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Abstract. In this paper, two generalized contractive type mappings, namely
generalized weak contraction mapping and special-type weak contraction mapping
have been introduced. Existence of fixed points, coincidence points and common
fixed points for these type of mappings have been shown here. Examples and counter
examples have been cited in support of our theorems. Moreover, one of our fixed
point theorems is applied to homotopy theory.
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1. Introduction

The theory of fixed points has now been an emerging area in mathematics specially
in nonlinear functional analysis because of its wide applicability in various fields
of mathematics as well as physical science, life sciences, mathematical economics,
approximation theory, optimal control problems and the like. The field of the fixed
point theory as on today is vast and open to lots of techniques and ideas. Historically
after the initial jerk on the existence of fixed point of mappings by Brouwer [5]
and Schauder [10], a polish mathematician S. Banach [1] proved one of his first
remarkable theorem commonly known as Banach Contraction Principle Theorem.
Following this discovery a literature in fixed point theory, specially in a setting of
metric spaces had flooded by many workers who had successfully extended Banach
contraction principle theorem in many directions. Of late, V. Berinde has introduced
a generalized contractive mapping, namely weak contraction mapping (See [2]). This
mapping is so strong in nature that it generalizes not only just contraction map
but also Kannan maps, Chatterjee maps, Zamifirescu maps and also partially Ćirić
quasi contraction maps. Subsequently in 2008 V. Berinde has established a more
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generalized mapping, Ćirić almost contraction mapping [3], which generalizes the
aforesaid weak contraction maps and Ćirić quasi contraction maps. Also a special
contractive type mapping was introduced by him, namely φ−contraction or (φ,L)
weak contraction enabled to establish fixed point theorems using (c)−comparison
function (See [4]). Motivated by the background of these literatures and with one
of interesting works done by Saha and Baisnab [9], we now introduce here a class
of mappings namely (i) generalized weak contraction mappings and (ii) special-type
weak contraction mappings. It is to be noted that any weak contraction map is a
generalized weak contraction but the reverse implication is not necessarily true.

In the last century due to prolonged investigations on homotopy theory it is
revealed that recent trends towards research works promote contributions for pro-
viding connections between homotopy theory and a higher dimensional category
theory. Homotopy theory is a main part of algebraic topology which is used to
study topological objects upto homotopy equivalence. It is a fact that a fixed point
theory might be considered as perturbation stable whenever the theorems do hold
with respect to a mapping under consideration also hold with respect to small per-
turbation of data dependence mapping T . As a matter of fact that researchers are
paying more interests in establishing the validation of theorems for small perturba-
tion as well as for any deformation of the mapping T . In other words we are very
much interested to obtain theorems for a class of mappings T which remain valid
for another class of mappings that are homotopic to T . For detail one can refer the
literatures (See [6] and [11]).

In this paper we have been able to prove some fixed point theorems, coincidence
point theorems and common fixed point theorems for a class of mappings as dealt
by us. Examples and counter examples have been provided in strengthening of the
hypothesis of our theorems. Finally we have been able to show an application of our
fixed point theorem to homotopy theory.

2. Preliminaries

Before going to our main results we need some basic preliminaries.

Definition 1. [2] Let (X, d) be a metric space. A map T : X → X is called weak
contraction if there exists a constant δ ∈ (0, 1) and some L ≥ 0 such that

d(Tx, Ty) ≤ δ d(x, y) + L d(y, Tx) (1)

for all x, y ∈ X.

Theorem 1. [2] Let (X, d) be a complete metric space and T : X → X a weak
contraction i.e. a map satisfying (1) with δ ∈ (0, 1) and some L ≥ 0. Then
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1) F (T ) = {x ∈ X : Tx = x} 6= φ,
2) For any x0 ∈ X, the Picard iteration {xn}∞n=0 is given by xn = Txn−1 = Tnx0

converges to some x∗ ∈ F (T ),
3) The following estimates

d(xn, x
∗) ≤ δn

1− δ
d(x0, x1), n = 0, 1, 2, .... (2)

d(xn, x
∗) ≤ δ

1− δ
d(xn−1, xn), n = 1, 2, .... (3)

hold, where δ is the constant appearing in (1).

Theorem 2. [2] Let (X, d) be a complete metric space and T : X → X a weak
contraction for which there exists θ ∈ (0, 1) and some L1 ≥ 0 such that

d(Tx, Ty) ≤ θd(x, y) + L1 d(x, Tx) (4)

for all x ∈ X. Then
1) T has a unique fixed point i.e. F (T ) = {x∗},
2) The Picard iteration {xn}∞n=0 is given by xn = Txn−1 = Tnx0 converges to

x∗, for any x0 ∈ X,
3) Then a priori and a posteriori error estimates

d(xn, x
∗) ≤ δn

1− δ
d(x0, x1), n = 0, 1, 2, .... (5)

d(xn, x
∗) ≤ δ

1− δ
d(xn−1, xn), n = 1, 2, .... (6)

hold.
4) The rate of convergence of the Picard iteration is given by

d(xn, x
∗) ≤ θd(xn−1, x

∗), n = 1, 2, .... (7)

Example 1. [2] Let T : [0, 1] → [0, 1] be the identity map, i.e., Tx = x, for all
x ∈ [0, 1]. Then T is not a Ćirić quasi-contraction map but it is a weak contraction
map with δ ∈ (0, 1) arbitrary and L ≥ 1− δ. The set of fixed points of T is the entire
interval [0, 1] that is F (T ) = [0, 1].

Example 2. [2] Let T : [0, 1] → [0, 1] be given by Tx = 2
3 , for x ∈ [0, 1) and

T1 = 0. Then T is a weak contraction map with δ ≥ 2
3 and L ≥ δ. Also T is a Ćirić

quasi-contraction map for h ∈ [23 , 1).

Definition 2. [7] A mapping T : (M,d)→ (M,d) is said to be orbitally continuous
if u ∈M and such that u = limi→∞ T

nix for some x ∈M, then Tu = limi→∞ TT
nix.
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3. Main Results

Now as a generalization of Berinde’s weak contraction map here we introduce a class
of generalized contractive mappings.

3.1. Generalized weak contraction map and fixed point theorems

Definition 3. Let (X, d) be a metric space. Then a mapping T : X → X is
said to be a generalized weak contraction mapping if there exists three functions
a, b, δ : X ×X → [0,∞) satisfying 0 < a(x, y) < 1 for all x, y ∈ X such that

d(Tnx, Tny) ≤ a(x, y)nδ(x, y) + b(x, y)
n∑

m=1

a(x, y)n−md(Tm−1y, Tmx) (8)

∀x, y ∈ X and ∀n ∈ N.

Due to the symmetry of distance function we also have the following

d(Tnx, Tny) ≤ a(y, x)nδ(y, x) + b(y, x)
n∑

m=1

a(y, x)n−md(Tm−1x, Tmy) (9)

∀x, y ∈ X and ∀n ∈ N.

Theorem 3. Let (X, d) be a complete metric space and suppose that T : X → X
be a generalized weak contraction mapping. If T is orbitally continuous then it has
atleast one fixed point in X. Furthermore if 0 < a(x, y)+b(x, y) < 1 for all x, y ∈ X
then the fixed point of T is also unique.

Proof. Let x0 ∈ X. We construct the sequence {xn} in X by xn = Txn−1 = Tnx0
for all n ∈ N. Then we get,

d(Tnx0, T
n+1x0) ≤ a(x0, Tx0)

nδ(x0, Tx0)

+b(x0, Tx0)
n∑

m=1

a(x0, Tx0)
n−md(Tm−1(Tx0), T

mx0)

= a(x0, Tx0)
nδ(x0, Tx0) ∀n ∈ N. (10)
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For n ∈ N and for p ≥ 1 we get,

d(Tnx0, T
n+px0)

≤ d(Tnx0, T
n+1x0) + d(Tn+1x0, T

n+2x0) + ...

+d(Tn+p−1x0, T
n+px0)

≤ [a(x0, Tx0)
n + a(x0, Tx0)

n+1 + ...+ a(x0, Tx0)
n+p−1]δ(x0, Tx0)

= a(x0, Tx0)
n 1− a(x0, Tx0)

p

1− a(x0, Tx0)
δ(x0, Tx0)

≤ a(x0, Tx0)
n

1− a(x0, Tx0)
δ(x0, Tx0). (11)

Hence for any p ≥ 1, d(xn, xn+p) → 0 as n → ∞ and therefore {xn = Tnx0} is
Cauchy in (X, d). Since X is complete then there exists a z ∈ X such that xn → z
as n → ∞. Since T is orbitally continuous in X and Tnx0 → z as n → ∞ so we
have Tn+1x0 → Tz as n→∞. It follows that Tz = z. Hence z is a fixed point of T.

Now if 0 < a(x, y)+b(x, y) < 1 for all x, y ∈ X then we show that this fixed point
is unique. Let z1 and z2 be two fixed points of T then Tz1 = z1 and also Tz2 = z2,
which in turn implies that Tnz1 = z1 and Tnz2 = z2 for all n ∈ N. Therefore,

d(z1, z2) = d(Tnz1, T
nz2)

≤ a(z1, z2)
nδ(z1, z2)

+b(z1, z2)
n∑

m=1

a(z1, z2)
n−md(Tm−1z2, T

mz1)

= a(z1, z2)
nδ(z1, z2) + b(z1, z2)[

n∑
m=1

a(z1, z2)
n−m]d(z1, z2)

= a(z1, z2)
nδ(z1, z2) + b(z1, z2)

1− a(z1, z2)
n

1− a(z1, z2)
d(z1, z2)

< a(z1, z2)
nδ(z1, z2) +

b(z1, z2)

1− a(z1, z2)
d(z1, z2). (12)

Now since 0 < a(z1, z2)+b(z1, z2) < 1 then [1− b(z1,z2)
1−a(z1,z2) ]d(z1, z2) ≤ a(z1, z2)

nδ(z1, z2),

implying that d(z1, z2) ≤ 1−a(z1,z2)
1−(a(z1,z2)+b(z1,z2))

a(z1, z2)
nδ(z1, z2)→ 0 as n→∞. There-

fore d(z1, z2) = 0 i.e. z1 = z2 and hence T has a unique fixed point in X.

Remark 1. If we consider a(x, y) + b(x, y) ≥ 1 for a mapping T : X → X that
satisfies (8), then we see that T does not admit a unique fixed point in X. The
following is the example of justification to our statement.
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Example 3. Let (X, d) be a metric space with more than one point and T : X → X
be the identity mapping on X. Let us choose a, b : X ×X → X by a(x, y) = 1

2 and
b(x, y) = 1

2 for all x, y ∈ X and δ : X ×X → X by δ(x, y) = d(x, y) ∀x, y ∈ X then

d(Tnx, Tny) = d(x, y) ≤ a(x, y)nd(x, y) + b(x, y)
n∑

m=1

a(x, y)n−md(x, y)

= a(x, y)nδ(x, y) + b(x, y)

n∑
m=1

a(x, y)n−md(Tm−1y, Tmx)

for all x, y ∈ X and n ∈ N. So T is a generalized weak contraction mapping. Here
a(x, y) + b(x, y) = 1 and we see that T has more than one fixed points in X.

It is to be noted that the conditions used in Theorem 3 are just sufficient. For
its justification we cite the following examples.

Example 4. Let X = R be the metric space with usual metric. Let Y = {0, 12 ,
1
22
, ...}

⊂ X. Also let T : Y → Y be defined by

T (x) =

{
1
2 , x ∈ {0, 12}
1

2k+1 , x ∈ { 1
2k

: k ≥ 2}
(13)

Now let us choose x0 = 1
4 . Then the sequence {Tnx0} converges to 0 as n → ∞

but T (Tnx0) → 0 6= 1
2 = T0 as n → ∞. So T is not orbitally continuous in Y. Let

us take δ : Y × Y → Y by δ(x, y) = 1 + x + y for all x, y ∈ Y , a(x, y) = 1
2 and

b(x, y) = 1 ∀x, y ∈ Y. By routine verification it can be seen that T is a generalized
weak contraction mapping. Also we see that 1

2 is the unique fixed point of T in Y .
Here a(x, y) + b(x, y) = 1

2 + 1 = 3
2 > 1 for all x, y ∈ Y.

Remark 2. If in Example 3, X is assumed to be an incomplete metric space then
T also admit a fixed point in X.

Remark 3. Any Berinde weak contraction (contractive condition (1)) is orbitally
continuous in X.

In fact if T is a weak contraction map such that for some y ∈ X, Tniy → u as
i→∞, where u ∈ X and {ni}i∈N is a subsequence in X, then

d(Tni+1y, Tu) ≤ δd(Tniy, u) + Ld(u, Tni+1y)

≤ δd(Tniy, u) + L[d(u, Tniy) + d(Tniy, Tni+1y)] (14)

Now for any n ∈ N and for any x ∈ X we have d(Tnx, Tn+1x) ≤ δnd(x, Tx). Ther-
fore from (14) we get, d(Tni+1y, Tu) ≤ d(Tniy, u) +Ld(u, Tniy) +Lδnid(y, Ty)→ 0
as n→∞. So TTniy → Tu as i→∞. Hence T is orbitally continuous in X.
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Corollary 4. Let (X, d) be a complete metric space and T : X → X be a weak
contraction i.e. a map satisfying

d(Tx, Ty) ≤ δ d(x, y) + L d(y, Tx) (15)

for all x, y ∈ X, where δ ∈ (0, 1) and L ≥ 0. Then T has atleast one fixed point in
X.

Proof. Given that T satisfies the relation (15). Then for any x, y ∈ X we have,

d(T 2x, T 2y) ≤ δ d(Tx, Ty) + L d(Ty, T 2x)

≤ δ[δ d(x, y) + L d(y, Tx)] + L d(Ty, T 2x)

= δ2 d(x, y) + L[d(Ty, T 2x) + δ d(y, Tx)] (16)

and also

d(T 3x, T 3y) ≤ δ d(T 2x, T 2y) + L d(T 2y, T 3x)

≤ δ[δ2 d(x, y) + L{d(Ty, T 2x) + δ d(y, Tx)}] + L d(T 2y, T 3x)

= δ3 d(x, y) + L[d(T 2y, T 3x) + δ d(Ty, T 2x) + δ2 d(y, Tx)] (17)

Proceeding in this way we get,

d(Tnx, Tny) ≤ δnd(x, y) + L

n∑
m=1

δn−md(Tm−1y, Tmx) ∀x, y ∈ X,∀n ∈ N. (18)

Therefore T is a generalized weak contraction mapping for δ(x, y) = d(x, y), a(x, y) =
δ and b(x, y) = L ∀x, y ∈ X. Also T is orbitally continuous in X. By Theorem 3 T
has atleast one fixed point in X.

Remark 4. Any Banach contraction map, Kannan contractive map, Chatterjee type
map and Zamfirescu mapping are of Berinde type weak contraction (See [2]) so they
are also generalized weak contraction mapping and therefore they have atleast one
fixed point in a complete metric space X.

Also a Ćirić contraction map or quasi contraction map is a weak contraction
for Lipschitz constant α ∈ (0, 12) (See [2]). So any quasi contraction map (with the
constant 0 < α < 1

2) is also a generalized weak contraction mapping and thus it has
atleast one fixed point in a complete metric space X.

Note 1. Any generalized weak contraction map may not be a weak contraction map.
The following example is given for its justification.

Remark 5. The mapping cited in Example 4 is a generalized weak contraction map
but not a weak contraction mapping since it is not orbitally continuous in X.
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Theorem 5. Let (X, d) be a complete metric space. Suppose that T, S : X → X are
two mappings satisfying the following conditions:

(i) d(Tnx, Sny)

≤ a(x, y)n−1δ(x, y)

+b(x, y) min(
n−1∑
m=1

a(x, y)n−m−1d(Smy, Tm+1x),
n−1∑
m=1

a(x, y)n−m−1d(Tmx, Sm+1y))

(19)

for all x, y ∈ X and for all n ≥ 2, where δ(x, y), b(x, y) are non-negative reals and
0 < a(x, y) < 1 ∀ x, y ∈ X,

(ii) Tnx0 = Snx0 for all n ≥ 2, for some x0 ∈ X and
(iii) T and S both are orbitally continuous in X.

Then T and S have atleast one common fixed point in X. Moreover if a(x, y) +
b(x, y) < 1 for all x, y ∈ X then the fixed point is also unique.

Proof. Let us consider the sequence {xn} in X defined by xn = Tnx0 if n is even
and xn = Snx0 if n is odd. Then for n ∈ N we have,

d(x2n, x2n+1) = d(T 2nx0, S
2n+1x0)

≤ a(x0, Sx0)
2n−1δ(x0, Sx0)

+b(x0, Sx0) min(
2n−1∑
m=1

a(x0, Sx0)
2n−m−1d(Sm+1x0, T

m+1x0),

2n−1∑
m=1

a(x0, Sx0)
2n−m−1d(Sm+2x0, T

mx0))

= a(x0, Sx0)
2n−1δ(x0, Sx0) (20)

and also for n ≥ 2,

d(x2n−1, x2n) = d(T 2nx0, S
2n−1x0)

≤ a(Tx0, x0)
2n−2δ(Tx0, x0)

+b(Tx0, x0) min(

2n−2∑
m=1

a(Tx0, x0)
2n−m−2d(Smx0, T

m+2x0),

2n−2∑
m=1

a(Tx0, x0)
2n−m−2d(Sm+1x0, T

m+1x0))

= a(Tx0, x0)
2n−2δ(Tx0, x0) (21)
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So from (20) and (21) we have, for all n ≥ 2

d(xn, xn+1) ≤ a(x0, Sx0)
n−1δ(x0, Sx0) + a(Tx0, x0)

n−1δ(Tx0, x0) (22)

Then by a routine verification we see that {xn} is a Cauchy sequence in X, since
X is complete so there exists z ∈ X such that {xn} converges to z. Therefore
T 2nx0 → z and S2n−1x0 → z as n → ∞. Now since T is orbitally continuous in X
so S2n+1x0 = T 2n+1x0 → Tz as n→∞. Therefore Tz = z. Similarly we get Sz = z.
Hence z is a common fixed point of T and S in X.
Moreover if a(x, y) + b(x, y) < 1 for all x, y ∈ X then we prove that this fixed point
is unique.

Let, w be another common fixed point of T and S in X. Then Tw = Sw = w.
Therefore for all n ≥ 2,

d(z, w) = d(Tnz, Snw)

≤ a(z, w)n−1δ(z, w) + b(z, w) min(

n−1∑
m=1

a(z, w)n−m−1d(Smw, Tm+1z),

n−1∑
m=1

a(z, w)n−m−1d(Sm+1w, Tmz))

= a(z, w)n−1δ(z, w) + b(z, w)
n−1∑
m=1

a(z, w)n−m−1d(z, w)

= a(z, w)n−1δ(z, w) + b(z, w)
1− a(z, w)n

1− a(z, w)
d(z, w)

≤ a(z, w)n−1δ(z, w) +
b(z, w)

1− a(z, w)
d(z, w) (23)

Thus d(z, w) ≤ 1−a(z,w)
1−a(z,w)−b(z,w)a(z, w)n−1δ(z, w) → 0 as n → ∞, which implies that

d(z, w) = 0 that is z = w. Therefore T and S have a unique common fixed point in
X.

3.2. Special-type weak contraction map and fixed point theorems

Definition 4. A self mapping T over a metric space (X, d) is said to be a special-
type weak contraction if it satisfies the condition

d(Tx, Ty) ≤ a d(x, y) + L d(y, Tx)d(x, Ty) ∀ x, y ∈ X (24)

where a ∈ (0, 1) and L ≥ 0.

9
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Theorem 6. Let (X, d) be a complete metric space and T : X → X be a special-type
weak contraction. Then T has atleast one fixed point in X. Moreover if L > 0 and
diam(X) < 1−a

L then T has exactly one fixed point in X.

Proof. Let x0 ∈ X and we construct the Picard iterative sequence {xn} in X by
xn = Txn−1 = Tnx0 for all n ∈ N.

Then, d(xn, xn+1) = d(Txn−1, Txn) ≤ a d(xn−1, xn)+L d(xn, Txn−1)d(xn−1, Txn)
= a d(xn−1, xn) for all n ∈ N. So {xn} is Cauchy sequence in X, since X is complete
so there exists z ∈ X such that xn → z as n→∞. Now,

d(Tn+1x0, T z)

≤ a d(Tnx0, z) + L d(z, Tn+1x0)d(Tnx0, T z)

≤ a d(Tnx0, z) + L d(z, Tn+1x0)[d(Tnx0, z) + d(z, Tz)]

= a d(Tnx0, z) + L d(z, Tn+1x0)d(Tnx0, z) + Ld(z, Tz)d(z, Tn+1x0)

Then d(Tn+1x0, T z)→ 0 as n→∞. Therefore by taking n→∞ we have d(z, Tz) ≤
d(z, Tn+1x0) + d(Tn+1x0, T z)→ 0. Thus d(z, Tz) = 0 implying that Tz = z. Hence
T has a fixed point in X.

Now let us assume that L > 0 and diam(X) < 1−a
L . Suppose z1, z2 be two

distinct fixed points of T then we get

d(z1, z2) = d(Tz1, T z2) ≤ a d(z1, z2) + L d(z2, T z1)d(z1, T z2)

= a d(z1, z2) + L d(z1, z2)
2

Hence d(z1, z2) ≥ 1−a
L , a contradiction that diam(X) < 1−a

L . Therefore T has a
unique fixed point in X.

Remark 6. Let (X, d) be a metric space and T : X → X be a contraction map,
then T is also a special-type weak contraction map. Now any contraction map is
continuous but there are discontinuous maps which are special-type weak contraction.
See the following example.

Example 5. Let X = [0, 1] with usual metric on R. Let T : X → X be given by

Tx =

{
x
3 , x ∈ [0, 23 ]
1
3 , x ∈ (23 , 1]

(25)

Also let us take a = 2
3 and L = 3

4 . Then T is a special-type weak contraction. We
see that 0 is the fixed point of T in X.

Note 2. There are mappings which satisfy neither Ćirić’s contractive condition, nor
Banach, Kannan, Chatterjea and Zamifiresu contractive conditions but is a special-
type weak contraction mapping. Example 6 supports our proposition.
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Example 6. Let X = [0, 1] be the usual metric space and T : X → X be given by

Tx =

{
1
2 , x ∈ [0, 23)

1, x ∈ [23 , 1]
(26)

Then T is a special-type contraction for any constant a ∈ (0, 1) and for the constant
L ≥ 9 but it satisfies neither Ćirić’s contractive condition, nor Banach, Kannan,
Chatterjea and Zamifiresu contractive conditions.

Example 7. There are mappings which are Berinde weak contraction but not a
special-type weak contraction. Let X = R be the metric space with usual metric and
T : X → X be the identity mapping, then it is a Berinde weak contraction. If T is
a special type weak contraction then there exists a ∈ (0, 1) and L > 0 such that

d(Tx, Ty) ≤ a d(x, y) + L d(y, Tx)d(x, Ty) ∀ x, y ∈ X

Now if x 6= y then d(x, y) ≤ a d(x, y)+L d(x, y)2 implying that d(x, y) ≥ 1−a
L , which

is not true. So T can not be a special-type weak contraction.

Note 3. If (X, d) be a metric space such that sup{d(x, y) : x ∈ X, y ∈ T (X)} ≤ 1
then clearly any special-type weak contraction is also a weak contraction.

Example 8. The condition that X is complete in Theorem 6 is just sufficient. If
we take X = (0, 1] with usual metric and T : X → X by

Tx =

{
1
2 , x ∈ (0, 23)

1, x ∈ [23 , 1]
(27)

Then T is a special-type weak contraction for any constant 0 < a < 1 and for the
constant L ≥ 9 and has two fixed points 1

2 , 1. Here we see that X is not complete.

Example 9. The condition that diam(X) < 1−a
L is sufficient for the existence of

unique fixed point of a special-type weak contraction mapping. In Example 5 we see

that T has a unique fixed point in X, though diam(X) ≮ 1− 2
3

3
4

= 4
9 .

Theorem 7. Let (X, d) be a complete metric space and f be a continuous mapping
on X. Let g : X → X be a mapping which commutes with f , satisfies g(X) ⊂ f(X)
and

d(gx, gy) ≤ a d(fx, fy) + L d(fx, gy)d(fy, gx) ∀x, y ∈ X (28)

where 0 < a < 1 and L ≥ 0. Then f and g have atleast one coincidence point in X.
Moreover if L > 0 and diam(X) < 1−a

L then f, g have a unique common fixed point
in X.

11
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Proof. Let x0 ∈ X be fixed. Then gx0 ∈ g(X) ⊂ f(X). So there exists x1 ∈ X such
that gx0 = fx1. Proceeding in a similar way we can construct a sequence {yn} by
yn = gxn−1 = fxn for all n ≥ 1. Now,

d(yn, yn+1) = d(gxn−1, gxn) ≤ a d(fxn−1, fxn) + L d(fxn−1, gxn)d(fxn, gxn−1)

= a d(yn−1, yn) ∀n ∈ N

Therefore {yn} is a Cauchy sequence in X. Since X is complete so there exists z ∈ X
such that {yn} converges to z. As f is continuous in X so fyn → fz as n → ∞.
Now, gyn−1 = gfxn−1 = fgxn−1 = fyn → fz as n→∞. Then,

d(gyn, gz) ≤ a d(fyn, fz) + L d(fyn, gz)d(fz, gyn)

≤ a d(fyn, fz) + L [d(fyn, fz) + d(fz, gz)]d(fz, gyn)

= a d(fyn, fz) + L d(fyn, fz)d(fz, gyn) + L d(fz, gz)]d(fz, gyn)

Hence we get gyn → gz as n→∞ and therefore we get fz = gz showing that f and
g have a coincidence point in X.
Now let, L > 0 and diam(X) < 1−a

L . Then,

d(g2z, gz) ≤ a d(fgz, fz) + L d(fgz, gz)d(fz, g2z)

= a d(g2z, gz) + L d(g2z, gz)2

Now if g2z 6= gz then d(g2z, gz) ≥ 1−a
L , a contradiction to the fact that diam(X) <

1−a
L . So g2z = gz. Therefore f(gz) = g(gz) = gz. Thus gz is a common fixed point of
f, g. Now let z1, z2 be two distinct common fixed points of f and g. Then proceeding
in the same way as above we get d(z1, z2) ≥ 1−a

L , which leads to a contradiction.
Therefore f and g have a unique common fixed point in X.

Remark 7. Any two mappings f and g satisfying Jungck’s contrctive condition [8]
also satisfy the contractive condition due to Theorem 7.

The conditions used in Theorem 7 are just sufficient. For its justification we cite
the following examples.

Example 10. Let X = [0, 1] with usual metric and g, f : X → X be defined by

g(x) =

{
1
4 , x ∈ [0, 23 ]

1, x ∈ (23 , 1]
, f(x) =

{
x, x ∈ [0, 23 ]

1, x ∈ (23 , 1]
(29)

Then f and g commute with g(X) ⊂ f(X). Also they satisfy the contractive con-
dition of Theorem 7 for a = 1

4 and L = 3. We also see that the set of coincidence
points of f and g is {14} ∪ (23 , 1]. But here f is not continuous at x = 2

3 .

12
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Example 11. Let us take X = [0, 1] with usual metric on R and f, g : X → X be
defined by

g(x) =

{
1
4 , x ∈ [0, 23 ]
1
2 , x ∈ (23 , 1]

, f(x) =
x

2
∀x ∈ [0, 1] (30)

Then g(X) ⊂ f(X) and satisfy the condition (28) for the constant L = 18 and for
any constant a ∈ (0, 1). Also f is continuous. Here 1

2 , 1 are the coincidence points
of f and g in X though f and g do not commute.

Example 12. Let X = [0, 1] with usual metric of R and g, f : X → X be defined by

g(x) =

{
1
4 , x ∈ [0, 23 ]

1, x ∈ (23 , 1]
, f(x) =

{
x
2 , x ∈ [0, 23 ]

x, x ∈ (23 , 1]
(31)

Then g(X) ⊂ f(X) and f and g satisfy the contractive condition (28) for the con-
stant L = 9 and for any constant a ∈ (0, 1), also 1

2 , 1 are the coincidence points of
f and g. But here neither f and g commute nor f is continuous.

Example 13. Let us take X = [0, 1) with usual metric and f, g : X → X are defined
by fx = x

2 and gx = x
4 for all x ∈ X. Then f and g satisfy all the conditions of

Theorem 7 without being X is complete but 0 is the unique coincidence point of f
and g in X.

Example 14. Let X = [0, 1] be the metric space with usual metric in R and f, g :
X → X be defined by fx = x

2 and gx = x
6 ∀x ∈ X. Then f and g satisfy the

contractive condition due to Theorem 7 for a = 1
3 and for L = 1. Here f, g have a

unique common fixed point in X but diam(X) ≮ 1
3 .

Theorem 8. Let (X, d) be a complete metric space and T, S : X → X be two
mappings satisfying

d(Tx, Sy) ≤ a d(x, y) + L d(x, Sy)d(y, Tx) ∀x, y ∈ X (32)

where a ∈ (0, 1) and L ≥ 0. Then T and S have atleast one common fixed point in
X. Moreover if diam(X) < 1−a

L then they have a unique common fixed point in X.

Proof. let x0 ∈ X and let us construct the sequence {xn} in X by x2n = Sx2n−1 for
all n ∈ N and x2n+1 = Tx2n ∀ n ≥ 0. Then

d(x2n, x2n+1) = d(Tx2n, Sx2n−1)

≤ a d(x2n, x2n−1) + L d(x2n, Sx2n−1)d(x2n−1, Tx2n)

= a d(x2n, x2n−1) ∀ n ≥ 1

13
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and also,

d(x2n+1, x2n+2) = d(Tx2n, Sx2n+1)

≤ a d(x2n, x2n+1) + L d(x2n, Sx2n+1)d(x2n+1, Tx2n)

= a d(x2n, x2n+1) ∀ n ≥ 1

Therefore d(xn, xn+1) ≤ d(xn−1, xn) for all n ∈ N. So {xn} is Cauchy sequence in X.
Since X is complete then there exists z ∈ X such that xn → z as n→∞. Therefore
Tx2n → z and Sx2n−1 → z as n→∞. Now,

d(Tx2n, Sz) ≤ a d(x2n, z) + L d(x2n, Sz)d(z, Tx2n)

≤ a d(x2n, z) + L d(z, Tx2n)[d(x2n, z) + d(z, Sz)]

= a d(x2n, z) + L d(z, x2n+1)d(x2n, z) + L d(z, x2n+1)d(z, Sz)

So Tx2n → Sz as n→∞ and therefore Sz = z. Similarly we have Tz = z. Therefore
z is a common fixed point of T, S.

Now let diam(X) < 1−a
L and u, v be two distinct common fixed points of T and

S. By a routine calculation we get d(u, v) ≥ 1−a
L , a contradiction. Thus T and S

have a unique common fixed point in X.

4. Application of fixed point theorem to homotopy theory

In this section, we obtain a homotopy result as an application of Theorem 6. First
we give the definition of homotopy between two functions.

Definition 5. [11] Let X,Y be two topological spaces, and let G,S : X → Y be
two continuous mappings. Then, a homotopy from G to S is a continuous function
H : X × [0, 1]→ Y such that H(x, 0) = Gx and H(x, 1) = Sx, for all x ∈ X. Also,
G and S are called homotopic mappings.

Theorem 9. Let (X, d) be a complete metric space and U be an open and V be a
closed subset of X with U ⊂ V .

Let the operator H : V × [0, 1]→ X satisfies the following conditions:
a) x 6= H(x, t) for every x ∈ V \U and for any t ∈ [0, 1],
b) d(H(x, t), H(y, t)) ≤ ad(x, y)+Ld(y,H(x, t))d(x,H(y, t)) for all x, y ∈ V and

for any t ∈ [0, 1], where a ∈ (0, 1) and L ≥ 0,
c) There exists a continuous function g : [0, 1]→ R such that d(H(x, t), H(x, s)) ≤

|g(t)− g(s)| for all t, s ∈ [0, 1] and for every x ∈ V ,
d) supx,y∈V ,t∈[0,1] d(x,H(y, t)) < 1−a

L .
Then H(., 0) has a fixed point if and only if H(., 1) has a fixed point.

14
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Proof. Let us define the set G = {t ∈ [0, 1] : H(., t) has a fixed point in U }. Also
let us assume that H(., 0) has a fixed point. Since the condition (a) holds then there
exists x ∈ U such that H(x, 0) = x. Therefore 0 ∈ G and hence G is a non-empty
subset of [0, 1]. We just want to show that G is a clopen subset of [0, 1]. Hence from
the connectedness of [0, 1] it will readily follow that G = [0, 1].

First we show that G is open. let t0 ∈ G. Then there exists x0 ∈ U such that
H(x0, t0) = x0. Now since U is open so there exists r > 0 such that B(x0, r) ⊂ U. Let
us take 0 < ε ≤ rL[1−aL −sup

x∈B(x0,r)
d(x0, H(x, t0))]. Since g is continuous therefore

there exists δ(ε) > 0 such that |g(t)− g(t0)| < ε whenever t ∈ (t0− δ(ε), t0 + δ(ε)) ⊂
[0, 1]. Now let x ∈ B(x0, r) then

d(H(x, t), x0) = d(H(x, t), H(x0, t0))

≤ d(H(x, t), H(x, t0)) + d(H(x, t0), H(x0, t0))

≤ |g(t)− g(t0)|+ ad(x, x0) + Ld(x,H(x0, t0))d(x0, H(x, t0))

= |g(t)− g(t0)|+ [a+ Ld(x0, H(x, t0))]d(x, x0)

≤ ε+ (1− ε

r
)r = r, (33)

whenever t ∈ (t0 − δ(ε), t0 + δ(ε)) ⊂ [0, 1]. Therefore for every fixed t ∈ (t0 −
δ(ε), t0 +δ(ε)) H(., t) is a self mapping on B(x0, r). Now since H(., t) satisfies all the
conditions of Theorem 6, we have H(., t) has a fixed point in B(x0, r) ⊂ V, but it
must be in U as condition (a) holds. Therefore t ∈ G for every t ∈ (t0−δ(ε), t0+δ(ε)).
Hence (t0 − δ(ε), t0 + δ(ε)) ⊂ G. So G is open in [0, 1].

Now we will show that G is closed also. Let {tn} ⊂ G be such that tn → t∗ ∈ [0, 1]
as n → ∞. Then there exists xn ∈ U such that xn = H(xn, tn) for all n ∈ N.
Moreover we have,

d(xn, xm) = d(H(xn, tn), H(xm, tm))

≤ d(H(xn, tn), H(xn, tm)) + d(H(xn, tm), H(xm, tm))

≤ |g(tn)− g(tm)|+ ad(xn, xm) + Ld(xn, H(xm, tm))d(xm, H(xn, tm))

= |g(tn)− g(tm)|+ d(xn, xm)[Ld(xm, H(xn, tm)) + a], (34)

which implies that d(xn, xm) ≤ [1−a−L supx,y∈V ,t∈[0,1] d(x,H(y, t))]−1|g(tn)−g(tm)|
for any n,m ∈ N. So taking n,m → ∞ we see that {xn} is Cauchy in X. Since X
is complete then there exists x∗ ∈ V such that xn → x∗ as n → ∞. We just show
that H(x∗, t∗) = x∗. Now,

d(xn, H(x∗, t∗)) = d(H(xn, tn), H(x∗, t∗))

≤ d(H(xn, tn), H(xn, t
∗)) + d(H(xn, t

∗), H(x∗, t∗))

≤ |g(tn)− g(t∗)|+ ad(xn, x
∗) + Ld(xn, H(x∗, t∗))d(x∗, H(xn, t

∗)),

(35)
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implying that d(xn, H(x∗, t∗)) ≤ [1 − a − L supx,y∈V d(x,H(y, t∗))]−1|g(tn) − g(t∗)|
for all n ≥ 1. Taking n→∞ we get xn → H(x∗, t∗) and thus H(x∗, t∗) = x∗. Hence
x∗ ∈ U and we have t∗ ∈ G. Thus G is closed and hence G = [0, 1]. So from the
construction of G we can say that H(., 1) has also a fixed point in X.
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