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Abstract. In this paper, Adomian decomposition and modified Laplace Ado-
mian decomposition methods are successfully applied to find the approximate solu-
tion of Volterra integro-differential equation of fractional order. The reliability of
the methods and reduction in the size of the computational work give these methods
a wider applicability. Also, the behavior of the solution can be formally determined
by analytical approximate. Moreover, we proved the convergence of the solutions.
Finally, an example is included to demonstrate the validity and applicability of the
proposed techniques.
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1. Introduction

In this paper, we consider Caputo fractional Volterra integro-differential equation of
the form:

cDαy(x) = a(x)y(x) + g(x) +

∫ x

0
k(x, t)F (y(t))dt, (1.1)

with the initial condition
y(0) = y0, (1.2)

where cDα is the Caputo’s fractional derivative, 0 < α ≤ 1 and y : [0, 1] −→ R,
where [0, 1] is the continuous function which has to be determined, g : [0, 1] −→ R
and k : [0, 1] × [0, 1] −→ R, are continuous functions. F : R −→ R, is Lips-
chitz continuous function. An application of fractional derivatives was first given
in 1823 by Abel [2] who applied the fractional calculus in the solution of an in-
tegral equation that arises in the formulation of the Tautochrone problem. The

63

http://www.uab.ro/auajournal/


A.A. Hamoud, K.P. Ghadle – Approximate solutions of Volterra . . .

fractional integro-differential equations have attracted much more interest of math-
ematicians and physicists which provides an efficiency for the description of many
practical dynamical arising in engineering and scientific disciplines such as, physics,
biology, electrochemistry, chemistry, economy, electromagnetic, control theory and
viscoelasticity [4, 6, 7, 8, 9, 10, 20, 22, 23, 24]. In recent years, many authors focus
on the development of numerical and analytical techniques for fractional integro-
differential equations. For instance, we can remember the following works. Al-
Samadi and Gumah [5] applied the homotopy analysis method for fractional SEIR
epidemic model, Zurigat et al. [26] applied HAM for system of fractional integro-
differential equations, Yang and Hou [24] applied the Laplace decomposition method
to solve the fractional integro-differential equations, Mittal and Nigam [23] applied
the Adomian decomposition method to approximate solutions for fractional integro-
differential equations, and Ma and Huang [22] applied hybrid collocation method
to study integro-differential equations of fractional order. Moreover, properties of
the fractional integro-differential equations have been studied by several authors
[5, 12, 15, 16, 17, 19, 26]. The homotopy analysis method that was first proposed
by Liao [21], is implemented to derive analytic approximate solutions of fractional
integro-differential equations and convergence of HAM for this kind of equations
is considered. Unlike all other analytical methods, HAM adjusts and controls the
convergence region of the series solution via an auxiliary parameter ~.

The main objective of the present paper studies the behavior of the solution
that can be formally determined by an analytical approximated methods as the
Adomian decomposition and modified Laplace Adomian decomposition techniques.
Moreover, we proved convergence of the solutions for Caputo fractional Volterra
integro-differential equation.

2. Preliminaries

The mathematical definitions of fractional derivative and fractional integration are
the subject of several different approaches. The most frequently used definitions of
the fractional calculus involves the Riemann-Liouville fractional derivative, Caputo
derivative [13, 14, 18, 25].

Definition 2.1. (Riemann-Liouville fractional integral). The Riemann-Liouville
fractional integral of order α > 0 of a function f is defined as

Jαf(x) =
1

Γ(α)

∫ x

0
(x− t)α−1f(t)dt, x > 0, α ∈ R+,

J0f(x) = f(x), (2.1)

where R+ is the set of positive real numbers.
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Definition 2.2. (Caputo fractional derivative). The fractional derivative of
f(x) in the Caputo sense is defined by

cDα
xf(x) = Jm−αDmf(x)

=


1

Γ(m−α)

∫ x
0 (x− t)m−α−1 d

mf(t)
dtm dt, m− 1 < α < m,

dmf(x)
dxm , α = m, m ∈ N,

(2.2)

where the parameter α is the order of the derivative and is allowed to be real or
even complex. In this paper, only real and positive α will be considered.

Hence, we have the following properties:

1. JαJvf = Jα+vf, α, v > 0.

2. Jαxβ = Γ(β+1)
Γ(β+α+1)x

β+α,

3. Dαxβ = Γ(β+1)
Γ(β−α+1)x

β−α, α > 0, β > −1, x > 0.

4. JαDαf(x) = f(x)−
∑m−1

k=0 f
(k)(0+)x

k

k! , x > 0, m− 1 < α ≤ m.

Definition 2.3. (Riemann-Liouville fractional derivative). The Riemann-
Liouville fractional derivative of order α > 0 is normally defined as

Dαf(x) = DmJm−αf(x), m− 1 < α ≤ m, m ∈ N. (2.3)

Theorem 1. The Laplace transform of the Caputo derivative is defined as

L[cDαf(x)] = sαF (s)−
n−1∑
k=0

sα−k−1f (k)(0), n− 1 < α ≤ n. (2.4)

3. Adomian Decomposition Method

Consider the equation (1.1) where cDα is the operator defined as (2.3). Operating
with Jα on both sides of the equation (1.1) we get [1, 3, 11, 23]

y(x) = y0 + Jα
(
g(x) +

∫ x

0
k(x, t)F (y(t))dt

)
. (3.1)

Adomian decomposition method defines the solution y(x) by the series

y =

∞∑
n=0

yn, (3.2)
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and the nonlinear function F is decomposed as

F =
∞∑
n=0

An, (3.3)

where An is the Adomian polynomials given by

An =
1

n!
[
dn

dφn
F (

n∑
i=0

φiyi)]φ=0. (3.4)

The Adomian polynomials were introduced in [1, 3, 10] as:

A0 = F (y0),

A1 = y1F
′
(y0),

A2 = y2F
′
(y0) +

1

2
y2

1F
′′
(y0),

A3 = y3F
′
(y0) + y1y2F

′′
(y0) +

1

3
y3

1F
′′′

(y0).

The components y0, y1, y2, ... are determined recursively by

y0(x) = y0 + Jαg(x), (3.5)

yk+1 = Jα
(∫ x

0
k(x, t)Akdt

)
. (3.6)

Having defined the components y0, y1, y2, · · · , the solution y in a series form
defined by (3.2) follows immediately. It is important to note that the decomposition
method suggests that the 0th component y0 be defined by the initial conditions and
the function g(x) as described above. The other components namely y1, y2, · · · , are
derived recurrently.

4. Modified Laplace Adomian Decomposition Method

Secondly, we consider the fractional Volterra-Fredholm integro-differential equa-
tion [7, 9, 24]. We apply the Laplace transform to both sides of (1.1)

L[cDαy(x)] = L[g(x)] + L
[ ∫ x

0
k(x, s)F (y(s))ds

]
. (4.1)

Using the differentiation property of Laplace transform (2.4) we get

sαL[y(x)]− y0 = L[g(x)] + L
[ ∫ x

0
k(x, s)F (y(s))ds

]
, (4.2)
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Thus, the given equation is equivalent to

L[y(x)] =
y0

sα
+

1

sα
L[g(x)] +

1

sα
L
[ ∫ x

0
k(x, s)F (y(s))ds

]
. (4.3)

Substituting (3.2), and (3.3) into (4.3), we will get

L

[ ∞∑
n=0

yn

]
=
y0

sα
+

1

sα
L
[
g(x)

]
+

1

sα
L

[∫ x

0
k(x, s)

∞∑
n=0

An(s)ds

]
(4.4)

Matching both sides of (4.4) yields the following iterative algorithm:

L[y0] =
y0

sα
+

1

sα
L [g(x)] ,

L[y1] =
1

sα
L
[∫ x

0
k(x, s)A0(s)ds

]
,

L[y2] =
1

sα
L
[∫ x

0
k(x, s)A1(s)ds

]
,

.

.

.

L[yn+1] =
1

sα
L
[∫ x

0
k(x, s)An(s)ds

]
.

The solution y(x) defines by the series

y(x) =
∞∑
n=0

yn(x), (4.5)

5. Convergence Results

In this section, we shall give convergence results of Eq.(1.1), with the initial condition
(1.2) and prove it.
Before starting and proving the results, we introduce the following hypotheses:
(H1) The two functions a, g : [0, 1] −→ R are continuous.
(H2) There exists a constant M > 0, such that

|k(x, t)| ≤M, ∀ 0 ≤ x, t ≤ 1.

(H3) There exists a constant L > 0 such that, for any y, y∗ ∈ C([0, 1],R)

|F (y(t))− F (y∗(t))| ≤ L|y − y∗|.

67



A.A. Hamoud, K.P. Ghadle – Approximate solutions of Volterra . . .

Theorem 2. Suppose that (H1), (H2) and (H3) hold, and if the series solution
y(x) =

∑∞
i=0 yi(x) and ‖y1‖ < ∞ obtained by the ADM is convergent, when 0 <

δ = ML
Γ(α+1) < 1. Then it converges to the exact solution of the fractional integro-

differential equation (1.1)− (1.2).

Proof. Denote as (C[0, 1], ‖.‖) the Banach space of all continuous functions on [0, 1]
with |y1(x)| ≤ ∞ for all x in [0, 1].

First we define the sequence of partial sums sn, let sn and sm be arbitrary partial
sums with n ≥ m. We are going to prove that sn =

∑n
i=0 yi(x) is a Cauchy sequence

in this Banach space:

‖sn − sm‖ = max
∀x∈J

|sn − sm|

= max
∀x∈J

 n∑
i=0

yi(x)−
m∑
i=0

yi(x)


= max
∀x∈J

 n∑
i=m+1

yi(x)


= max
∀x∈J

 n∑
i=m+1

(
1

Γ(α)

∫ x

0
(x− t)α−1[

∫ t

0
k(t, s)Ai(s)ds]dt)


= max

∀x∈J

∣∣∣ 1

Γ(α)

∫ x

0
(x− t)α−1[

∫ t

0
k(t, s)

n−1∑
i=m

Ai(s)ds]dt
∣∣∣.

From (3.3), we have
n−1∑
i=m

Ai = F (sn−1)− F (sm−1),

so,

‖sn − sm‖ = max
∀x∈J

∣∣∣ 1

Γ(α)

∫ x

0
(x− t)α−1[

∫ t

0
k(t, s)(F (sn−1)− F (sm−1))ds]dt

∣∣∣
≤ max

∀x∈J
(

1

Γ(α)

∫ x

0
|x− t|α−1[

∫ t

0
|k(t, s)||(F (sn−1)− F (sm−1))|ds]dt)

≤ 1

Γ(α+ 1)
[ML‖sn−1 − sm−1‖]

=
LM

Γ(α+ 1)
‖sn−1 − sm−1‖

= δ‖sn−1 − sm−1‖.
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Let n = m+ 1, then

‖sn − sm‖ ≤ δ‖sm − sm−1‖ ≤ δ2‖sm−1 − sm−2‖ ≤ · · · ≤ δm‖s1 − s0‖,

so,

‖sn − sm‖ ≤ ‖sm+1 − sm‖+ ‖sm+2 − sm+1‖+ · · ·+ ‖sn − sn−1‖
≤ [δm + δm+1 + · · ·+ δn−1]‖s1 − s0‖
≤ δm[1 + δ + δ2 + · · ·+ δn−m−1]‖s1 − s0‖

≤ δm(
1− δn−m

1− δ
)‖y1‖.

Since 0 < δ < 1, we have (1− δn−m) < 1, then

‖sn − sm‖ ≤
δm

1− δ
‖y1‖.

But |y1(x)| <∞, so, as m −→ ∞, then ‖sn − sm‖ −→ 0. We conclude that sn is a
Cauchy sequence in C[0, 1], therefore

y = lim
n→∞

yn.

Then, the series is convergent and the proof is complete.

6. Illustrative Example

In this section, we present the analytical techniques based on the Adomian de-
composition method and the modified Laplace Adomian decomposition method to
solve Caputo fractional Volterra integro-differential equation.

Example 6.1 Consider the following Caputo fractional Volterra integro-differential
equation.

cD0.75[y(t)] =
6t2.25

Γ(3.25)
− t2et

5
y(t) +

∫ t

0
etsy(s)ds,

(6.1)

with the initial condition

y(0) = 0, (6.2)
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and the the exact solution is y(t) = t3.

Firstly, we apply the Adomian decomposition method
Applying the operator J0.75 to both sides of Eq.(6.1)

y(t) = y0 +
6

Γ(3.25)
J0.75

(
t2.25

)
− 1

5
J0.75

(
t2ety(t)

)
+ J0.75

(∫ t

0
etsy(s)ds

)
Then,

y0(t) = y0 +
6

Γ(3.25)
J0.75

(
t2.25

)
= 0 +

6

Γ(3.25)

Γ(9/4 + 1)

Γ(9/4 + 3/4 + 1)
t(9/4+3/4)

= t3,

y1(t) = −1

5
J0.75

(
t2ety0(t)

)
+ J0.75

(∫ t

0
etsy0(s)ds

)
= −1

5
J0.75

(
t2ety0(t)

)
+ J0.75

(∫ t

0
ets4ds

)
= −1

5
J0.75(t2ety0(t)) + J0.75(

1

5
ett5)

= −1

5
J0.75

(
t2ety0(t)

)
+

1

5
J0.75

(
ett2y0(t)

)
= 0,

.

.

.

yn(t) = 0.

Therefore, the obtained solution is

y(t) = t3.

Secondly, we apply the modified Laplace Adomian decomposition method

We apply the Laplace transform to both sides of (6.1)

L
[
cD0.75y(t)

]
= L

[
(− t

2et

5
)y(t)

]
+ L

[
6t2.25

Γ(3.25)

]
+ L

[∫ t

0
etsy(s)ds

]
.
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Using the property of Laplace transform and the initial condition (6.2), we get

s
3
4L [y(t)] = L

[
(− t

2et

5
)y(t)

]
+ L

[
6t2.25

Γ(3.25)

]
+ L

[∫ t

0
etsy(s)ds

]
,

and

L [y(t)] =
1

s
3
4

(
L
[
(− t

2et

5
)y(t)

]
+ L

[
6t2.25

Γ(3.25)

]
+ L

[∫ t

0
etsy(s)ds

])
.

Substituting (3.2) and (3.3) into the above equation, we have

L

[ ∞∑
n=0

yn(t)

]
=

1

s
3
4

L
[

6t2.25

Γ(3.25)

]
+

1

s
3
4

(
L

[
(− t

2et

5
)
∞∑
n=0

yn(t)

]
+ L

[∫ t

0
ets

∞∑
n=0

Ands

])
.

Match both side of above equation, we have the following relation:

L [y0(t)] =
1

s
3
4

L
[

6t2.25

Γ(3.25)

]
,

L [y1(t)] =
1

s
3
4

(
L
[
(− t

2et

5
)y0(t)

]
+ L

[∫ t

0
etsA0ds

])
,

.

.

.

L [yn+1(t)] =
1

s
3
4

(
L
[
(− t

2et

5
)yn(t)

]
+ L

[∫ t

0
etsAnds

])
.

Applying inverse Laplace transform to above equations we get

y0(t) = t3,

y1(t) = L−1

(
1

s
3
4

(
L
[
(− t

2et

5
)y0(t)

]
+

1

s
3
4

L
[∫ t

0
ets4ds

]))
,

= 0,

.

.

.

yn(t) = 0.

Therefore, the obtained solution is

y(t) = t3.
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7. Conclusion

The Adomian decomposition and modified Laplace Adomian decomposition meth-
ods are successfully applied to find the approximate solution of Volterra integro-
differential equation of fractional order. The reliability of the methods and reduc-
tion in the size of the computational work give these methods a wider applicability.
Also, the behavior of the solution can be formally determined by analytical approx-
imate. Moreover, we proved the convergence of the solutions. Finally, an example is
included to demonstrate the validity and applicability of the proposed techniques.
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proving this paper.
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