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SOME RESULTS ON (— STARLIKE FUNCTIONS OF COMPLEX
ORDER

A. CETINKAYA, Y. KAHRAMANER, Y. POLATOGLU

ABSTRACT. In this paper, we define a new subclass of starlike functions by using
quantum calculus. For every ¢ € (0,1), ¢g— difference operator is defined by

f(2) = flg2)
(1-q)z

Using the above operator and definition of starlike functions of complex order, we
introduce the class of g— starlike functions of complex order denoted by S; (1 — b).
In the present paper, we will investigate coefficient inequality, growth and distortion
theorems and radius of g— starlikeness for the class Sy (1 — b).

z € D.

qu(z) =
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1. INTRODUCTION

Let A be the class of functions f of the form
f(2) :z+2anz", (1)
n=2

which are analytic in the open unit disc D = {z : |z| < 1} and satisfy the conditions
f(0) =0, f/(0) =1 for every z € D. We say that f; is subordinate to fy, written as
fi < fa, if there exists a Schwarz function ¢ which is analytic in D with ¢(0) = 0
and |¢(z)| < 1 such that fi(z) = f2(¢(z)). In particular, when fy is univalent,
then the above subordination is equivalent to f1(0) = f2(0) and fi(D) C fo(D)
(Subordination principle [4]).
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A function f € A is said to be starlike function of complex order b, (b € C\{0})
denoted by S*(1 —b) if and only if f(z)/z # 0 and

Re [1 + ll)(z'él((j)) - 1” >0

for all z € D. This class was introduced and studied by Nasr and Aouf (see [8]).
In 1909 and 1910 Jackson [5, 6] initiated a study of ¢— difference operator by

f(z) = flgz)
(1-q)z

where B is a subset of complex plane C, called g— geometric set if gz € B, whenever
z € B. Note that if a subset B of C is ¢— geometric, then it contains all geometric
sequences {zq"}5°, zq € B. Obviously, D,f(z) — f'(z) as ¢ — 17. The ¢q—
difference operator (2) is also called Jackson ¢— difference operator. Note that
such an operator plays an important role in the theory of hypergeometric series and
quantum physics (see for instance [1, 3, 7]).

Also, note that D, f(0) — f'(0) as ¢ — 1~ and Dgf(z) = Dy(Dyf(2)). In fact,
g— calculus is ordinary classical calculus without the notion of limits. Recent interest
in g— calculus is because of its applications in various branches of mathematics and
physics. For definitions and properties of ¢— difference operator and ¢— calculus,
one may refer to [1, 3, 7].

Under the hypothesis of the definition of g— difference operator, we have the
following rules:

Dyf(z) = for z e BN\{0}, (2)

(1) For a function f(z) = 2", we observe that

Therefore we have

1
1

o _ qn
qu(z)zl—l—Zan P

n=2 —4
where [n], = 11%1:. Clearly, as ¢ = 17, [n]y = n.

(2) If functions f and g are defined on a g— geometric set B C C such that ¢—
derivatives of f and g exist for all z € B, then

(i) Dg(af(z) £bg(2)) = aDqf(2) £bD,g(z) where a and b are real or complex
constants.

32



A. Cetinkaya, Y. Kahramaner, Y. Polatoglu — Some results on ¢— Starlike ...

(i) Dylf(:)-9(2)) = 9(2)Daf (2) + F(42) Dag(2).
L)Y g@Df )~ f@)D)
( ’Dq<g<z>) 1(9(@2) » 9(=)gla=) £ 0.

(iv) As a right inverse, Jackson introduced the ¢— integral

|0 =20- 0 S st
n=0

provided that the series converges.

Denote by P, the family of functions of the form p(z) = 1+p12+p222+p3z3+-- -,
analytic in D and satisfying the condition

» 1|1
PE) = T STy

where ¢ € (0,1) is a fixed real number.

1
Lemma 1. [2] p € P, if and only if p(z) < : j_qzz. This result is sharp for the
1
functions p(z) = L(z)’ where ¢ is a Schwarz function.
1 —q¢(z)

Using definitions of starlike functions of complex order [8] and ¢— difference
operator, we define g— starlike functions of complex order as below:

Definition 1. A function f € A is said to be in the class S;(1 —b) such that

Re {1 + 2<zDJZ{;;) - 1” >0, (3)

where g € (0,1), b € C\{0}, z € D, then f is called q— starlike function of complex
order. Clearly, as q — 17, this class reduces to the class of starlike functions of
complex order.

The aim of this paper is to give coefficient inequality, growth and distortion
theorems and radius of g— starlikeness for the class g— starlike function of complex
order.

2. MAIN RESULTS

We first prove coefficient inequality for the class S;(1 —b). For our main theorem,
we need the following lemma.
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Lemma 2. If p is an element of Py, then |p,| < 14 q. This result is sharp for all
n>1.

Proof. In view Lemma 1, we have p(z) = fjj;)((zz)). Therefore we get
p(z) =1 = (1+qp(2))9(2). (4)

Thus the equality in (4) can be written in the form

Zpkz + Z d2* = qo(z Zpkz = F(2) = q¢(2)G(2), (5)
k=n-+1
it follows that
L %F i0)249 < 2WG 01240 6
o | 1Pt < o [ it (©

for each 7, (0 < r < 1). By expressing (6) in terms of the coefficients in (5), we
obtain the inequality

Z‘pk‘Q 2k+ Z ’dk‘Q 2k <q22‘p ‘2 2k (7)

k=n+1

Taking limit in (7) as r — 1, we conclude that
pul” < (1+9)° + (> — 1) Z|pk’2 (8)

Since (¢> — 1) < 0, inequality in (8) gives
pn| <14¢q, n>1

This completes the proof.

Theorem 3. If a function f of the form (1) belongs to Sy(1 —b), then

ol < ¢ ,H( S~ DB+ ), )

where g € (0,1), b € C\{0}, z € D. This inequality is sharp for every n > 2.
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Proof. In view of definition of the class S;‘(l — b) and subordination principle, we

() e

where p € P, with p(0) = 1. Since f(z) = z+ > rosanz™ and p(z) = 1+ p1z +
p22% + ..., then we have

can write

z+ [2]qa222 + [3]qa3z3 +..=z+ (a2 + bpl)z2 + (as + bpras + bpg)z3+
(as + bpras + bpaas + bps)z* + ...
Comparing the coefficients of z™ on both sides, we obtain
[n]qan = an + bpran—1 + bpran—2 + ... + bpp_sas + bp,—1
for all integer n > 2. In view of Lemma 2, we get
([n]q = Dlan| < [0](1 + g)(|an—1] + ... + |az| + 1),

or equivalently
n—1

%‘b‘(lJFQ)Z\Gk\a la1| = 1. (10)
[n]g—1 =

In order to prove (9), we will use process of iteration. Let ¢ = |b|(1+ ¢) and use our
assumption |a1| = 1 in (10), we obtain successively

|an| <

1
for n=2, Jas < a2, = 76
1
for n=3, Jas] < @, = 1),0(([%} —1)+¢)
1
for n=4, |asf < mc((mq =1 +o)(([Blg = 1) + o).

Hence induction shows that for n, we obtain

|an| < 1)!0(([2]q —D+)((Blg =D+ ) (([n =1y = 1) +0).

([n]q —
This proves (9).

Extremal function is the solution of the g— differential equation

(5 )

b
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Corollary 4. Taking g — 1~ and choosing b =1 in (9), we get |a,| < n for every
n > 2. This is the well known coefficient inequality for starlike functions.

We now introduce growth and distortion theorems and radius of g— starlikeness
for the class Sy (1 — b).

Theorem 5. If a function f of the form (1) belongs to Sy(1—1), then

1—q 1—q
logg—1

(@(q, Reb, \bm) T (2] < (rF1<q, Reb, rbr,m) SR

where

1
(1 _ q/’n) qu(l‘f‘Q)(REb‘f‘lb‘) (1 + qT‘) %q(l_t,_q)(Reb_'b') )

Fi(q, Reb, |b|,r) =

1

F5(q, Reb, |b|,1) = :
( ‘ ‘ ) (1_qr)flq(l-i-q)(Reb—w\)(l_’_qr)?lq(l-Fq)(RebeD

These bounds are sharp.

Proof. In view of Lemma 1 and subordination principle, we write

SRR

The linear transformation (llfqzz) maps |z| = r onto the disc with the centre C(r) =
quq;; and the radius p(r) = 1(1:;3217;, therefore we obtain
2y _ 2Y,.2
Dyf() 14 0la+ad) -] _ it ar )
f(2) 1 — q2r? 1 — g?r?
From inequality in (12), we get
2 _2\.2
Re (quf(2)> < L+ A+ 9blr + ((¢° + g)Reb — ¢*)r* (13)
f(z) (L—gr)(L+gqr)
_ 2 _2\.2
Re<quf(2)> > L= (4 @lblr + (¢ + ) Reb — ¢*)r* (14)
f(z) (L—qr)(L+qr)
On the other hand we have
D,f(z) 0,
R 1 =r_Li . 15
o(Pe) = Dhtogls ) (15)
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Considering (13), (14) and (15), we get

94 1 3(1+q)(Reb+b])  3(1+q)(Reb— |b])

Elog|f(z)| = r + 2 (1—qr) -2 (1+qr) ’
and

B, 1 (A +q@)(Reb—1b)) L(1+4q)(Reb+ b))

Sog|f()] = 7+ £t P e B,

Taking g— integral on both sides of the last inequalities, we get (11).

Corollary 6. Since limg_1 lolg% =1, for special case b =1, we obtain
r r
— < < .

This is the well known growth theorem for starlike functions [4].

Corollary 7. Inequality in (12) can be written in the following form

Dyf(2)| _ |1+ (blg+q?) — ¢*)r?| + [b|(1 + q)r
fz) 1~ 1—¢*r? ’

and

Dyf(2)| o 11+ (blg+q?) — ¢*)r?| = [b|(1 + q)r
f(z) |~ 1 — g% '

Therefore, using (11) we obtain

z

1+bl+qr+bq+q2 —q2r2 e
‘ ’( T)(1_|q§r2) ) | (rFy(q, Reb, |b|,r))tega™ "

[Dgf(2)] <

and

1—[b|(1 4 q)r + |b(q + ¢*) — ¢*|r?

1—
Dy f(2)] > (rFy(q, Reb, |b|, 7))o .

(- r7)
Corollary 8. Since limg_y; wlg% =1, for b =1, Corollary 7 gives
1—r 1+7r
<If'(»)] < —.

This is the well known distortion theorem for starlike functions [4].
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Corollary 9. The radius of q— starlikeness of the class S;(1 —b) is

. 2
M )+ VAT 0 — i b=

Proof. The inequality

Dof(z) 14 (b(¢* +a) —a*)r?| _ [Fl(1+ @)
f(2) 1—q%r2 - 1—¢%r2

can be written in the form

Dyf(2) 1 —[b|(1 + q)r + ((g + ¢°)Reb — ¢*)r*
Re(z £02) > > 1= g2 .

Hence for r < Ry the right side of the preceding inequality is positive if

R = 2 :
T+ q) + VP + )2 — 4((q + ¢®)Reb — ¢2)

SOME SPECIAL CASES

1
(i) For b = 1, we obtain R; = —. This is the radius of ¢— starlikeness of ¢—
q

starlike functions.

(ii) Forq — 17, R} = 1 . This is the radius of starlikeness of starlike
|b]++/1b]2—2Reb+1

functions of complex order (see [8]).

It should be noticed that by giving specific values to b, we obtain growth theo-
rems, distortion theorems and radius of g— starlikeness of the following important
subclasses.

(1) b=1-a, 0<a<l, S;(1-b)=5;(a)isthe class of ¢— starlike functions
of order a.

(2) b=e"cosA, [N <3, Sy(1—b) = S7(1— e~ cos \) is the class of g — A—
spirallike functions.

(B) b=(1-a)e™cosA, 0<a<l, |A<Z,
S;(1=b)=(1-(1- a)e~ cos \) is the class of ¢ — A— spirallike functions of
order o.
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