
Acta Universitatis Apulensis
ISSN: 1582-5329
http://www.uab.ro/auajournal/

No. 63/2020
pp. 109-122

doi: 10.17114/j.aua.2020.63.09

COEFFICIENT INEQUALITIES FOR CLASS OF BI-UNIVALENT
FUNCTIONS ASSOCIATED WITH (P,Q)-DERIVATIVE OF

SALAGEAN OPERATOR

T. Panigrahi, R.M. El-Ashwah

Abstract. In this paper, the authors introduce the newly constructed subclass
of bi-univalent functions defined by the Jackson (p,q)-derivative operator of Salagèan
type associated with Chebyshev polynomial. The initial coefficient bounds and
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1. Introduction and Motivation

Let A represent the class of functions analytic in ∆ := {z : z ∈ C and |z| < 1}
satisfying normalized condition f(0) = f ′(0) − 1 = 0. Then each f ∈ A has the
following Taylor-Maclaurin series expansion:

f(z) = z +

∞∑
n=2

anz
n. (1)

We denote by S, the subclass of A consisting of functions of the form (1) which are
univalent in ∆.
If f and g are analytic functions in ∆, then f is said to be subordinate to g, written
as f(z) ≺ g(z) (z ∈ ∆), if there exists a Schwarz function φ(z), analytic in ∆
with φ(0) = 0 and |φ(z)| < 1 (z ∈ ∆) such that f(z) = g(φ(z)) (z ∈ ∆). If g is
univalent in ∆ then (see [6, 19])

f(z) ≺ g(z) (z ∈ ∆)⇐⇒ f(0) = g(0) and f(∆) ⊂ g(∆).
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The well-known Koebe One-Quarter-Theorem (see [12]) ensures that the image of
∆ under every function f in the normalized univalent function class S contains a
disk of radius 1

4 . Thus, every such univalent function has an inverse f−1 satisfies
the condition:

f−1(f(z)) = z (z ∈ ∆),

and

f(f−1(w)) = w (|w| < r0(f); r0(f) ≥ 1

4
),

where

g(w) = f−1(w) = w − a2w2 + (2a22 − a3)w3 − (5a32 − 5a2a3 + a4)w
4 + · · · . (2)

A function f ∈ A is said to be bi-univalent in ∆ if both f and f−1 are univalent in
∆. Let σ denote the class of such functions. For a brief history of function in the
class, see [4, 5, 16, 21]. Recently, many researchers (see [1, 17, 22, 24, 25]), mention
a few have put their efforts to introduce various subclasses of bi-univalent function
and obtained initial non-sharp coefficient bounds. Determining general coefficient
estimates |an| (n ∈ N) for analytic and bi-univalent problem is still an open problem.

The Chebyshev polynomials named after Pafnuty Chebyshev [10] play an im-
portant role in geometric function theory. These polynomials are a sequence of
orthogonal polynomials that are related to De Movire formula. Their need and im-
portance in the area of numerical analysis and approximation theory have increased
day by day both theoretical as well as practical view point. There are four types of
Chebyshev polynomials. However, majority of research papers deal with orthogonal
polynomials of Chebyshev family, which contains many results of Chebyshev poly-
nomials of first kind Tn(t) and second kind Un(t) (see, for details[11, 18]).
In case of a real variable t on (−1, 1), the Chebyshev polynomials of first and second
kinds are defined by

Tn(t) = cosnθ, Un(t) =
sin(n+ 1)θ

sinθ
,

where the subscript n denotes the polynomials degree and t = cosθ.
Now, we consider the function which is the generating function of a Chebyshev
polynomial of second type

ψ(z, t) =
1

1− 2tz + z2
(z ∈ ∆).

110



T. Panigrahi, R.M. El-Ashwah – Coefficient inequalities.. . . .

If we take t = cosα, α ∈ (−π
3 ,

π
3 ), then

ψ(z, t) =
1

1− 2cosαz + z2
= 1 +

∞∑
n=1

sin(n+ 1)α

sinα
zn

= 1 + 2cosαz + (3cos2α− sin2α)z2 + · · · (z ∈ ∆).

Therefore, we can write

ψ(z, t) = 1 + U1(t)z + U2(t)z
2 + · · · (z ∈ ∆, t ∈ (−1, 1)), (3)

where Un−1 = sin(ncos−1t)√
1−t2 (n ∈ N) are the Chebyshev polynomials of the second

kind. It is known that
Un(t) = 2tUn−1(t)− Un−2(t),

and

U1(t) = 2t, U2(t) = 4t2 − 1, U3(t) = 8t3 − 4t, U4(t) = 16t4 − 12t2 + 1, · · · . (4)

In geometric function theory, different researchers all over the globe have constructed
various subclasses of analytic and bi-univalent functions from different view points.
In the recent years, applications of quantum calculus (q-calculus) in the fields of
ordinary fractional calculus, optimal control, q-difference equation, q-integral equa-
tion, q-transform analysis, approximation theory and number theory are an active
area of research. q-calculus is a generalization of many fields, such as hypergeomet-
ric series, complex analysis, and particle physics. Jackson [14, 15] was the first to
develop q integral and q-derivative in a systematic way and later geometrical inter-
pretation of the q-analysis has been recognized through studies of quantum groups.
It has attracted the attention of various researchers. Researchers have applied it to
construct and investigated several classes of analytic and bi-univalent functions and
their interesting results are too numerous to discuss. The extension of the q-calculus
to post-quantum calculus denoted by the (p, q)-calculus is possible. Such an exten-
sion of quantum calculus cannot be obtained directly by substitution of q by q/p in
q-calculus. When the case p = 1 in (p, q)-calculus, the q-calculus may be obtained
(see [13, 20]).
We provide some basic concept of q-calculus. We assume throughout our discussion
that 0 < q < p ≤ 1. We recall the definitions of fractional (p, q)-calculus operator of
complex-valued function f(z) as follows:

Definition 1. (see [9]) The (p, q)-derivative operator of a function f is defined by

(Dp,qf)(z) =
f(pz)− f(qz)

(p− q)z
, z 6= 0 (5)
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and (Dp,qf)(0) = f ′(0) provided that the function f is differentiable at 0.

The so-called (p,q)-bracket or twin-basic number is defined as

[n]p,q =
pn − qn

p− q
(p 6= q). (6)

It is clear that Dp,qz
n = [n]p,qz

n−1. For p = 1, the Jackson (p, q)-derivative reduces
to the Hahn derivative given by

(Dqf)(z) =
f(z)− f(qz)

(1− q)z
(z 6= 0). (7)

The twin-basic number [n]p,q is a natural generalization of the q-number i.e.

lim
p−→1

[n]p,q = [n]q =
1− qn

1− q
(q 6= 1). (8)

Thus, for a function f of the form (1), it follows from Definition 1 that

(Dp,qf)(z) = 1 +
∞∑
n=2

[n]p,qanz
n−1 (z ∈ ∆), (9)

where [n]p,q is defined as (6). Note that q-number is the extension of ordinary
derivative i.e.

lim
q−→1−

(Dqf)(z) = f ′(z). (10)

The (p, q) analogue of Salagèan differential operator Rkp,q : A −→ A (k ∈ N) is
defined as follows:

R0
p,qf(z) = f(z)

R1
p,qf(z) = z(Dp,qf)(z))

· · ·
· · ·
· · ·

Rkp,qf(z) = R1
p,q(R

k−1
p,q f(z)). (11)

Therefore, for a function f(z) of the form (1), we have

Rkp,qf(z) = z +

∞∑
n=2

[n]kp,qanz
n (z ∈ ∆). (12)
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From (12), we observe that

limp−→1,q−→1−R
k
p,qf(z) = z + limp−→1,q−→1−

∞∑
n=2

[n]kp,qanz
n

= z +

∞∑
n=2

nkanz
n = Skf(z), (13)

where Sk is the Salagèan differential operator which was defined by Salagèan (see
[23]) and later studied by various researchers in this direction.
Very recently, several authors (see[3, 7, 8]) have introduced and investigated various
subclasses of bi-univalent functions and obtained the initial coefficient bounds and
Fekete-Szegö inequality by making use of Chebyshev polynomials instead of class
of Caratheodory functions. Motivated by aforementioned works and making use
of (p,q)-derivative operator of Salagèan type, we introduce a new subclass of bi-
univalent function associated with the Chebyshev polynomials as follows:

Definition 2. A function f ∈ σ given by (1) is said to be in the class Mk
σ (p, q, λ, t) (0 <

q < p ≤ 1; k ∈ N; 0 < λ ≤ 1; t ∈ (12 , 1]) if the following subordination conditions
are satisfied.

1

2

Rkp,qf(z)

f(z)
+

(
Rkp,qf(z)

f(z)

) 1
λ

 ≺ L(z, t) =
1

1− 2tz + z2
(z ∈ ∆), (14)

and

1

2

Rkp,qg(w)

g(w)
+

(
Rkp,qg(w)

g(w)

) 1
λ

 ≺ L(w, t) =
1

1− 2tw + w2
(w ∈ ∆), (15)

where g = f−1.

By specializing the parameters p, q, λ and k in Definition 2, we obtain the
following subclasses of σ mention below.

Remark 1. For p −→ 1 and k = 1, we get the class M1
σ(1, q, λ, t) = Rσ(q, λ, t)

consist of functions f ∈ σ satisfying the condition

1

2

[
z(Dqf)(z)

f(z)
+

(
z(Dqf)(z)

f(z)

) 1
λ

]
≺ L(z, t) =

1

1− 2tz + z2
,

113



T. Panigrahi, R.M. El-Ashwah – Coefficient inequalities.. . . .

and
1

2

[
w(Dqg)(w)

g(w)
+

(
w(Dqg)(w)

g(w)

) 1
λ

]
≺ L(w, t) =

1

1− 2tw + w2
,

where the function g = f−1 is defined by (2).

Remark 2. For p −→ 1 and q −→ 1−, we get the class Mk
σ (1, 1−, λ, t) = V k

σ (λ, t)
consist of functions f ∈ σ satisfying the condition

1

2

[
Skf(z)

f(z)
+

(
Skf(z)

f(z)

) 1
λ

]
≺ L(z, t) =

1

1− 2tz + z2
,

and

1

2

[
Skg(w)

g(w)
+

(
Skg(w)

g(w)

) 1
λ

]
≺ L(w, t) =

1

1− 2tw + w2
,

where the function g = f−1 is defined by (2).

Remark 3. For p −→ 1, q −→ 1− and k = 1 we get the class M1
σ(1, 1−, λ, t) =

Sσ(λ, t) consist of functions f ∈ σ satisfying the condition

1

2

[
zf ′(z)

f(z)
+

(
zf ′(z)

f(z)

) 1
λ

]
≺ L(z, t) =

1

1− 2tz + z2
,

and
1

2

[
wg′(w)

g(w)
+

(
wg′(w)

g(w)

) 1
λ

]
≺ L(w, t) =

1

1− 2tw + w2
,

where the function g = f−1 is defined by (2).

Remark 4. For p −→ 1, q −→ 1− and k = λ = 1 we get the class M1
σ(1, 1−, 1, t) =

Sσ(t) consist of functions f ∈ σ satisfying the condition[
zf ′(z)

f(z)

]
≺ L(z, t) =

1

1− 2tz + z2
,

and [
wg′(w)

g(w)

]
≺ L(w, t) =

1

1− 2tw + w2
,

where the function g = f−1 is defined by (2).

Remark 5. The classes in Remarks 3 and 4 mentioned above improve the classes
discussed in Definition 1.1 and 1.3 studied by Altinkaya and Yalcin (see [2]) respec-
tively.
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The object of the present investigation is to obtain initial coefficient bounds and
Fekete-Szegö inequalities for the newly constructed subclass of bi-univalent functions
Mk
σ (p, q, λ, t) associated with Chebyshev polynomials.

2. Coefficient bounds for the class Mk
σ (p, q, λ, t)

Theorem 1. Let the function f given by (1) be in the class Mk
σ (p, q, λ, t). Then

|a2| ≤
4λt
√

2t√
|[2λ(1 + λ)([3]kp,q − [2]kp,q)− (λ2 + 3λ)([2]kp,q − 1)2]4t2 + (1 + λ)2([2]kp,q − 1)2|

(16)

and

|a3| ≤
16λ2t2

(1 + λ)2([2]kp,q − 1)2
+

4λt

(1 + λ)([3]kp,q − 1)
. (17)

Proof. Let f ∈Mk
σ (p, q, λ, t) and g be the analytic extension of f−1 in ∆. Then by

Definition 2, we have

1

2

Rkp,qf(z)

f(z)
+

(
Rkp,qf(z)

f(z)

) 1
λ

 = L(u(z), t) (18)

and

1

2

Rkp,qg(w)

g(w)
+

(
Rkp,qg(w)

g(w)

) 1
λ

 = L(v(w), t). (19)

Define the functions u(z) and v(w) by

u(z) = c1z + c2z
2 + . . . , (20)

v(w) = d1w + d2w
2 + · · · , (21)

that are analytic in ∆ with u(0) = v(0) = 0 and |u(z)| < 1 and |v(w)| < 1 for all
z, w ∈ ∆. Making use of (20) and (21) in (18) and (19) respectively, we obtain

1

2

Rkp,qf(z)

f(z)
+

(
Rkp,qf(z)

f(z)

) 1
λ

 = 1 + U1(t)u(z) + U2(t)u
2(z) + · · · , (22)
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and

1

2

Rkp,qg(w)

g(w)
+

(
Rkp,qg(w)

g(w)

) 1
λ

 = 1 + U1(t)v(w) + U2(t)v
2(w) + · · · . (23)

Now, for a function f(z) of the form (1), we have

Rkp,qf(z)

f(z)
= 1 + ([2]kp,q − 1)a2z + [([3]kp,q − 1)a3 − ([2]kp,q − 1)a22]z

2 + · · · , (24)

and
[
Rkp,qf(z)

f(z)

] 1
λ

= 1 +
([2]kp,q − 1)

λ
a2z +

[{
1 − λ

2λ2
([2]

k
p,q − 1)

2 −
([2]kp,q − 1)

λ

}
a
2
2 +

([3]kp,q − 1)

λ
a3

]
z
2
+ · · · . (25)

From (24) and (25), it follows that

1

2

Rkp,qf(z)
f(z)

+

(
Rkp,qf(z)

f(z)

) 1
λ

 = 1 +
1 + λ

2λ
([2]

k
p,q − 1)a2z +

[(
(1 − λ)([2]kp,q − 1)2

4λ2
−

(1 + λ)([2]kp,q − 1)

2λ

)

a
2
2 +

1 + λ

2λ
([3]

k
p,q − 1)a3

]
z
2
+ · · · . (26)

Similarly, for a function g(w) of the form (2), we have

Rkp,qg(w) = w − [2]kp,qa2w
2 + (2a22 − a3)[3]kp,qw

3 + · · · .

Proceeding similar manner as above, we obtain

1

2

Rkp,qg(w)

g(w)
+

(
Rkp,qg(w)

g(w)

) 1
λ

 = 1− 1 + λ

2λ
([2]kp,q − 1)a2w

+

[{
1 + λ

2λ
(2[3]kp,q − [2]kp,q − 1) +

1− λ
4λ2

([2]kp,q − 1)2
}
a22 −

1 + λ

2λ
([3]kp,q − 1)a3

]
w2 + · · · .

(27)

Using (20),(26) in (22) and (21), (27) in (23) we get

1 +
1 + λ

2λ
([2]

k
p,q − 1)a2z +

[{
(1 − λ)([2]kp,q − 1)2

4λ2
−

(1 + λ)

2λ
([2]

k
p,q − 1)

}
a
2
2 +

1 + λ

2λ
([3]

k
p,q − 1)a3

]
z
2
+ · · · .

= 1 + U1(t)c1z + [U1(t)c2 + U2(t)c
2
1]z

2
+ · · · . (28)

and

1− 1 + λ

2λ
([2]kp,q − 1)a2w +

[{
1 + λ

2λ
(2[3]kp,q − [2]kp,q − 1) +

1− λ
4λ2

([2]kp,q − 1)2
}
a22

− 1 + λ

2λ
([3]kp,q − 1)a3

]
w2 + · · · . = 1 + U1(t)d1w + [U1(t)d2 + U1(t)d

2
1]w

2 + · · · .

(29)
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From (28) and (29), we have

1 + λ

2λ
([2]kp,q − 1)a2 = U1(t)c1, (30){

1− λ
4λ2

([2]kp,q − 1)2 − 1 + λ

2λ
([2]kp,q − 1)

}
a22+

1 + λ

2λ
([3]kp,q−1)a3 = U1(t)c2+U2(t)c

2
1,

(31)
and

− 1 + λ

2λ
([2]kp,q − 1)a2 = U1(t)d1, (32){

1 + λ

2λ
(2[3]kp,q − [2]kp,q − 1) +

1− λ
4λ2

([2]kp,q − 1)2
}
a22−

1 + λ

2λ
([3]kp,q−1)a3 = U1(t)d2+U2(t)d

2
1.

(33)
Equations (30) and (32) give

c1 = −d1, (34)

and
(1 + λ)2

2λ2
([2]kp,q − 1)2a22 = U2

1 (t)(c21 + d21). (35)

If we add (31) and (33), we get
[
(1 − λ)([2]kp,q − 1)2

2λ2
−

1 + λ

2λ
([2]

k
p,q − 1) +

1 + λ

2λ
(2[3]

k
p,q − [2]

k
p,q − 1)

]
a
2
2 = U1(t)(c2 + d2) + U2(t)(c

2
1 + d

2
1). (36)

Using (35) in the equation (36) gives

a22 =
2λ2U3

1 (t)(c2 + d2)[
(1− λ)([2]kp.q − 1)2 + 2λ(1 + λ)([3]kp,q − [2]kp,q)

]
U2
1 (t)− (1 + λ)2([2]kp,q − 1)2U2(t)

.

(37)
It is well-known that if |u(z)| < 1 and |v(w)| < 1, then

|cj | ≤ 1 and |dj | ≤ 1 for all j ∈ N. (38)

Making use of (4) and applying (38) to the coefficients c2 and d2 in (37), we obtain
the desire estimate for |a2| as stated in (16). Further, for finding bounds for a3 we
proceed as follows.
Subtracting (33) from (31), we get

1 + λ

λ
([3]kp,q − 1)a3 −

1 + λ

λ
([3]kp,q − 1)a22 = U1(t)(c2 − d2) + U2(t)(c

2
1 − d21). (39)

Using (34) and (35) in (39) give

a3 =
2λ2(c21 + d21)U

2
1 (t)

(1 + λ)2([2]kp,q − 1)2
+

λ(c2 − d2)U1(t)

(1 + λ)([3]kp,q − 1)
. (40)
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Putting the value of U1(t) from (4) and using the coefficient inequalities (38) in (40),
we obtain

|a3| ≤
16λ2t2

(1 + λ)2([2]kp,q − 1)2
+

4λt

(1 + λ)([3]kp,q − 1)
.

This completes the proof of Theorem 1.

Taking p −→ 1 and k = 1 in the above theorem, we get the following result:

Corollary 2. Let the function f given by (1) be in the class Rσ(q, λ, t). Then we
have

|a2| ≤
4λt
√

2t√
|[2λ(1 + λ)([3]q − [2]q)− (λ2 + 3λ)([2]q − 1)2]4t2 + (1 + λ)2([2]q − 1)2|

,

and

|a3| ≤
16λ2t2

(1 + λ)2([2]q − 1)2
+

4λt

(1 + λ)([3]q − 1)
.

Putting p −→ 1 and q −→ 1− in Theorem 1, we obtain the following result in
form of corollary:

Corollary 3. Let the function f given by (1) be in the class V k
σ (λ, t). Then

|a2| ≤
4λt
√

2t√
|[2λ(1 + λ)(3k − 2k)− (λ2 + 3λ)(2k − 1)2]4t2 + (1 + λ)2(2k − 1)2|

,

and

|a3| ≤
16λ2t2

(1 + λ)2(2k − 1)2
+

4λt

(1 + λ)(3k − 1)
.

Letting k = 1 in Corollary 3 we obtain the result for the class Sσ(λ, t).

Corollary 4. (see [[2], Theorem 2.1) Let f given by (1) be in the class Sσ(λ, t).
Then

|a2| ≤
4λt
√

2t√
|(λ2 − λ)4t2 + (1 + λ)2|

,

and

|a3| ≤
16λ2t2

(1 + λ)2
+

2λt

(1 + λ)
.

Taking λ = 1 in the Corollary 4 we reach at the following conclusion.

Corollary 5. (see [2], Corollary 2.2) Let the function f given by (1) be in the class
Sσ(t). Then

|a2| ≤ 2t
√

2t,

and
|a3| ≤ 4t2 + t.
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3. Fekete-Szegö Inequalities for the function class Mk
σ (p, q, λ, t)

Theorem 6. Let the function f given by (1) be in the class Mk
σ (p, q, λ, t). Then for

any real number α, we have

|a3 − αa22| ≤



4λt
(1+λ)([3]kp,q−1)

|α− 1| ≤

∣∣∣∣ (1+λ)2([2]kp,q−1)2

4t2
+2λ(1+λ)([3]kp,q−[2]kp,q)−(λ2+3λ)([2]kp,q−1)2

∣∣∣∣
2λ(1+λ)([3]kp,q−1)

,

32λ2t3|1−α|
|[2λ(1+λ)([3]kp,q−[2]kp,q)−(λ2+3λ)([2]kp,q−1)2]4t2+(1+λ)2([2]kp,q−1)2|

|α− 1| ≥

∣∣∣∣ (1+λ)2([2]kp,q−1)2

4t2
+2λ(1+λ)([3]kp,q−[2]kp,q)−(λ2+3λ)([2]kp,q−1)2

∣∣∣∣
2λ(1+λ)([3]kp,q−1)

.

(41)

Proof. Taking the values of a2 and a3 from (37) and (39) and after simplification,
we get

a3−αa22 = (1−α)
2λ2U3

1 (t)(c2 + d2)

[(1− λ)([2]kp,q − 1)2 + 2λ(1 + λ)([3]kp,q − [2]kp,q)]U2
1 (t)− (1 + λ)2([2]kp,q − 1)2U2(t)

+
λ(c2 − d2)U1(t)

(1 + λ)([3]kp,q − 1)
= U1(t)

[(
s(α) +

λ

(1 + λ)([3]kp,q − 1)

)
c2 +

(
s(α)− λ

(1 + λ)([3]kp,q − 1)

)
d2

]
,

(42)

where

s(α) =
2λ2(1− α)U2

1 (t)

[(1− λ)([2]kp,q − 1)2 + 2λ(1 + λ)([3]kp,q − [2]kp,q)]U
2
1 (t)− (1 + λ)2([2]kp,q − 1)2U2(t)

.

(43)
Thus, in view of (4), we conclude that

|a3 − αa22| ≤


4λt

(1+λ)([3]kp,q−1)
0 ≤ |s(α)| ≤ λ

(1+λ)([3]kp,q−1)

4t|s(α)| |s(α)| ≥ λ
(1+λ)([3]kp,q−1)

.
(44)

The assertion (41) now follows from (44). This complete the proof of Theorem 6.

Taking p −→ 1 and k = 1 in Theorem 6 we obtain the following result.

Corollary 7. Let the function f given by (1) be in the class Rσ(q, λ, t). For any
α ∈ R,

|a3 − αa22| ≤


4λt

(1+λ)([3]q−1) |α− 1| ≤
| (1+λ)

2([2]q−1)2

4t2
+2λ(1+λ)([3]q−[2]q)−(λ2+3λ)([2]q−1)2|

2λ(1+λ)([3]q−1) ,
32λ2t3(1−α)

|[2λ(1+λ)([3]q−[2]q)−(λ2+3λ)([2]q−1)2]4t2+(1+λ)2([2]q−1)2| ,

|α− 1| ≥
| (1+λ)

2([2]q−1)2

4t2
+2λ(1+λ)([3]q−[2]q)−(λ2+3λ)([2]q−1)2|

2λ(1+λ)([3]q−1) .
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Putting p −→ 1 and q −→ 1− in Theorem 6 we obtain Fekete-Szegö inequality
for the function class V k

σ (λ, t) as follows:

Corollary 8. Let the function f given by (1) be in the function class V k
σ (λ, t). Then

for any α ∈ R, we have

|a3 − αa22| ≤



4λt
(1+λ)(3k−1)

|α− 1| ≤
| (1+λ)

2(2k−1)2

4t2
+2λ(1+λ)(3k−2k)−(λ2+3λ)(2k−1)2|

2λ(1+λ)(3k−1)
32λ2t3|1−α|

|[2λ(1+λ)(3k−2k)−(λ2+3λ)(2k−1)2]4t2+(1+λ)2(2k−1)2|

|α− 1| ≥
| (1+λ)

2(2k−1)2

4t2
+2λ(1+λ)(3k−2k)−(λ2+3λ)(2k−1)2|

2λ(1+λ)(3k−1)

Letting k = 1, p −→ 1 and q −→ 1− in the Theorem 6, we get the following
result due to Altinkaya and Yalcin.

Corollary 9. ([2], Theorem 6) Let the function f given by (1) be in the class
Sσ(λ, t). Then

|a3 − αa22| ≤


2λt
1+λ |α− 1| ≤

∣∣∣∣ (1+λ)24t2
+λ2−λ

∣∣∣∣
4λ(1+λ)

32λ2t3|1−α|
(λ2−λ)4t2+(1+λ)2

|α− 1| ≥

∣∣∣∣ (1+λ)24t2
+λ2−λ

∣∣∣∣
4λ(1+λ) .

Taking α = 1 in Corollary 9, we get the following result due to Altinkaya and
Yalcin.

Corollary 10. ([2], Corollary 7) Let f given by (1) be in the class Sσ(λ, t). Then

|a3 − a22| ≤
2λt

1 + λ
.

Putting λ = 1 in Corollary 10 we obtain the result for class Sσ(t).

Corollary 11. ([2], Corollary 8) Let the function f given by (1) be in the class
Sσ(t). Then

|a3 − a22| ≤ t.

Concluding Remarks: Various authors have considered the q-derivative oper-
ator to defined bi-univalent function classes. The results present in this paper has
a new generalization for q-derivative operator of Salagèan type. Many corollaries
have been generated by varying some parameters involved in the above classes of
functions defined. Researchers can make use of Faber polynomial and Sigmoid func-
tions instead of class of Chebyshev polynomials for finding bounds for the above
mentioned classes.
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