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A NOTE ON HYPERELASTIC CURVES

G. Özkan Tükel, R. Huang and A. Yücesan

Abstract. We study a constrained variational problem whose solutions are
called hyperelastic curves. We derive a differential equation for critical points of the
hyperelastic curvature energy action in 2−dimensional null cone and we completely
solve this equation. Finally, we construct some coordinate systems and express
hyperelastic curves in the null cone.
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1. Introduction

Elastic curve or elastica determined by Euler in 1744 is extremal of the bending
energy functional

∫ (
κ2 + λ

)
ds, where κ and λ are respectively the curvature of a

curve and the Lagrange multiplier, acting on suitable space of curves [6, 10]. Over
the last two decades, this curve model has been studied and developed by many
authors. In particular, the method presented by Langer and Singer [6] is a very
useful method for studying and classifying elastic curves. Using their approach,
elastic curve has been generalized in various ways. One of these generalizations is
hyperelastic curve (or known r−elastic curve). The hyperelastic curve is defined
as a critical point of the functional

∫
(κr + λ) ds for any natural number r ≥ 2,

if λ = 0, then the critical point is called free hyperelastic curve [1, 2]. The (free)
hyperelastic curve has been employed to furnish reduction methods in constructing
Chen-Willmore submanifolds (see for detail information [1, 2, 3, 4].

Elastic curves and some generalization of elastic curves have been considered in
non-Euclidean spaces. For example, the authors in [11] studied elastic curves in a
2−dimensional null cone. However, there are no articles in the literature about the
generalization of elastic curves in the null cone. Therefore, the main purpose of this
paper is to examine hyperelastic curves as a generalization of elastic curves in the
2−dimensional null cone. In accordance with this purpose, we present the variational
problem associated with the cone curvature energy functional in the null cone. Then,
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we derive the Euler-Lagrange equation for hyperelastic curve in the null cone and
completely solve the differential equation by quadratures. Therefore, we find a
Killing vector field along the critical curve. Finally, using the constructed Killing
vector field, we seek solutions of the derivative equations of asymptotic orthonormal
frame field according to choosing different coordinates in the null cone.

2. Geometrical Set up

In this section we give some explanatory materials including short information about
frame fields of curves in a 2−dimensional null cone Q2 in Minkowski 3−space R3

1.
Minkowski 3−space R3

1 is the metric space equipped with Minkowski metric given
by 〈u, v〉 = u1v1 + u2v2 − u3v3 for vectors u = (u1, u2, u3) and v = (v1, v2, v3) in
Euclidean 3−space R3. Because of the structure of Minkowski metric, a vector u in
R3
1 is said a spacelike vector if 〈u, u〉 > 0 (or u = 0), a timelike vector if 〈u, u〉 < 0

and a null (or lightlike) vector if 〈u, u〉 = 0 and u 6= 0. In relation to this case,
a smooth curve in R3

1 is a spacelike (resp., timelike and lightlike), if its velocity
vector is a spacelike (resp., timelike and lightlike). On the other hand, a surface in
R3
1 is non-degenerate (or degenerate) if induced metric on its tangent plane is non-

degenerate (or degenerate). We will deal with a 2−dimensional null cone, which is
a degenerate surface in Minkowski 3−space R3

1. The 2−dimensional null cone of R3
1

is the set of all null vectors of R3
1 is given by

Q2 = Q2
1(0) = {u ∈ R3

1 : 〈u, u〉 = 0} − {(0, 0, 0)} .

As is well known, all curves in a 2−dimensional null cone Q2 are spacelike [7, 8, 9].
Let γ be a spacelike curve in a 2−dimensional null cone Q2. If we take the arc

length parameter s of the curve γ as the parameter, then we have the spacelike unit
tangent vector field T (s) = γ′(s) = dγ(s)

ds . Now we can choose the normal vector
field N(s) satisfying the following conditions

〈γ(s), N(s)〉 = 1, 〈N(s), N(s)〉 = 〈T (s), N(s)〉 = 0. (2.1)

Then, we can find N(s) = −γ′′(s) − 1
2 < γ

′′
(s), γ

′′
(s) > γ(s). The frame field

{γ, T,N} is called an asymptotic orthonormal frame field along the curve γ in Q2.
Derivative equations of the asymptotic orthonormal frame field are given by

γ′(s) = T (s),
T ′(s) = κ(s)γ(s)−N(s),
N ′(s) = −κ(s)T (s)

(2.2)

where κ(s) = −1
2〈γ
′′(s), γ′′(s)〉 is the cone curvature function [7].
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Let γ(t) : I → Q2 be a spacelike curve in the null cone Q2 parametrized by an
arbitrary parameter t. V = V (t) will denote the tangent vector field to γ, T the

unit tangent vector field and v the speed v(t) = ‖V (t)‖ =< V (t), V (t) >
1
2 . Now, we

will also denote by γ a variation

γ : (−ε, ε)× I → Q2

(w, t) −→ γ(w, t) = γw(t)
(2.3)

with γ(0, t) = γ(t). Associated with such a variation is the variation vector field W =
W (t) = ( ∂γ∂w )(0, t) along the curve γ. We can write V = V (w, t) = (∂γ/∂t)(w, t),
W = W (w, t) = (∂γ/∂w)(w, t), T = T (w, t), v = v(w, t), etc. with the obvious
meaning. Then we can write γ(s), κ(w, s), V (s) etc. for the arc length parameter
s, where s ∈ [0, `] and ` is the arc length of γ.

By a direct computation, we have the following lemma (similar to that of [6]).
Lemma 1. Let γ be a reparametrized curve with arc length s, 0 ≤ s ≤ `, in a

2−dimensional null cone Q2 and γw be a variation with a variation vector field W.
Then the following formulas are satisfied:

i) < W, γ >= 0,
ii) [V,W ] = 0,
iii) W (v) =< Ws, T > υ,
iv) [W,T ] = − < Ws, T > T,
iv) W (κ) = −4 < Ws, T > κ− < Wss, κγ −N > .

3. The Euler-Lagrange Equation Characterizing Hyperelastic Curve

We will now give that how to find hyperelastic curve between spacelike curves in a
2−dimensional null cone Q2. For this purpose, we first consider the family of C∞

spacelike curves as follows

Lv0,v1 = {γ| γ : [0, `]→ Q2

γ (i`) = pi, pi ∈ Q2, γ′ (i`) = vi,
vi ∈ TpiQ2, ‖γ′‖ = 1, i = 0, 1}.

Therefore a hyperelastic curve is a critical point of the following functional

Fλ : Lv0,v1 → [0,∞)

γ → Fλ (γ) =
∫̀
0

(κr + λ) ds,
(3.1)

where λ is the Lagrange multiplier.
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We suppose that γ is an extremal of the functional Fλ. Since W is a variation
vector field along γ, we have

∂Fλ(W ) =
d

dw
Fλ(γw)|w=0 = 0,

that is

0 =
∫̀
0

(
rκr−1 (−4 < Ws, T > κ− < Wss, κγ −N >)

+ (κr + λ) < Ws, T >) ds.

By the integrating by parts, we get

0 =

`∫
0

< E,W > ds+ S(γ,W )`
0
, (3.2)

where

S(γ,W ) = −[< W, ((2r − 1)κr−λ)T+r (r − 1)κr−2κsN > + < Ws, rκ
r−1(κγ−N) >]

and

E(γ) =
(
r (r − 1)κr−3

(
(r − 2) (κs)

2 + κκss

)
− (2r − 1)κr + λ

)
N.

Since γ is an extremal of the functional Fλ, E(γ) vanishes identically [5]. Then we
obtain the Euler-Lagrange equation

r (r − 1)κr−3
(

(r − 2) (κs)
2 + κκss

)
− (2r − 1)κr + λ = 0. (3.3)

Therefore, we can give the characterization of a unit speed hyperelastic curve in
Q2 as follows.

Theorem 2. A unit speed hyperelastic curve in a 2−dimensional null cone Q2

is characterized by the Euler-Lagrange equation (3.3).

4. Integration of the Hyperelastic Curve

In this section we seek the solutions of the Euler−Lagrange equation (3.3) . If the
cone curvature κ is constant, then the constant value found as follows

κr =
λ

(2r − 1)
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and so, Eq. (2.2) is a system of linear ordinary differential equations with constant
coefficients. Therefore, we can directly solve it.

Suppose that the cone curvature κ is not constant. If we multiply
(
r (r − 1)κr−2κs

)
both sides of Eq. (3.3) and then the the first integral, we are found(

r (r − 1)κr−2κs
)2

+ 2rκr−1 (κr + λ)− 2r2κ2r−1 = C, (4.1)

where C is a integral constant. Thus the cone curvature κ can be expressed by
quadratures

±
∫

r (r − 1)κr−2dκ√
C − 2rκr−1 (κr + λ) + 2r2κ2r−1

=

∫
ds.

Then, we can give the following theorem.
Theorem 3. The Euler-Lagrange equation (3.3) can be completely solved by

quadratures.
Now, we deal with solve derivative equations of the asymptotic orthonormal

frame field (2.2) for a hyperelastic curve in Q2, and thus we define the Killing vector
field along γ in Q2.

Definition 4. If a vector field W along a regular curve γ in Q2 satisfies the
conditions W (v) = W (κ) = 0, then W is called a Killing vector field along γ.

By using Eq. (3.3) and Lemma 1, we can see that the vector field Jγ =
−r (r − 1)κr−2κsγ + rκr−1T is a Killing vector field along the hyperelastic curve γ.
The solution space of a linear system constituted by the equations W (v) = W (κ) = 0
is a 3−dimension. This dimension agrees with the dimension of the isometry group
of a 2−dimensional null cone Q2. Therefore a Killing vector field along a hyperelastic
curve γ can extend to a Killing vector field in Q2 at least locally.

Since the hyperelastic curve is invariant along any Killing vector fieldW , S (γ,W )
is constant along γ. Then, we have

S(γ, Jγ) = −
(
r (r − 1)κr−2κs

)2 − 2rκr−1 (κr + λ) + 2κ < Jγ , Jγ >

for Killing vector field Jγ , where

< Jγ , Jγ >= r2κ2r−2.

We can give the following theorem.
Theorem 5. If γ is a hyperelastic curve in a 2−dimensional null cone Q2, then

it satisfies the Euler-Lagrange equation

−
(
r (r − 1)κr−2κs

)2 − 2rκr−1 (κr + λ) + 2κ < Jγ , Jγ >= −C,

for a constant C.
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By using the Killing vector field Jγ , we can solve Eq. (2.2) for a hyperelastic
curve. We can classify solutions according to the sign of the constant C. Firstly, we
suppose that C > 0. Now we consider the system of coordinate in Q2 given by

ψ(ρ, θ) = (ρ, ρ sinh θ, ρ cosh θ),

where ρ ∈ (0,+∞), θ ∈ (−∞,+∞), with the metric ds2 = ρ2dθ2. Therefore the
vector field ψθ(ρ, θ) = (0, ρ cosh θ, ρ sinh θ) is a Killing vector field. By using a
proper Lorentzian transformation in Q2, we can suppose

Jγ = −r (r − 1)κr−2κsγ + rκr−1T = aψθ,

for a pending constant a. The inner product Jγ is found as < Jγ , Jγ >= r2κ2r−2 =
a2ρ2. If γ write as γ(s) = ψ(ρ(s), θ(s)), we have

T (s) = γ′(s) = ρ′(s)ψρ + θ′(s)ψθ.

From the inner product of Jγ and T vector fields, we get rκr−1 (κ) = aρ2θ′(s). On
the other hand, we have

1 =< γ′ (s) , γ′ (s) >= ρ2θ′ (s)2 .

Computing the cone curvature of γ(s) gives

(r (r − 1)κr−2κs)
2 + 2rκr−1 (κr + λ)− 2r2κ2r−1 = a2.

We can see from Eq. (4.1), a2 = C. Then, we obtain

θ′(s) =

√
C

rκr−1
, ρ =

rκr−1√
C

.

Secondly, we assume that C < 0. Then, for θ ∈ (0, 2π), ρ ∈ (0,+∞), the system in
the following

ψ(ρ, θ) = (ρ cos θ, ρ sin θ, ρ)

gives a coordinate system in a 2−dimensional null cone Q2 with the metric ds2 =
ρ2dθ2. So, ψθ = (−ρ sin θ, ρ cos θ, 0) denotes a Killing vector field. By using a proper
Lorentzian transformation in Q2, we can suppose

Jγ = −
(
r (r − 1)κr−2κs

)
γ + rκr−1T = aψθ,

for a pending constant a. The inner product Jγ is found as < Jγ , Jγ >= r2κ2r−2 =

a2ρ2, where ρ = rκr−1

a . We write the curve with regard to the local coordinates as
γ(s) = ψ(ρ(s), θ(s)), then

T = γ′(s) = ρ′(s)ψρ + θ′(s)ψθ.
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Calculating the inner product of Jγ and T vector fields give rκr−1 = θ′(s)aρ2and
rκr−1θ′(s) = a. Then we find

θ′(s)2ρ2 = 1

since T is a unit spacelike vector field. Computing the cone curvature of γ(s) gives(
r (r − 1)κr−2κs

)2
+ 2rκr−1 (κ+ λ)− 2r2κ2r−1 = −a2.

Comparing this formula with the equation (4.1) implies a2 = −C. Taking into
consideration ψθ and Jγ , we obtain

θ′(s) =

√
−C

rκr−1
, ρ =

rκr−1√
−C

.

Finally, we suppose that C = 0 and so we select the coordinate system in Q2 given
by

ψ(ρ, θ) = (ρθ,
1

2
ρ(1− θ2), 1

2
ρ(1 + θ2)),

where, ρ ∈ (0,+∞), θ ∈ (−∞,+∞) with the metric ds2 = ρ2dθ2. In this case, the
vector fields ψθ = (ρ,−ρθ, ρθ) is a Killing vector field in Q2 and we can suppose

Jγ = −
(
r (r − 1)κr−2κs

)
γ + rκr−1T = ψθ.

With the methodology above, we obtain

ρ = rκr−1, θ′(s) =
1

rκr−1
.

Theorem 6. The hyperelastic curve in a 2−dimensional null cone Q2 can be
expressed by integral explicitly.

5. Summary and Conclusion

We examined the variational problem of the hyperelastic curve known as a general-
ization of the elastic curve model in Minkowski 3−space. There exist different ways
to deal with the variational problem for the bending energy functional. Although
the study is a generalization of the reference [11], we develop this theory in the
2−dimensional null cone following the approach using [6]. Killing vector fields on
the null cone are also noteworthy in this paper since there is very limited information
about null geometry. The solutions of the derived differential equation are solved
by using the constructed Killing fields. The results can be summarized as follows:
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Corollary 7. Let γ be a hyperelastic curve with the cone curvature κ in a
2−dimensional null cone Q2 . Then γ can be parameterized as the following:

i) If the constant C > 0, then

γ(s) =
r√
C

(κr−1(s), κr−1(s) sinh(

√
C

r

∫
ds

κr−1(s)
), κr−1(s) cosh(

√
C

r

∫
ds

κr−1(s)
)),

ii) If the constant C < 0, then

γ(s) =
r√
−C

(κr−1(s) cos(

√
−C
r

∫
ds

κr−1(s)
), κr−1(s) sin(

√
−C
r

∫
ds

κr−1(s)
), κr−1(s)),

iii) If the constant C = 0, then

γ(s) = r(κr−1(s)(
1

r

∫
ds

κr−1(s)
),

1

2
κr−1(1−(

1

r

∫
ds

κr−1(s)
)2),

1

2
κr−1(1+(

1

r

∫
ds

κr−1(s)
)2)).
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