) + g(x) +

∫ x

0
k(x, t)u(t)dt, 0 < x < b, (1.1)
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with the boundary conditions

u(0) = γ0, u′′(0) = γ2,

u(b) = η0, u′′(b) = η2, (1.2)

where cDα is the Caputo’s fractional derivative, 3 < α ≤ 4, and u : J −→ R, where
J = [0, b] is the continuous function which has to be determined, g : J −→ R and
k : J × J −→ R are continuous functions.

The fractional integro-differential equations have attracted much more interest
of mathematicians and physicists which provides an efficiency for the description
of many practical dynamical arising in engineering and scientific disciplines such
as, physics, biology, electrochemistry, chemistry, economy, electromagnetic, control
theory and viscoelasticity [12, 14, 16, 17, 18]. Recently, many authors focus on
the development of numerical and analytical techniques for integro-differential equa-
tions. For instance, the Homotopy perturbation method [5], the variational iteration
method [11], the combined modified Laplace with Adomian decomposition method
[6, 12, 13], the homotopy-perturbation method [1], Taylor polynomials [3, 20] and
Tau method [4], and the references therein.

The main objective of the present paper is to study the behavior of the solu-
tion that can be formally determined by approximated methods as the variational
iteration method and homotopy perturbation method.

The rest of the paper is organized as follows: In Section 2, some preliminaries
and basic definitions related to fractional calculus are recalled. In Section 3, a
short review of the homotopy perturbation technique. In Section 4, a short review
of the variational iteration technique. In Section 5, variational iteration method
and homotopy perturbation method are constructed for solving Caputo fractional
Volterra integro-differential equations. In Section 6, an example is presented to
illustrate the accuracy of these methods. Finally, we will give a report on our paper
and a brief conclusion are given in Section 7.

2. Preliminaries

The mathematical definitions of fractional derivative and fractional integration are
the subject of several different approaches. The most frequently used definitions of
the fractional calculus involves the Riemann-Liouville fractional derivative, Caputo
derivative [1, 21].

Definition 2.1. The Riemann Liouville fractional integral of order α > 0 of a
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function f ∈ C(0,∞) is defined as

Jαf(x) =
1

Γ(α)

∫ x

0
(x− t)α−1f(t)dt, x > 0, α ∈ R+,

J0f(x) = f(x), (2.1)

where R+ is the set of positive real numbers.

Definition 2.2. The fractional derivative of f(x) in the Caputo sense is defined by

cDα
xf(x) = Jm−αDmf(x)

=


1

Γ(m−α)

∫ x
0 (x− t)m−α−1 d

mf(t)
dtm dt, m− 1 < α < m,

dmf(x)
dxm , α = m, m ∈ N,

(2.2)

where the parameter α is the order of the derivative and is allowed to be real or
even complex. In this paper, only real and positive α will be considered.

Hence, we have the following properties:

1. JαJvf = Jα+vf, α, v > 0.

2. Jαxβ = Γ(β+1)
Γ(β+α+1)x

β+α,

3. JαDαf(x) = f(x)−
∑m−1

k=0 f
(k)(0+)x

k

k! , x > 0, m− 1 < α ≤ m.

Definition 2.3. The Riemann Liouville fractional derivative of order α > 0 is
normally defined as

Dαf(x) = DmJm−αf(x), m− 1 < α ≤ m, m ∈ N. (2.3)

3. Homotopy Perturbation Method (HPM)

The homotopy perturbation method first proposed by He [5, 8, 9, 10]. To illus-
trate the basic idea of this method, we consider the following nonlinear differential
equation

A(u)− f(r) = 0, r ∈ Ω, (3.1)

under the boundary conditions

B

(
u,
∂u

∂n

)
= 0, r ∈ Γ, (3.2)
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where A is a general differential operator, B is a boundary operator, f(r) is a known
analytic function, Γ is the boundary of the domain Ω.

In general, the operator A can be divided into two parts L and N , where L is
linear, while N is nonlinear. Eq. (3.1) therefore can be rewritten as follows

L(u) +N(u)− f(r) = 0. (3.3)

By the homotopy technique (Liao 1995) [19]. We construct a homotopy v(r, p) :
Ω× [0, 1] −→ R which satisfies

H(v, p) = (1− p)[L(v)− L(u0)] + p[A(v)− f(r)] = 0, p ∈ [0, 1]. (3.4)

or

H(v, p) = L(v)− L(u0) + pL(u0)] + p[N(v)− f(r)] = 0, (3.5)

where p ∈ [0, 1] is an embedding parameter, u0 is an initial approximation of
Eq.(3.1) which satisfies the boundary conditions. From Eqs.(3.4), (3.5) we have

H(v, 0) = L(v)− L(u0) = 0, (3.6)

H(v, 1) = A(v)− f(r) = 0. (3.7)

The changing in the process of p from zero to unity is just that of v(r, p) from
u0(r) to u(r). In topology this is called deformation and L(v)−L(u0), and A(v)−f(r)
are called homotopic. Now, assume that the solution of Eqs. (3.4), (3.5) can be
expressed as

v = v0 + pv1 + p2v2 + · · · (3.8)

The approximate solution of Eq.(3.1) can be obtained by Setting p = 1.

u = lim
p→1

v = v0 + v1 + v2 + · · · . (3.9)

4. Variational Iteration Method (VIM)

We consider the following equation [7, 16, 22]:

Du+Mu+Nu = g(x), (4.1)

where D is a differential operator, M,N represents the nonlinear terms, and g is the
source term. The basic character of He’s method is the construction of a correction
functional for (4.1), which reads
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un+1(x) = un(x) +

∫ x

0
λ(s)[Dun(s) +Mũn(s) +Nũn(s)− g(s)]ds, (4.2)

where λ is a Lagrange multiplier which can be identified optimally via variational
theory [7], un is the nth approximate solution, and ũn denotes a restricted variation,
i.e., δũn = 0. To solve (4.1) by He’s VIM, we first determine the Lagrange multiplier
λ that will be identified optimally via integration by parts. Then the successive
approximations un(x), n ≥ 0, of the solution u(x) will be readily obtained upon
using the obtained Lagrange multiplier and by using any selective function u0. The
approximation u0 may be selected by any function that just satisfies at least the
initial and boundary conditions. With determined λ, then several approximations
un(x), n ≥ 0, , follow immediately. We have the following variational iteration
formula

u0(x) is an arbitrary initial guess,

un+1(x) = un(x) +

∫ x

0
λ(s)[Dun(s) +Mun(s) +Nun(s)− g(s)]ds, (4.3)

Now we are applying the integral operator J to both sides of (4.1), and using
the given conditions, we obtain

u = R− J [Mu]− J [Nu], (4.4)

where the function R represents the terms arising from integrating the source term
g and from using the given conditions, all are assumed to be prescribed. we have
the following variational iteration formula for (4.4)

u0(x) is an arbitrary initial guess,

un+1(x) = R(x)− J [Mun(x)]− J [Nun(x)]. (4.5)

5. Description of the Some Reliable Methods

Some powerful methods have been focusing on the development of more advanced
and efficient methods for integro-differential equations such as the homotopy per-
turbation method and variational iteration method [1, 5, 12, 13, 22, 23]. We will
describe these methods in this section:
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5.1. Homotopy Perturbation Method

To solve the Caputo fractional Volterra integro-differential equation (1.1) by us-
ing the homotopy perturbation method, with boundary conditions (1.2), one can
construct the following correction functional:

(1− P )cDαu(x) + P

[
cDαu(x)− γu(x)− g(x)−

∫ x

0
k(x, t)u(t)dt

]
= 0. (5.1)

In view of basic assumption of HPM, solution of (1.1) can be expressed as a power
series in P :

u(x) = cDαu0(x) + P cDαu1(x) + P 2cDαu2(x) + P 3cDαu3(x) + · · · . (5.2)

If we put P −→ 1 in (5.2), we get the approximate solution of (1.1)

u(x) = cDαu0(x) +c Dαu1(x) +c Dαu2(x) +c Dαu3(x) + · · · . (5.3)

Now, we substitute (5.2) into (5.1), then equating the terms with identical power
of P , we obtain the following series of linear equations:

P 0 : cDαu0(x) = 0,

P 1 : cDαu1(x) = g(x) + γu0(x) +

∫ x

0
k(x, t)u0(t)dt,

P 2 : cDαu2(x) = γu1(x) +

∫ x

0
k(x, t)u1(t)dt, (5.4)

P 3 : cDαu3(x) = γu2(x) +

∫ x

0
k(x, t)u2(t)dt,

.

.

.

the initial approximation can be chosen in the following way:

u0 =

3∑
i=0

γi
xi

i!
, (5.5)

where γ1 = u′(0) and γ3 = u′′′(0) are to be determined by applying suitable bound-
ary conditions (1.2).
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5.2. Variational Iteration Method

To solve the Caputo fractional Volterra-Fredholm integro-differential equation (1.1)
by using the variational iteration method, with boundary conditions (1.2), one can
construct the following correction functional:

uk+1(x) = uk(x) + Jβ
[
λ

(
cDαuk(x)− γũk(x)− g(x)−

∫ x

0
k(x, t)ũk(t)dt

)]
= uk(x) +

1

Γ(β)

∫ x

0
(x− s)β−1λ(s)

×
(
cDαuk(s)− γũk(s)− g(s)−

∫ s

0
k(s, t)ũk(t)dt

)
ds, (5.6)

where Jβ is the Riemann–Liouville fractional integral operator of order β = α−m+1,
m ∈ N, λ is a general Lagrange multiplier and ũ denotes restricted variation i.e.
δũk = 0. We make some approximation for the identification of an approximate
Lagrange multiplier, so the correctional functional (5.6) can be approximately ex-
pressed as:

uk+1(x) = uk(x) +

∫ x

0
λ(s)

(
cD4uk(s)− γũk(s)− g(s)−

∫ s

0
k(s, t)ũk(t)dt

)
ds.

Making the above correction functional stationary, we obtain the following sta-
tionary conditions:
1− λ′′′(s)|x=s = 0, λ′′(s)|x=s = 0 − λ′(s)|x=s = 0, λ(s)|x=s = 0, λiv(s)|x=s =
0.

This gives the following Lagrange multiplier

λ(s) =
1

6
(s− x)3. (5.7)

We obtain the following iteration formula by substitution of (5.7) into functional
(5.6),

uk+1(x) = uk(x) +
1

6Γ(α− 3)

∫ x

0
(x− s)α−4(s− x)3

×
(
cDαuk(s)− γuk(s)− g(s)−

∫ s

0
k(s, t)uk(t)dt

)
ds. (5.8)

55



S.M. Atshan, A.A. Hamoud – Approximate solutions of fourth-order . . .

Then,

uk+1(x) = uk(x)− (α− 3)(α− 2)(α− 1)

6Γ(α)

∫ x

0
(x− s)α−1

×
(
cDαuk(s)− γuk(s)− g(s)−

∫ s

0
k(s, t)uk(t)dt

)
ds. (5.9)

The initial approximation u0 can be chosen by the following way which satisfies
initial conditions (1.2):

u0(x) = γ0 + γ1x+ γ2
x2

2
+ γ3

x3

6
(5.10)

where γ1 = u′(0) and γ3 = u′′′(0) are to be determined by applying suitable bound-
ary conditions (1.2). We can obtain the first-order and higher-order approximation
by substitution of (5.10) into (5.9).

6. Applications

In this section we have applied variational iteration method and homotopy pertur-
bation method to linear Caputo fractional Volterra integro-differential equations.

Example 1. Consider the following linear Caputo fractional Volterra integro-
differential equation:

cDαu(x) = u(x) + (1 + ex)x+ 3ex −
∫ x

0
u(t)dt, 3 < α ≤ 4, 0 < x < 1, (6.1)

with the boundary conditions

u(0) = 1, u′′(0) = 2,

u(1) = 1 + e, u′′(1) = 3e. (6.2)

The exact solution of problem (6.1)-(6.2) for α = 4 is

u(x) = 1 + xex. (6.3)

According to variational iteration method, the iteration formula (5.9) for Eq.(6.1)
can be expressed in the following form:
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uk+1(x) = uk(x)− (α− 3)(α− 2)(α− 1)

6Γ(α)

∫ x

0
(x− s)α−1

×
(
cDαuk(s)− uk(x)− (1 + ex)x− 3ex +

∫ x

0
uk(t)dt

)
ds. (6.4)

In order to avoid difficult fractional integration, we can take the truncated Taylor
expansion for the exponential term in (6.4): e.g., ex ∼ 1 + x + x2/2 + x3/6 and
assume that an initial approximation has the following form which satisfies the
initial conditions (6.2):

u0(x) = 1 +Ax+ x2 +B
x3

6
, (6.5)

where A = y′(0) and B = u′′′(0) are unknowns to be determined.
Now, by iteration formula (6.4), first-order approximation takes the following

form:

u1(x) = u0(x)− (α− 3)(α− 2)(α− 1)

6Γ(α)

∫ x

0
(x− s)α−1

×
(
cDαu0(s)− u0(x)− (1 + ex)x− 3ex +

∫ x

0
u0(t)dt

)
ds.

= 1 +Ax+ x2 +B
x3

6
− (α− 3)(α− 2)(α− 1)xα

6

×
(
− 4

Γ(α+ 1)
− (4 +A)x

Γ(α+ 2)
+

(A− 7)x2

Γ(α+ 3)
− (4 +B)x3

Γ(α+ 4)
+

(B − 4)x4

Γ(α+ 5)

)
.

According to homotopy perturbation method, we construct the following homo-
topy:

cDαu(x) = P

(
u(x) + (1 + ex)x+ 3ex −

∫ x

0
u(t)dt

)
. (6.6)

Substitution of (6.6) into (5.4) and then equating the terms with same powers
of P yield the following series of linear equations:

P 0 : cDαu0(x) = 0,

P 1 : cDαu1(x) = u0(x) + (1 + ex)x+ 3ex −
∫ x

0
u0(t)dt,

P 2 : cDαu2(x) = u1(x)−
∫ x

0
u1(t)dt,

P 3 : cDαu3(x) = u2(x)−
∫ x

0
u2(t)dt,
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Applying the operator Jα to the above series of linear equations and using initial
conditions (6.2), we get:

u0(x) = 1,

u1(x) = Ax+ x2 +
B

6
x3 +

4xα

Γ(α+ 1)
+

4xα+1

Γ(α+ 2)
+

4xα+2

Γ(α+ 3)
+

4xα+3

Γ(α+ 4)
+

4xα+4

Γ(α+ 5)
,

u2(x) = A
xα+1

Γ(α+ 2)
+ (2−A)

xα+2

Γ(α+ 3)
+ (B − 2)

xα+3

Γ(α+ 4)
−B xα+4

Γ(α+ 5)
+ 4

x2α

Γ(2α+ 1)

+
x2α+2

Γ(2α+ 3)
+

x2α+3

Γ(2α+ 4)
− 2

x2α+4

Γ(2α+ 5)
− 4

x2α+5

Γ(2α+ 6)
,

where A and B can be determined by imposing boundary conditions.

Figure 1: Comparison of approximate solutions obtained by 2-term HPM and first-
order VIM with exact solution at α = 4.

From Figs. 1. and 2. the approximate solutions are in good agreement with an
exact solution of (6.1)-(6.2) at α = 4 and α = 3.2. Also it is to be noted that the
accuracy can be improved by computing more terms of approximated solutions or
by taking more terms in the Taylor expansion for the exponential term.
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Figure 2: Comparison of approximate solutions obtained by 2-term HPM and first-
order VIM with exact solution at α = 3.2

7. Conclusions

We discussed different methods for solving linear boundary value problems for Ca-
puto fractional Volterra integro-differential equations, namely, variational iteration
method and homotopy perturbation method. The example is presented to illustrate
the accuracy of the present schemes of VIM and HPM. Comparisons of VIM and
HPM with exact solution have been shown by graphs are plotted which show the
efficiency of the methods.
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