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CERTAIN NEW INTEGRAL FORMULAS ASSOCIATED WITH
SPECIAL FUNCTIONS

M.A. PaTHAN, K.S. NISAR

ABSTRACT. In this paper, we establish four theorems in order to evaluate in-
tegrals of special or generalized functions and polynomials. The generality of these
integrals yields many new and known formulas of a number of special functions. The
examples involving Wright function,Mittag-Leffler function,zeta function,Hermite
and Bernoulli polynomials given in this paper show the potential of the newly de-
fined theorems which can help to find a large number of integrals involving various
types of special functions.
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1. INTRODUCTION AND PRELIMINARIES

The generalization of the generalized hypergeometric series ,F, due to Wright [13,
14, 15] who defined and studied the generalized Wright Hypergeometric function
given by (see[1],p.21 and [6])

(alvAl) P 7(aPaAp)§

(517B1)7"' 7(/6qu(1); k=0 ‘

where the coefficients A1, ..., A, and By, ..., B, are positive real numbers such that

q p
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A special case of (1) is
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where ,F; is the generalized hypergeometric series (see [12]) and (a), = I'(a +
n)/T'(a).

Kiryakova [8] defined the multiple (multiindex) Mittag-Leffler function as follows.
Let m > 1 be an integer, p1,p2,...,pm > 0 and p1, po, ..., ym be arbitrary real
numbers. By means of "multiindices”, (p;), (i), ¢ = 1,....,m, we introduce the
so-called multiindex (m-tuple,multiple) Mittag-Leffler functions
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B2 ) = g P (it )T (£

. (3)
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The following are interesting relation of this function to other special functions
(¢) For m = 2, if we put pil:a L —0and g1 = 1,2 = 1 in (3) we have

? p2
o0 K
Eo (2) = k:Z:O T+ ak) (4)
(73) For m = 2, if we put p% :oz,pi2 =0and g1 = 5,2 =1 in (3) we have
o0 Lk
Eap(2) = Z T(B+ak) (5)

k=0

(13i) For m = 2, if we put p—ll =1,—=1and 3 =v+1,us = 1, and replacing z

by _Tz2 in (3) we have (see [8])

—22 2\"
E(Ll),(l—l—v,l) <4> = <Z> Jv (Z) . (6)

where J, (z) is a Bessel function of first kind (see [12, 2]).

1
’ p2

(iv) For m = 2, if we put p—ll = 1,%2 =1and pu; = 3712%“,/12 = 3+g+“, and
2
replacing z by =~ in (3) we have (see [8])
—22 4
E(LIL(B;’*“F*’;*ﬂ( i ) = S (2) @
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where S, (2) is the Lommel function (see [12, 2]).

(v) For m = 2, if we put p% =1, p% =1and u = %,ug = @, and replacing z
by 7722 in (3) we have (see [8])
2
—z 4
P (3.02) (4> = b (3 (®)

where H,, (z) is the Struve function (see [12, 2]).
The Hurwitz ( or generalized) zeta function ((s,a) is defined by [2]and [7]

COEDY (a—i—lm) R(s)> 1La# {0,—1,-2, ..}

m=0

which,just as Riemann zeta function ((s) can be continued meromorphically every-
where in the complex s plane except for a simple pole (with residue 1). From this

definition, we have
1 1
C(Sa 1) = C(S) = FC(& 5)

for the Riemann zeta function ((s). A generalization of Hurwitz ( or generalized)
zeta function ((s,a) is given by Goyal and Laddha [7] in the form

m

(9)

where a # {0, —1, -2, ...}, u > 1 and either |z] < 1,R(s) > 0, or z = 1 and R(s) > p.
The 2-variable Kampé de Fériet generalization of the Hermite polynomials (see
[5]) are defined as

[%] r.n—2r
y'x
=n! v
Hn(z,y) = n! Z rl(n — 2r)!
r=0
These polynomials are usually defined by the generating function
| tn
T
) A (10)
n=0
and reduce to the ordinary Hermite polynomials H,(x) [12] when y = —1 and z is

replaced by 2z.
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The generalized Hermite-Bernoulli polynomials HBq[la’m_l] (x,y), m > 1 for areal
or complex parameter o defined by Pathan and Waseem A Khan [11] by means of
the generating function defined in a suitable neighborhood of t = 0

«

_ 2 _ 2
Gl (g, y,t) = e/ Glom (1) = | e
et — %
h=0
P— tn
= Glm=l(f)et ot = Z Bz, y)ﬁ,
n=0 ’

(11)
contain as its special cases not only generalized Bernoulli polynomials BLa’mfl] (x)

t’fL

o (12)

G[a,m—l] (:L',t) _ G[a,m—l] (t)emt _ ZBLa,m—l} ({L‘)
n=0

but also Kampe de Feriet generalization of the Hy,(z,y) (c.f.Eq.(10)). For o = 1,
(12) reduces to a known result of Pathan [10].
For m = 1, we obtain from (11)

n

£\ e N t
<€t_1> "t = E B >(ac,y)ﬁ (13)
n=0 )

which is a generalization of the generating function (1.6) of Dattoli et al [4] in the

form . 2 - "
<> 3 B () (14)
n!
n=0

et —1

In view of (13),the special case m=1 of (11) may be written in the form

n
nB ) =3 (1) B (15)
where HB,(la) (z,y) are generalized Hermite- Bernoulli polynomials and B
eralized Bernoulli numbers.

It is possible to define generalized Hermite-Bernoulli numbers HB,[la’mfl] assum-
ing that

,(f‘) are gen-

HBq[@OK’m_l] (0’ O) _ HBLa,m—l} (16)
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For the present investigation, we also need the following two integral formulae
(see [9]):

! pol L2u)l (A -
0 [t+a+\/t2+72at} 2/ TA+A+p)
provided 0 < R () < R (A) <O0.
o (AL 2 A1
/ Pe—at? In(bt)dt = ( Q) ln — + \If(%)], (18)
0 da 2 a

where 0 < R(A), 0 < R(a) and ¥ function is the logarithmic derivative of the Gamma
function (see [12]).

2. MAIN THEOREMS

Consider a two variable generating function F'(z,y,t) which possesses a formal (not
necessarily convergent for t not equal to zero) power series expansion in t such that

F(2,y,t) = > Cufn(z,y)t", (19)
n=0

where each member of the generalized set f, (z,y) is independent of t,and the coef-
ficient set C),, may contain the parameters of the set f, (z,y)but is independent of
t, x and y.

Theorem 1. Let the generating function F (x,y,t) defined by (19)be such that

t

Fzuy,
[t +a+Vt2 + 2at}

remains uniformly convergent for t € (0,1) and 0 < R () < R(B).Then

1 ta_l t
/ 5F T, 1, dt
0 [t+a+\/t2+2at} [t+a+vt2+2at]

(14+n+p8) TI(2xa+2n)
I'n+p) T(l+a+p8+2n)

20T (8~ 0) 3 Cuf () - (20)
n=0
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Proof. Replace t by WTZM] in (19) to get

t > t
[t +a+ v+ 2t :gc"f“(m’y) [t +a+ Vi + 2]

Now multiplying both the sides of (21) by

Fzuy,

(21)

ta—l

187
[t—i—a—l— V2 —|—2at}

integrating with respect to t between the limits 0 and 1 and using the integral (17)
and

I'(l+n+p)

(" +8)= T g

(22)
we get the required result.

The next theorem gives a further interesting consequences of the generating
function (19). Theorem 1 will play an essential role in the derivation of our later
results.

Theorem 2. Let the generating function F (x,y,t) defined by (19) be such that

xt
F\z,y,
[t +a+Vit? + 2at}
remains uniformly convergent for t € (0,1) and 0 < R (a)) < R(B). Then
1 a—1
t t
/ BF x,, L dt
0 [t—l—a+\/t2—|—2at} [t+a+vt2+2at}
oo
_ F'l+n+p) TI'(2a+2n)
= 2a° T (B -« Cpx" fp (z, . (23
(8 )n;) I @Y TGI8 Tatat o) O
Proof. First replace t by tx in (19) and then replace t by m to get
n
tx i (z.5) t
F r,Y, = Cn.%'nfn z,y
t+a+Vt2+ 2at} =0 t+a+Vt2+ 2at]
(24)

The proof now parallels the above theorem 1.
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Theorem 3. Let the generating function F (x,y,t) defined by (19) be such that
F (z,y,t) remains uniformly convergent for t € (0,00), 0 < R(v) and 0 < R(a).
Then

00 r A+n+1 b2 A 1
/ e In(bt) F (2, y, 1 chfn z,y) (Hnﬂ)u R )
0

2
(25)
where ¥ function is the logarithmic derivative of the Gamma function (see [12]).

Proof. The proof of this theorem is based on (11) and runs parallel to that of theorem
2 as given above.The assertion (25) follows readily from (19) and we omit the details
involved.

Now we consider more briefly a different type of approach to special functions
for the function F(¢, s,b) which possesses a formal (not necessarily convergent for t
not equal to zero) power series expansion in t such that

F(t,s,b) ZCfnsb (26)

where R(s) > 1,b# {0,—1,—2,...}, each member of the generalized set f, (s,b) is
independent of t,and the coefficient set C),, may contain the parameters of the set
fn (s,b) but is independent of ¢,s and b.

Theorem 4. Let the function F (t,s,b) defined by (eqn-int1b) be such that

t
F ,8,b

[t+a+ Vit + 2at

remains uniformly convergent for t € (0,1) , R(s) > 1,b # {0,—1,-2,...} and
0<R(a) <R(B). Then

1 tafl t
/ ﬁF ,8,b | dt
0 {t—i—a—l—\/tQ—l—Qat} [t+a+vt2+2at

I'l+n+p) I (2a+2n)
T(n+B) T(1+a+p+2n)

20" T (B =) > Cnfn(s,b) (27)
n=0

Proof. The proof of this theorem is based on (26) and runs parallel to that of theorem
1 as given above.
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3. EXAMPLES
Example 1. If we take f, (z,y) = Hy (z,y), Cp = & then

F (2.t ZH roy) oy = et (28)

where H, (x,y) is 2-variable Kampé de Fériet generalization of the Hermite polyno-
mials (see [5]).

On the other hand,by choosing the following bilinear gemerating function which is
known as Mehler’s formula (see [12])

" _ dayt — 4(x® + y?)t2
(x,y,t Z H,( = (1 —4t®) " 2eap( ] _( pre ) . (29)

1uegetC7 = %’andfﬁ(way) =:fﬁﬁw)fﬁﬂy)

Corollary 5. By considering the generating functions defined in (28), (29) and
theorem 1, we have the following integral formulae:

1 tafl
/ xT+yT? dt
B
0 [t +a+ Vit + 2at]

_ ol-a a0—B I(1+n+ BT (2a+ 2n)
= 2T Z L(n+ BT (1+a+F+2n)

(30)

where T = m and Hy, (x,y) is 2-variable Kampé de Fériet generalization
of the Hermite polynomials (see [5]).

1 a—1 2, 2\T2
t _ Aoyl — 4(z* +y*)T
/ 5 (1 — 4T~ 2eap( ] —(4T2 ) )dt
0 [t +a+ V2 + 2at}
_ glep(g - 'BZ n(y) T(14+n+p)(2a+2n) T
Fn+ A1+ a+5+2n)
where T' = m and Hy(z) is Hermite polynomial [12].
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Corollary 6. By considering the generating function defined in (28) when x is
replaced by 2x and y=-1, we have the following integral formula:

/1 ot 2T-T? 3y
B
0 [t +a+ Vit + 2at]

n+5) (1+a+8+2n) (32)

where T = m and H,, (x) is the Hermite polynomial [12].

As can be seen from the above equation and the reduction Hap,(0) = (—1)" (2:!)! ,the
result (30) for x =0 yields

1 a—
/ ! ﬁe_T2dt:21_OT(,8—oz)aa_ﬂ
0 [t+a+\/t2+2at]
(1+5,2),(20{,4); -1
« 2%[<ﬂ,2>,<a+ﬂ+1,4>;4' (33)

T=——*t
where t+a+Vt2+2at

It follows easily from theorem 2 and (28) that

1 a—1
/ ! T g
0 [t+a+ M}
_ 9l-a a8 T H -’E y F(1+n—|-,8)r(2a—l—2n)
2T Z C(n+AT(1+a+p+2n) (34)

where T = m and Hy, (x,y) is 2-variable Kampé de Fériet generalization
of the Hermite polynomials (see [5]). Note that (30) is not a consequence of (32).

Corollary 7. Consider the generating functions defined in (28) and (29) together
with theorem 3.Then for 0 < R(A) and 0 < R(a) we have

o0 >\ Hy(z,y) DALY p2 A4+n+1
A 2 )
/0 t*exp(at + (y — a)t”) In(bt)dt = nEZO nl g [In — -t \11(72 )]

(35)
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where U function is the logarithmic derivative of the Gamma function (see [12]) and
H, (z,y) is 2-variable Kampé de Fériet generalization of the Hermite polynomials

(see [5]).

0 dryt — 4 2 2 t2
/0 1 — 42) "V 2exp(—at? + =Y 1_($4tj Y ot at
ad y) D2ty p2 A+n+1
> ) pESES o — + ¥ (———)] (36)

4a

where U function is the logarithmic derivative of the Gamma function (see [12]) and
H,, (x,y) is 2-variable Kampé de Fériet generalization of the Hermite polynomials

(see [5]).
Example 2 Making use of (11) and taking F(z,y,t) = Glom=U (g y, 1) = ¥ Glem=1(z, t)
and Cp, = &, we can write fy(z,y) = p Bl (x,y) where HBLa’mfl](x,y) are

generalized Hermzte Bernoulli polynomials.

Corollary 8. By considering the generating function defined in (11) and theorem
1, we have the following integral formula:

1 a—1
/ t 5 G[a,mfl] (T)emT+yT2 dt
0 [t +a+Vt2+ 2at}

o ﬁz B[‘“” ]<x,y> T(1+n+ B)T(2a + 2n)

_ 11—«
= 27T Fn+BI(1+a+p6+2n)

(37)

[a,m—

where T = ](x,y) are generalized Hermite-Bernoulli polyno-

t+a+\/t2+2at 1B
mials and H, (x,y) is 2-variable Kampé de Fériet generalization of the Hermite

polynomials (see [5]).

First we observe that for a = 0, (34) reduces to (29). In case z = y = 0,we use
(16) to get the following interesting result involving Hermite-Bernoulli numbers

1 a—1
/ ! SGlom =1 (T)dy
0 [t TatVET 2at]

[aym—1]
_ ol-a g0 B HB I'(1+n+ B)(2a+ 2n)
=2 Z T(n+AT(1+a+p+2n)

(38)

B[a,m—l]

where T' = and g Bp, are generalized Hermite-Bernoulli numbers.

-t
t+a+vVt2+2at

10
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Corollary 9. By considering the generating function defined in (1.11) and theorem
2, we have the following integral formula:

1 a—1
/ l 5 G[a,m—l] (T)er(T+yT2)dt
0 [t +a+ Vit + 2at}
[aeym—1]
_ ol- or (8 1o—B Z n HDBn (a:, y) T(1+n+B)T(2a+ 2n) (39)

T(n+ B)T(1+a+ 5+ 2n)

where T = plem=1l (z,y) are generalized Hermite-Bernoulli polyno-

t
tratvi2t2at 0N
mials and H, (z,y) is 2-variable Kampé de Fériet generalization of the Hermite
polynomials (see [5]).

Note that for o =0, (36) reduces to (32) and for m=1,we can use (13) to get

1 tafl 5 5
/ 3 Toze—OcT-i—a: (T+yT )dt
0 [t +a+Vt2+ 2at}

. olea 405 nHB (z,y) T(14+n+p)I'(2a+ 2n)
= 27T Z Fn+AIr(1+a+8+2n) (40)

where T = m and ;B\ (x,y) is given by (13).

Corollary 10. Consider the generating function defined in (11) together with the-
orem 3. Then for 0 < R(X) and 0 < R(a) we have

/ T)\e—aT2+zT+yT2 ln(bT)G[a,m—l] (T)dt

0
0 [oe;m—1] A+n+1 2
B, (2, y) T(A=) - b A+n+1
= In—+¥(— 41
> I e g+ U ) (1)

where Glm=1(t) is given by (1.11),¥ function 1s the logarithmic derivative of the
Gamma function (see [12])T = o +\/7 and yB™ Y (x,y) are generalized
Hermite-Bernoulli polynomials.

Example 3. In (19),we choosey = 0 and take f, (xr) = x2", Cp = 1
|Y ( ) Yy b ( ) F(/ﬂ ;;)F(m p,;>
so that

oo
kg Al

n—o ' (Hl +%>F (Mz—i—p%)

11

F (z,t) = xt). (42)
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where E( L > (1. p2) (x) is multi-index Mittag-Leffler function, in (3).
S \H1, 2

P17 p2
Corollary 11. Let the conditions of theorem 1 satisfies, then the following integral
formula holds true

1 tOé—l l't
J O s K
0 {t+a+ t2+2at} 192 ) \H1:H2 t+a-+Vt? + 2at

(14—/871),(20[,2),(1,1); 1‘4
(ul,p%),(uz,,%z),(61,1),(a+ﬁ+1,2); 3 1t)

Proof. Consider the generating function F' (z,t) defined in (42) and integrating with
respect to t between the limits 0 to 1, we have

= 2ol-er (B — ) a® P 3y

! U xt
0 [t+a+m}ﬁ (b)) \t + 0+ Ve + 2at

B ot > (zt)™

1
[t+a+m} n=01 | p1+ 5 pe+ o0 ) (t+a+ + 2a

—dt

Interchanging the integration and summation, we get

0 1
6=y /
B+
n:oF(u1+§—1)F(uz+p%) 0 [t+a+\/t2+2at] "

Solving the inner integral using (17)

" ta—i—n—l

dt,

c =§j " 2(8+n)(3)""T (2a+20)T (5 — )
1 n=oF(u1+p%)F(u2+;—2) 2'T (1+a+ B+ 2n) ’
The use of (22) gives
L1 =2"°T (B —a)a®" Fl+n+p8)T (2a+2n) (f)n
n:OF(M1+%>F(u2+%)r(n+ﬁ)f‘(1+a+5+2n) 2

In view of (1), we obtain the desired result.

Example 4. Take f, (z) =2", Cp, = F( in) so that
ar
o0 nygn
F(x,t) = “"” o (t) (44)
Ziruez) T
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Corollary 12. Consider the generating function defined in (44), equations (1) ,(22)
and integrating with respect to t between the limits 0 to 1 together with theorem 1,
we get

1 tafl rt
/ 5E(l) () \ ¢ NGE dt
0 [t+a+\/t2+2at] o) ta+Vit+2a

(1+5,1),(20&,2),(1,1); X

— 217 B (5~ a) 40y (%;),(51),(a+6+1,2);2]- (45)

Example 5. Take f, (z) = <7Tx2)n, Cp = m so that
2\ 1
> (%) t" —x%t
F(x,t) = Z AT (p+n+1) = Eq,1),14p,1) <4> . (46)

n=0

Corollary 13. The following integral formula holds:

1 pa—1 2t
/O { E,1),(40,0) dt

t+a+\/t2+2atr 4 t+a+\/t2+2at}
_ _ 1+ 8,1),(20,2); x
= 2177 (B —a)a® P L0 ( !
(B~ 2)a™ 3[(p+1,1),(ﬁ,1),(a+ﬁ+1,2); 3| WD
Example 6. If we take f, (z) = (‘szyl, Cp = F(n+%)rl(n+p+%) then
2 n
= (=) Y
F(x,t) = =E . 48
0= T Tt D) <m>7<§,§+p>( i ) (48)

Corollary 14. By considering (48) and theorem 1, we have the following formula

1 tafl —1’2t
/ 5. (2.840) . di
0 {t+a+ /7t2+2a4 4[t+a—i—\/t —|—2at}
— 900D (3 — a)

(1+5,1), (2

20,2), (1,1); —z?
SRR RIS i | )

13
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—a2 1

Example 7. If we take f, (z) = (T) ,Cp = T (=T )T (50 ) then

0 iQnt” 2
me;%(wwg5zG@W+@EWWWWWWK f)*W

Corollary 15. By considering the generating function defined in (50), we have the
following integral formula:

1 ta—l _th
,BE(]. 1) (3 v 3+12)+p,) dt
0 [t+a+ /7t2+2at:| 4[t—|—a+\/t2—|—2at}
= 2 r(B-a)a”
S (1+5,1),(20,2),(1,1); —a? (51)
() (BH) (8,1 (a4 B 1,2): 8
Corollary 16. If we take f, (x) = (%)QWFUJrl ,Cp = D" a=pu—n and

(n+3)0(ntv+3)’
B8 = X+v+1+n in theorem 1, then we obtain the integrals involving Struve function
as:

1 tu—l T
[ o )a
0 [t+a+\/t2+2at] t+a+ V2 + 2at

_ 27v7,u$v+1a7(>\+v+1 ,u (2'u)
al (W+A2),A+v—p+1,2),(1,1); a? (52)
LG v+ A+1,2), (04 5 1) Aot p+2,2);  4a?
Corollary 17. If we take f, () = (%)%MH,Cn BRI 1( Iy a=p+uv+
n+1and B=A+v+1+n in theorem 2, then we have:
! ! t
G )
0 [t+a+ t2+2at] t+a+ Vi®+ 2at
— 2—2v—u—1xv+1au—vr ()\ . ,U')
o (v+A+2,2), (20 +2v,4), (1,1); _a? (53)
TG D), (0 +1,2), (v ), AN pF20+2,4);  16]

14
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Corollary 18. Notice that a substitution v = % in (52) and (53) yields the following
results

1 tu—l T
[ T
0 [t+a+\/t2+2at} t+a+ Vit +2at

NI

= 2 HTzgagh e (2u)
(A+35:2), A —p+3.2); ﬁ]

xﬂ?’[(3,1),(A+§,2),(>\+M+372)9 - Aa? o

and

! =1 xt
/ )\/H1< 5 >dt
0 [t+a+ /7t2+2at} 2 \t+a+ V2 + 2at

I'(A—p)

_ (A+3.,2),(2u+3,4); 2
LG, (A +52) O+ pt44); 16]

where 7—[% (2) =4/2 (1 —cosz).

Example 8. If we take f, (s,b) = (b+n)~%, Cp = Wn  then

n! 7

F(t,5b) =Y (/;)'"(b +n)"* = ¢t s,b) (56)
n=0 )

where ¢},(t,s,b) given by (9) is Hurwitz ( or generalized) zeta function defined by
Goyal and Laddha [7]and is a generalization of Reimann zeta function ((s,b).

Corollary 19. By considering the generating function defined in (56) and theorem
4, we have the following integral formula:

1 tafl
/ ST b)dl
0 [t +a+Vt2+ 2at}

I'l1+n+ B)'(2a + 2n)
(n+ B8+ a+ B +2n)

= 2T (B -a)a” Z ('I;jn (b+ n)_SF . (57)
n=0 )

where T =

m, R(s) > 1,b# {0,-1,-2,...} and ¢},(t,s,b) is the Hurwitz
( or generalized) zeta function defined by Goyal and Laddha [7].
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