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The spectrum of coupled random matrices

By M. ADLER and P. VAN MOERBEKE*
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0. Introduction

The study of the spectrum of coupled random matrices has received rather
little attention. To the best of our knowledge, coupled random matrices have
been studied, to some extent, by Mehta in [16], [17], [11]. In this work, we ex-
plain how the integrable technology can be brought to bear to gain insight into
the nature of the distribution of the spectrum of coupled Hermitean random
matrices and the equations the associated probabilities satisfy. In particular,
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the two-Toda lattice, its algebra of symmetries and its vertex operators will
play a prominent role in this interaction. Namely, the method is to introduce
time parameters, in an artificial way, and to dress up a certain matrix inte-
gral with a vertex integral operator, for which we find Virasoro-like differential
equations; for a state of the art survey of these methods, see [20]. These meth-
ods lead to very simple nonlinear third-order partial differential equations for
the joint statistics of the spectra of two coupled Gaussian random matrices.

Bi-orthogonal polynomials and the two-Toda lattice. Given a weight, de-
pending on parameters t = (t1,t2,...) and s = (s1, S2,...) € C* and a coupling
constant c,

p(z,y)dx dy = dx dy edor bt tery=) syt
consider the associated (monic) bi-orthogonal polynomials pgl)(a:) and pgz) (y)
of degree i defined by

M, PPy = hybpe, where (f,g) = / /R L drdy f(x)g(y)p(e,y).

In [2], it was shown that the associated pair of semi-infinite vectors, depending
on (t,s),

Uy(z) := e tkzkp(l)(z) and U3(z) :=e"~ 21 S’“[kh_lp@)(z_l) ,

has the following expression’

Tn\l — z1 ) S Ptz n
(0.1) Uy (z) = (%621 i ) R
o) — Tn(tv 5+ [2])6_ ZTO siz_izfn
\Ij2() B ( Tn+1(ta5) >n€Z7

in terms of the 2n-uple integrals

02)  Tolts) = / 47 dGAZ)A®G) [] eor toh—swi) ez
RQ’VL k;:l

which form a vector 7 := (7,),>0 of 7-functions. This provides a concrete
realization of the Sato representation of the two-Toda wave functions in terms
of 7-functions 7,,; see [18], [2].

The pair of semi-infinite matrices L := (L1, Lo),% defined by:

(0.3) 20y = [0y, 20 = L) Ul

Ha] = (a,a?/2,03/3,...)
2L, is lower-triangular, except for a subdiagonal just above the diagonal with all entries = 1
and Lo is upper-triangular, except for a nonzero subdiagonal just below the diagonal.
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together with the pair (¥, U3), satisfy the two-Toda lattice equation; in par-
ticular,

oL;
ot,

OLi

(0.4) s

= [(Lrll)u 7Li] and [(Lg)f 7L’i] , 1=1,2,

for the usual Lie algebra splitting (), ()¢ , explained in Section 2. The familiar
standard Toda lattice (on tridiagonal matrices) is a special reduction of the
two-Toda lattice, in the same way that the Korteweg-de Vries equation (KdV)
is a reduction of the Kadomtsev-Petviashvili equation (KP).

Conversely, starting from the the two-Toda lattice equations (0.4), one is
led to wave functions ¥; and U5 and a representation in terms of 7-functions
as in (0.1). As will be established in Section 3, the functions 7, satisfy the
standard KP-equation in ¢ and s separately (see the beginning of §3), but they
also satisfy another (new and useful) equation, which is third-order, relating
t- and s-derivatives, namely:

THEOREM 0.1.  Two- Toda T-functions T,(t,s) satisfy:3

{8210g7'n 8210g7'n} {8210g7'n 8210g7'n} —0

Ot10s9 = O0t10s1 0s10ts ~ O0t10s1

Vertex operators and “Christoffel- Darboux” kernels. Backlund-Darboux
transformations refer to the general recipe of factorizing differential or dif-
ference operators and flipping the factors, to form a new operator. When
we let this situation flow in time, the new wave functions (eigenfunctions)
can be expressed in terms of the old ones as Wronskians (continuous or dis-
crete), and the new 7-function is expressed in terms of the old ones, by
means of vertex operators. So, the latter can be viewed as generators of
Béacklund-Darboux transformations for differential or difference operators at
the level of 7-functions. Typically, vertex operators X map 7-functions into
T-functions, and their squares vanish; although 7 satisfies a highly nonlin-
ear equation, vertex operators have an additive property; that is 7 + X7 is a
7-function as well!

With the two-Toda lattice, we associate four different vertex operators
Xij(A, ), for 1 < 4,5 < 2; they map infinite vectors of 7-functions into 7-
vectors, as explained in Section 5. The vertex operators X;; and Xgo are basic
vertex operators for Toda, and KP, as well, whereas Xio and Xy are vertex
operators, native to two-Toda. In particular, we construct

Xia(p, A) = A7 X (M) X (=8, M) X (£, ) x (1),

3in terms of the Wronskian {f,g}: = %g — f%.
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with A the customary shift-operator (Av),, = vp4+1, and with

(A
o P ﬂ'li
X(t,A) = e2o1 tiX'e LA . x(\) ==diag(., AL LA, L),

Besides this work, the vertex operator X, will also play a major role in our
later work on symmetric and symplectic matrix integrals. Given a two-Toda
lattice T-vector 7 = (...7_1, 70, 71, . . .), we have that 7+ Xj2(y, 2)7 is another 7-
vector. But more is true. We show that the kernels K2, (y, z), defined by the
ratios (X127)y /T, have eigenfunction expansions in terms of the eigenfunctions
W, reminiscent of the Christoffel-Darboux formula for orthogonal polynomials;
to be precise,

THEOREM 0.2. We have (§5):

05)  Kia(2) = - Xolmn= 3 U0,

—oo<j<n

together with a Fredholm determinant-like formula,

(0'6) det (( l]”(youzﬂ))lgaﬂggk 1 (H ng ybzé) ) .

Tn \e=1
In the semi-infinite case, the sum in (0.5) is replaced by 3 <<y
Vertex operators, Virasoro algebras and two-Toda symmetries. The vertex

operators provide central extension realizations for Virasoro algebras; e.g.,
(0.7)

Y"1 X0 (y, 2) = [J]?),Xlg(y,z)] and X0 (y, 2) = [«Tlf),Xu(y,Z)]

Ay 9z
with
03 I = ().
1/ 1 0
= S+t k05" +nm+1s")
T2 7@
Jk T ( ) k ‘t»—>—s '
forming Virasoro algebras of central charge ¢ = —2.

In (0.8), J,ff) equals Org for £ = 0, Heisenberg generators for £ = 1 and
Virasoro generators for £ = 2. It follows that the vertex operators X;; of the
two-Toda lattice form, upon expansion, the generators of a large algebra of
symmetries, which come from the master symmetries for the pair of matrices
L = (Ly, Lo).

This is a special case (o« = 1) of a more general statement concerning
vector-vertex operators, depending on a parameter «,

—1i

00, i ©u' 0
Xo(t, uw) — ATl O % x (u®).
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THEOREM 0.3. The generators J,(f) (), defined by
&Zk+1xa(t7 Z) = |:“]Il(c2) (Oé), Xa (ta Z)} 5

form a Virasoro algebra

1@ 37(@)] = (k= 03 y(0) + <k31; k) %t

with central charge

()"

Commutation of Virasoro and “vertex integral operators”. Consider now
a more general weight p(y, 2)dydz = p;s(y, 2)dydz = eVo=Wdydz on R?
with py = "0, where

(0.9) Vis(y,2) = )+ Ztly - Zs 2
= Zcz]yzj+ztzy _Zsz )
i,5>1 i>1 i>1

and a set £ C R? of the form,
(0.10) EF=F x Ey:= ngl[agi_l,agi] X Ule[bgi_l, bgi] C R2,

involving disjoint unions. The weight (0.9) and the boundary of the set (0.10)
enable one to define two types of operators:

(i) Virasoro-like operators, for k > —1,

(0.11) Vi: = — ’“+1—+J + ) i
Z K ]2;1 Jachrk,J
- 0 0
Vi: = Zka —i—J + Z JCij
i=1 0bi ij>1 Otk

with J,(f) and j,(f) as in (0.8).

(ii) An operator defined by a vertex integral operator X9 over E,
(0.12) Ug := //E dx dy p(x,y)Xi2(x, y).
It is an important ingredient in this work that Vi and (Ug)™ commute:

Vi, (Ug)"] = [Vk, (Ug)"] =0 for all n > 1 and k > —1.
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Two-matriz integrals over product sets and Virasoro constraints. It follows
that the 2n-uple integral, like (0.2), but taken over the set E" = E} x Ej
C RQn’

(0.13) (t s) // dZ dijA(Z H 621 (tizf—siyp)+D_, g>1 Gt kyk

is related to 7 := (T}fz) - by
n>

= ((Ug)"7)n-
This implies, setting all ¢;; = 0, but ¢11 = ¢:
THEOREM 0.4. 7, and 7F satisfy the Virasoro-like partial differential

equations, labeled by k = —1,0,1,...:

(0.14) (Za§+1%+J,g?g> TE 4 cppan@pn(~B)F o tE, = 0
( Zbkﬂ +Jk2)> Tf+cpn(5t)pk+n( Os) Tt oty = 0.

J,E,zg and j,iz)l were defined in (0.8), the Hirota symbols p(8;)q(—ds)fog in (6.1)
and the p;’s are the elementary Schur polynomials.

Application to the spectrum of coupled random matrices. Consider a prod-
uct ensemble (M7, M) € H2 := H,, x H,, of nxn Hermitean matrices, equipped
with a Gaussian probability measure,

(0.15) end My d My ¢~ 3 Tr(ME+M3 —2eM1 Ma)
where dM;dM, is Haar measure on the product H2, with each dM;,

(0.16) dMy = AL (z) [[ dusdU and dMy = AL (y) [ [ dysdU
1 1

decomposed into radial and angular parts. We define differential operators Ay,
By, of weight k, in terms of the coupling constant ¢, appearing in (0.15), and
the boundary of the set

(0.17) E=F x By := ngl[azi_l, agi] X Ule[bzi_l, bQi] C R2.
They form a closed Lie algebra, as spelled out in (11.4):

(0.18)
s 8 S 8 s
(Z%“E%)& (?
8 0
Za]aa] -, BZ:;b‘ja_b]_
2

0 5.0
2
Oc’

Jdc
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The following theorem deals with the joint distribution (§11),
(0.19) P,(E) := P(all(M;-eigenvalues) € Ey, all(Ms-eigenvalues) € E»),
and leads to a formula, which is the “mirror image” of Theorem 0.1.

THEOREM 0.5 (Gaussian probability).  The statistics (0.19) satisfies
the n-independent nonlinear third-order partial differential equation®
( = Llog P (E) ):

(0.20)

{BQAan , BIALF, + ¢

c2—1

} — {AQBan , A1B1F, + ¢ } =0.
Ai B

2 -1

Remark 1. Since the equation above for the joint statistics is independent
of the size n, the same joint statistics for infinite coupled ensembles should
presumably be given by the same partial differential equation.

Remark 2. For E = FEy X Ey := (—00,a] x (—00, b], equation (0.20) takes
on the following form: Upon introducing the new variables x := —a +¢b, y :=
—ac + b, the differential operators A; and B; take on the simple form A4; =
0/0x, By = 0/dy and (0.20) becomes

2
0 ((02 — 1)22115’2 +2cx — (1 + CQ)y) 0 ((02 - 1)2?9ng +2cy — (14 )z

ox (2 — 1)—215; +c Oy (2 — 1)?)25; +c

Remark 3. Equation (0.20) also has a “zero-curvature” formulation, namely:
(0.21) [A] — X,,,B1 — Y, =0,

with
A281Fn B2A1Fn
and Y, := —
BiAFy + 25

X, =
" A1B1F, + 255

The last section deals with coupled matrix ensembles, where the joint
statistics is given by the “Laguerre distribution.” Unlike Theorem 0.5, the
Laguerre case for n x n matrices lead to (inductive) differential equations for
the matrix integral (0.19); indeed, the equation contains a term, which is
expressible in terms of the same expression for (n — 1) x (n — 1) matrices.

Acknowledgment. We thank Taka Shiota for many useful discussions con-
cerning Fay identities. We also thank Edward Frenkel for urging us to compute
the central charge for the Virasoro algebra defined in Theorem 0.3.

4in terms of the Wronskian {f,g}x = Xf.g — f.Xg, with regard to a first order differential
operator X.

) |
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1. Operators A and ¢ with [A,¢] = 1 and the é-function

Define the column vector x(z) = (2")nez, and matrix operators A, A*,
€,e* as follows:

AX(2) = 2x(2), ex(2) = pox(2),

* — * 0
Ax(z) == 1X(Z)7 e'x(z) = FX(Z)-
Note that
A =AT =A7, &= —eT 4+ A,
and

ATx(zh) =2x(zh), Ax(zh) =2""x(z7")
(1.1) e'x(z ™) =27 Ix(z7h) — £x(z7Y)
e Tx(z™) = ax(z7) = 32 x(z7 ).

The operators A, A*, e, e* have the following matrix representation:

A = (6ij-1)ijez, € =diag(i) - At = (i6;j11)ijez

(1.2) e .
A = (6ijv1)ijez, € = —diag(i) - A= (—idij-1)ijez-

For future use, we also introduce the é-function,

. 1 t1
(1.3) S(ty= >t =Tt

n=-—oo
with the customary property

FOM u)cs(g) — fOn A)é(ﬁ»

Note the function

(1.4) S\, p) = %6(%) = %i(g)n

has the usual é-function property

% ]{f(A,u)é(A,u)du =f(AN)

and is a function of A — u only, since

(1.5) (% + a%) §(A\, p) = 0.

For future use, we state:
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LEMMA 1.1 (T. Shiota). We have the following matriz representation:®
1
(1.6) WVBAA) = Tx(w) @ X*(N) and
—A)e* * 1 *
WTVTEONT) = () @ x().

Proof. Note that, since®

A" = (bij-n)ijez, €™ = (()nbij4n)ijez
AN = (bijan)igez, €7 = ((=)nbij—n)ijez ,
we have
5(>\aA) = Z)‘nA o ZA J+n+1 1,JE€L — ()‘ - 1)%J€A>
nez nez
5()\,/\*) = Z )\nAn—H Z )\ ,] n—1 z]GZ - ()‘j_i_l)i,jez )
nez nez
and
VI %((z)n@,ﬁn)mez = <( il ) (=) J) ,
n=0 L, EZ
e o (=) . _ —i 1
R (( iy ) (1= A ) -
n= ,JEZ
Hence
(u—N)e _ { ik k—j—1
e (A A) ; <zk>('u A)TEN
i—k>0 ijEL
= (AT Nijer
(L—A)e* N —1i ki —kti—1
e (A, AY) ; (—i%—k)(ﬂ M)A
k—i>0 ijETL
= (BN Dijez =

5Given two column vectors a and b, the matrix a ® b is defined componentwise as follows

(a® b)zJ = aibj.

8For any k,n € Z, n > 0, we use the standard notation (k). := k(k — 1)...(k — n + 1) and

k) _ 0
n n! -
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2. The two-Toda lattice

Consider the splitting of the algebra D of pairs (Py, P,) of infinite (Z x Z)
matrices such that (P;);; =0 for j —i>> 0 and (P);; =0 for i — j > 0, used
in [6]; to wit:

D = D, +D._,
D, = {(»P) ‘ Py =0if i - j| >0} = {(P,R) €D ( P =P},
Do = (PP | (P)y=0ifj>i, (P)y =0ifi>j},

with (Py, P2) = (P1, P2)+ + (P1, P2)— given by

(2.1) (P, P)y = (Pry+ Py, Py + Poy),

(P, Py)- = (Pig— Py, Poy — Pry);

P, and P, denote the upper (including diagonal) and strictly lower triangular
parts of the matrix P, respectively.

Throughout this paper, we will use the following operators ei(?) (a mul-
tiplication operator) and e”(?) (a shift), where

(2.2) G(z) =)t and  &(2) =) sz ",
1 1

X 279 NN
m(z) :Z T and n2(2) 227£’

1 1

so that
Moz £t ) = f(t 4+ alz7Y, s + b[z])
with [a] = (a,a?/2,a3/3,...).

The two-dimensional Toda lattice equations

oL " oL n B
(23) 5= [( 1,o)+,L} and 5= = [(0,L2>+,L} n=1,2...
are deformations of a pair of infinite matrices
(2.4) L=(Li,Ly) = ( DR DY a§2)Ai> €D,

—oo<i<1 —1<i<oo
with A the shift operator of Section 1 and where agl) Z(-Q) are diagonal
matrices depending on ¢t = (t1,t2,...) and s = (s1, 2, ...), such that

agl) =1 and (a(_Q{) #0 for all n.

and a

In analogy with Sato’s theory, in [18] it is shown that a solution L of (2.3)
has the representation

Ly = WiAW ! = SIASTY, Lo = WoA W, ! = SoA~1 Syt
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in terms of two pairs of wave operators

/
7

{ Sl - ZZSO Cz‘(t, S)Ai, SQ - ZZZO C,/L'(t, S)AZ

¢i, ¢+ diagonal matrices, co = I, (¢f))i; # 0, for all i

and

(2.5) W; = Si(t, s)e5 W),
One also introduces pairs of wave and adjoint wave vectors ¥ = (U, ¥5), and
U = (5, ¥3):

(2.6) Uit s52) = Wix(z) = 5@ Six(2),
Vit si2) = (W) (2) = e 591X (2),
which evolve in t and s according to the following differential equations:”

{ 2 = (L}, 0)20 = ((L})u, (L)) ¥
(2.7)

=0 = (0,L5) ¥ = ((Ly)e, (L3)e) ¥
{ %\I’* = —((L7,0)4) T
- = —((0, L)) "o~

Besides L = (Lj, L2), we define the operators L* = (L}, L5), M = (M, M>)
and M* = (M7, M5) as follows

(2.8)
L= (WiAW L Wok Wy ), L% = (W) 7P, (W5 ) 1AW,

M = (WieWiH Wae*Wy ), M* = (W) wy|, (W) ey,

which satisfy, in view of (2.6) and (1.1):

LY = (2,271, MU = (Bi 8(31)>\11, (L, M] = (1,1),

L = (2,270, M0 = (%7 a(za—l))‘lj*7 (L, M7] = (1,1).

"Here the action is viewed componentwise, e.g., (4,B)¥ = (A¥;, B¥s) or (2,2~ 1)V =
(201,27 103).
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The operators L, M, LT, M " and W := (W, W3) evolve according to

(5)-fuo-(£)
(5)-[oon-(£)

ow oW .
. (LT,0)+W, and 95 (0,L3)+W.

Ueno and Takasaki [18] show that the two-Toda deformations of ¥, and
hence L, can ultimately all be expressed in terms of one sequence of 7-functions

T(n,t,s) = Tu(t1,te,...;81,82,...) = det[(Sfng(t, 5))ijl—oco<ij<n—1, N E L:

(2.9)

to wit:
e M1, (t,s
(2.10) Uy (t,s2) = ( UICLIN yid? )
Tn t s neZ
72 oo i
Ua(t,s52) = (e Tnzrl (1,8) 555 z”)
Tn S neZ
U %) i
Ui(t,s;2) = <e To+1(t, 5) e~ Do tiz z_”)
Tn—i—l t S ne7z
enr,(t, s I
Uit s12) = (7@(, )e’zl 8i% z_"> .
Tn+1(t, 8) neZ

Finally the pair of matrices W = (W7, Wy) satisfies the bilinear relation
(in the =+ splitting of (2.1))

(W(t,s)W(t', sy H_=0
or equivalently,
(2.11) W1 (t, 8)W1 (t/, S/)_1 = Wg(t, S)Wg(t/, S/)_l,

from which one proves Proposition 2.1; for details see [6]. Equation (2.13)
below is established in Adler-van Moerbeke [4].

PROPOSITION 2.1 (bi-infinite and semi-infinite). The wave and adjoint
wave functions satisfy, for all m,n € Z (bi-infinite) and m,n > 0 (semi-
infinite) and t,s,t', s’ € C>:

(2.12)

d
]{ Uy, (L, s;2)05,,(, 8 2 ) i
Z=0

2miz

27mz

= § Wl Wy(t, 552
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Moreover L1 has the following representation in terms of T-functions

o] 3 n 3 .
(2.13) sz _ Z diag <Pe(3/a )Tntk—e+1° T, ) AF—C
£=0 Tntk—t+17n ne’.

In the semi-infinite case, we reinterpret A~! as AT, where A is the semi-
infinite shift operator. Then one shows (2.11) and (2.12) are also valid. Also
the semi-infinite case is obtained from the infinite case by setting 7—; = 0 for
1> 1 and 79 = 1. Then the semi-infinite wave vectors

(Trn(tsi2)em28) 0 and (W5, (1,5 2)e )

n>0

are vectors of polynomials of degree n = 0,1,2,... in z and z~! respectively,
as follows from (2.12); see [2]. In the semi-infinite case, we must define L} and
Ly ™ for integers n < 0; namely for n € Z:

(2.14) L X (z) = wa(e 2T (2)),
Ly (eXs=w5(z7Y) = my(eme i wy(x7Y),

where 7 refers to the projection 71 (3 ;o aiz') = 2250 a;z'. Observe that
Lg") = L7}, _L;r(n) = L;” for n € Z, n > 0; indeed, multiplying the vector
WUy (2)e™>4*" of polynomials with 2, n > 0 maintains, the polynomial charac-

ter, and thus for n > 0,

LY (W1(2)) = 7 (2704 (2)) = 2" Wy (2) = L{W(2).

3. Bilinear Fay identities and a new identity
for two-Toda 7-functions

Two-Toda 7-functions 7(t,s) satisfy the KP-hierarchy in ¢ and s sepa-
rately, of which the first equation reads:

8\ 8 \2 ? 8 \2 8?2
— ) 1 — ) 1 — ) 1 —4 | =0.
(8t1) 0g7+6<(8t1> 0g7> —1—3((%2) ogT 81,00 ogT =10

But they also satisfy the following identity:

THEOREM 3.1.  Two-Toda T-functions satisfy:3

{8210g7'n BQIOng} {8210g7'n 8210g7'n} —0

1
(3 ) Ot10s9 = Ot10s1 0s10ts ~ O0t10s1

8in terms of the Wronskian {f,g}: = %g — f%.
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The proof of this theorem hinges on the bilinear identity, due to Ueno-
Takasaki [18] and a number of lemmas:

PROPOSITION 3.2.  Two-Toda T-functions satisfy the following bilinear
identities:

(3.2) f Tt = [27Y, 8) g (¢ + [271], 8')e5T (it nmm=1g,
Z=00
- Tna1(t, s — [2]) T (t, 8 + [z ]) 2 (5—s/ )zfizn_m_ldz,
2=0
or, expressed in terms of the Hirota symbol,”

o0
(33) S pmonis(=20)p;(Br)et @FETI) L o,

Z‘X’ 3 (o g+ )
a
= p—m+n+] Qb)p]( ) D atk "ok ask Tm © Tn+1,

both, for the bi-infinite (n,m € Z) and the semi-infinite case (n,m € Z,
n,m > 0).

Proof. (3.2) follows at once from Proposition 2.1 and the 7-function rep-
resentations (2.10), whereas (3.3) follows from the shifts ¢ — t —a, ¢ —
' +a, s+— s—0b, s — s + b, combined with the definition of the Hirota

symbol. O
PRrROPOSITION 3.3.
= 9% log Tn41
(3 4) (Lk> pk—l(at)7n+2 OTn 0510ty
: 1 = = Plogrars
n,n+1 Tn+2T O~ 108 Tnt1
n+2in 0s10t1
= 92 log Tn41
Tk —1 pk—l(_as)Tn-‘rQ O Tn Ot10sy,
(3.5) hLy™h = = — .
nmn+1 Tnt2Tn 92 log Tn 41
0510t

Proof. Set m = n+1, all by, and aj, = 0, except for one a1, in the Hirota
bilinear relation (3.3). The first nonzero term in the sum on the left-hand side
of that relation, which is also the only one containing a;; linearly, reads
(3.6)

pi+1(—2a)p;(dr)e T To42 0 To + oo = =205419j(01) Ttz 0 T + Oa ]+1)
whereas the right-hand side equals

~ . 9 a 8
(3.7) po(0)p1(Ds)e™” ™ T Ty g 0 Ty = 951 - +ajpq— ot ) Tn41 © Tnl-
J+1

9For the customary Hirota symbol p(d;)f o g := p((%)f(t +y)g(t —y)
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Comparing the coefficients of aj;1 in (3.4) and (3.5) yields

- 82
—2 p;(0)T, OTp = ———T, 0 Tnat;
p]( t) n+2 n 8818tj+1 n+1 n+1
in particular, we have
pk—l(ét)7n+2 O Tp 62
3.8 = — lo ,
and so, for k =1,
2
T Tn+2 0
3.9 = — lo .
(3.9) 7'1%+1 95101, g Tn+1

Dividing (3.8) and (3.9) leads to the second equality in (3.4). But, according
to (2.13), the (n,n + 1)-entry of L¥ is given by (3.4). The similar result for L§
is given by the involution

te—— —s and L «— hLgjh™ % 0

Proof of Theorem 3.1. Set k = 2 in the identities of Proposition 3.3; then
subtracting Bitl of identity (3.5) from 8%1 of (3.4) leads to Theorem 3.1. O

The (n,n + 1)-entries of L? and hLJ2h~! have the following equivalent
expressions, which will be useful in the theory of Toeplitz matrices, as applied
to the distribution of the length of the longest increasing sequences of a random
permutation. The second identity, appearing in L} below is an expression
purely in terms of one component 7,41, at the expense of introducing a 9/dto-
derivative; the third identity involves 9/0t; and 9/0s; only, but at the expense
of involving nearest neighbors 7,, and 7,41.

LEMMA 3.4.  Two-Toda 7-functions satisfy:

0 T
2 _ v n-+2
(3.10) <L1)n,n+1 A

82
0s10ta IOg Tn+1

82
0510t ].Og Tn+1

0 T,
T2, -1 _ n+2
(hL2 h )n,n+1 N 0s1 log ™

82
Ot10s2 log Tn41

82
Ot10s1 log Tn+1

_ —ilo <T”+1)2 0’ ]
N 381 & Tn 8818t1 08 Tntl | -
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Proof. From Proposition 3.3 (k = 2), it follows that

0? log 741 - 0? log 741 Bitl (Tn+2 © Tn)
0510ts N 0510t Tn+2Tn
0?log Tpy1 O Tn+2

8518t1 8751 08 Tn

82 lOng+1 ( 0 lo Tn+2 0 Tn+1>

— —1
8318t1 8t1 Tn+1 + 8751 8 Tn

_ Qlogr (0 [ T O
831(%1 th & Tn 8318t1 & Tnt1

8 Tn+
— I
+ oty 8 Tn

21 . . 2
— 97 log T 41 <2ilog Tnt1 , O log < 0 10g7'n+1>>

1) ,using (3.9)

950, \“0t, 8 o, Ton %\ " as0n

0 . Tpp1 02 ) 92
— 971 7 logT, — | ———log Tnt1 | -
6t1 08 Tn 6818751 08 Tnt1 + 8t1 6318151 08 Tnt1

The second to the last equation establishes the first equation (3.10). The
second equation (3.10) is simply the dual of the first one by t; < —s;. O

The remaining statements in this section hold for both the bi-infinite case
and the semi-infinite case; we thank T. Shiota for showing us how shifting
the arguments in various directions, and repeatedly, leads to many different
identities.

PROPOSITION 3.5 (the Fay identity). If

/ !

(3.11) a—a' = [5'] =Dyl and = 5= o] = Y _[wl,

with p,q,p', ¢ > 0, we have

-1 -1
312) Y a5 B 0! + 7], 9) o Dm0 )
=1

17)6:1 (Zz_l - Zk_l)
ke

10"

rl ox"

9y o]
(Tn(a - [CL‘], ﬁ)Terl(O/ T [‘T]a 5’)%)
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/
=1 HZ:l(W - uk)

p/
= > Tpsi(a, B — [v) (e, B+ [vd])y,
(=1

s (v — v)
k£
1 o Hq/ T — ug
S (et - e g 1 THE=)
e ox Hl (I - U/C) =0
wherer :=n—m+q—p and ' :== —n+m + ¢ — p', with the understanding
that (0/0x)" =0 for r < 0.
Proof. The relations (3.11) imply
. 01— = _ 7 (1 _ w
(313) ez(fo(ai—a;-)zz — Hl ( yk) and eZ‘fo(Bi—ﬁl’.)z*’ — 1/ (1 Zk) .
(- z) Vi

If f denotes a holomorphic function in a large enough disc around z = oo,
as in

]. oo AP
o7 f T g

1 [T
= %izm f(Z)il_[’f

.1 —
= — f(xil)mxiy’i)x*w“m*ﬁp*lda:, upon setting z = 1
1 z

=0 [z —2,7)

= N
h 1(Zel_zk1)

(=1 k=
[’
1 i " i iz yk1>
7! (dm) f) D —zh) w—07

which uses the fact that the integrand has poles at x = zk_l (1 <k <p)and
at  =0,if r =n—m+¢—p>0. In = the sign change in dz due to z = 1/z
and the change of orientation of the contour integration cancel each other out.

If f” denotes a holomorphic function in a large enough disc around z = 0,
as in

f1(2) = mnp1(e, B = [2])mm (e, B + [2]),

then we have, again using (3.13),
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L]{ f’(z)ez(ﬁi_ﬁz{)z%z”_m_ldz
27TZ 2=0

1 (-
= — f’(z)%z”_m_ldz
2mi Jz=0 7 (1-"%)
1

!
_ /(Z) Hl{/(z - uk)zn—m—i-p’—q’—ldz

271 2=0 H? (Z — Uk)

/ /
_ N f/(w)wvnfmﬂﬂq’—l

7 ¢
=1 Hi:l (W - Uk)
[

1 /d\" Hq/ T — ug
+ 5 (@) f’(x)% ;
e Hl (.’I} - Uk) z=0
which used the fact that the integrand has poles at z = v, (1 < k < p’) and at
z2=0,ifr =—-n+m—p +¢ >0. O

COROLLARY 3.6.

Ta(t = [ 71,5+ [v] = [u)Tu(t, 5) = Ta(t, s + [0] = [ul)7a(t = [271], )

Taa1(t,s = [u]) Tn1(t = [T, 5+ [v]).

Proof. Settingm=n—1,a=t f=s+[v] —[u],o =t—[z71], B’ = s,
we have a — o/ = [z7!] and 8 — 3’ = [v] — [u], and thus p = p' = ¢’ = 1,

q=0,with0=—p'+¢ <n—m=p—q=1;that is, r =0, v’ = —1. Then
Proposition 3.5 leads to the proof of Corollary 3.6. O
COROLLARY 3.7.
1 1 Zfl
Tn(tys + 1)) (E+ 2] =[], s = [v2]) ==
A1 T A2
Tt + (2] = [ L s+ o)ty s — [v2]) ==
2 T A
-1 —1 !
= Tt (t+ [21 ], 8)7n(t = [257], s + [v1] — [v2])
V1 — V2
—1 -1 U2
+ Tnpa(t+ [z s+ [v] = [va])m(t = [257], 5) :
V2 — U1

Proof. Setting m =n, a =t+ 2],/ =t —[2'], 8=s4+[w], # =
s — [va], we have o — o/ = [27'] + [25'] and 8 — ' = [v1] + [v2], and thus
p=2,¢=0,p =2, ¢ =0, with—2=—-p+¢ <0=n—-m<p—qg=2,and
so, r = r’ = —2. Similarly Proposition 3.5 ends the proof of Corollary 3.7. O
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4. Higher Fay identities for the two-Toda lattice

LEMMA 4.1.

k+1
St — [z s + [y D vk

k41 k41 1
t=> [z s+ > [yl -
; ! ; ’ Hkﬂ( - % 1)
AL i#Em il
k+1 k+1 k
= 7N(t, 8)TN _k_1 (t - Z[z{l],s + Z[l{ﬂ) H (Y —
1 1 ;Zi
Proof. In Proposition 3.5, we set
k+1
a=t, a/:t_Z[Zj_l])
j=1
k+1
ﬁ + [ym ]7 =S + Z -
il;m
Now obviously,
k41 k41
a—ao =3 [z and 8- 6 = [y,)'] = D [vi ],
j=1 i=1

p=k+1,q=0,p=1,d/=k n=N-1, m=N—-k—-1, r=r"=—

With these data, we have

ket 1
E mv—1(a — [z, B)Tv—k(e/ + [, 1], 8 )Hkﬂ( .
- = ;
kil
= TN(O‘HB - [y;@l])Tkafl(alvﬂl + [y;zl]) H (y;ll - yz_l

i=1

establishing Lemma 4.1.

939
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THEOREM 4.2.  The two-Toda tau-functions 7(t,s) satisfy the following
two higher Fay identities:

(= [z + [y s 1
1) det( TN (t, s) yj—Zi)lgi,jgk
L1 AWAG) (4 S0 1) - SHe )

[Tk o(yr — 2¢) T~ (t, s) ’

<TN1(t — [z s+ [y}1]>
det
TN(t, S) 1<i,j<k

vk (6= il s + Sy )

T~ (2, 8)

= Ay HAET

Proof. The inductive method for proving the first identity is due to [6].
As to the second relation, we also proceed by induction on the index k. Since
the identity is obviously true for £ = 1, we assume it to be valid for £ > 1 and
we prove its validity for k4 1. Indeed, by expanding the determinant according
to the first column, we find

o (t— [z s+ [y ')
det ( ™ (L, s) >1<ij<k+1

k41

_ 1) 1TN— 1(t_[zz ]8+y1 TNlt_[Z 1]5+[y ])
= Z( ) TN(ts ) 1<i,j<k+1
=1 il
J#1
k+1 -1 -1
-1tz s+ [y ) - -
= > (u e~ II w'-vwh I e'-29
=1 ’ 1<i<j<k+1 1<i<j<k+1
i#1 .52
ek (E= Sl s + 0,007 )
: s) , by induction
T~ (¢, s
L AETHAETY
% (t,5)
) (= — —
=1 Hf+21(yl —Y; 1)H§2 (2" % 1)(_1)271

1 ) TN b1 (t— k+1 i—l S+Zk+1 Z—1>
= A THAGET ) :

by Lemma 4.1, ending the proof of Theorem 4.2. O

Such Fay identities were also obtained in the context of the multicompo-
nent KP hierarchy by J. van de Leur [19].
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5. Eigenfunction expansions and Vertex operators

In terms of the vertex operator,
oo i — ©\—il 0
X(t,\) = et LN g 2 AT ot

acting on functions f(t1,t2,...) of t € C* and using the diagonal matrix
X(\), define the following four operators acting on column vectors g =

(Qn(tl, to,.. '))nGZ:
(5.1)  Xu(t,p) = X(t, m)x(p), Xi(t,A) = =x" (N X (-t A),
Xao(s, 1) = =X (s, m)x* (WA, X5(s,A) = A" x (V)X (=8, A),

and the compositions
(5.2)

Xl A) Xoan(p, A) | e "
Xii(#a)\) Xz;(u,A)> T (Xl(t7)‘) X2(57>‘))®(X1(taﬂ) X2(57:u))

The main theorem of this section is the following!®

THEOREM 5.1.  The following holds: (i) in the bi-infinite case,

(5.3) < (Zj<n‘1/1]( )‘Ijly( )nez (Ejzn‘mj()\)th(ﬂfl))nez )
' (Xj<n ‘I’Z( DU ()nez (Xjon oA ) Wai(1))nez

L Xll(:uv ) XZl(M’)\) T
7\ Xi2(wA) Xoa(p,A) )

and (ii) in the semi-infinite case,

(5.4) ( (20§j<n111“1*].(/\)\111](u)) (ijn\l’*( )\IJQJ(:U’ 1) >0 )
. (20§j<n\IIEj()\il)\Illj(N))n>0 (ijangj()\ )\IIQJ(M 1 n>0

_ l XH le + (1 — %)71621 # )\Z 0
T Xyo Xoo 0 0
10For column vectors v1, vz, w1 and wa, we define

V] ®w w
(01 v2)® (w1 wa) = 1®w1 v Qw2 .
v2 QWi w2 Qw2
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COROLLARY 5.2 (eigenfunction expansion). In the semi-infinite case, the
functions below admit the following eigenfunction expansions:

,U/ _ el n n__\n
(55) (1 5) leRimle A>=:§:W Ny()  lpl < |2
1 )\ -1 Zi’osn(#n_An) o \II \1}
(1- ;) € = Z 23 2] )
eXT (on A 1 (1 4 AT s — ij MWy ().

The proof of Theorem 5.1 and Corollary 5.2 relies on Lemmas 5.3 and 5.4.

Remark 1. With the identities

(5.6) e 21 i1 _q and Za (1—a)7t,

the composition of X (t, ) and X (—t, \) relates to the customary vertex oper-
ator X (t, A\, u), as follows:

(5.7) X(—t, )X (t,p)f = X(~t,\) (ezi’"tiw‘f(t _ [/ﬂ]))
= e Zio tiAieZ?(ti+¥)uif(t + [)\_1] _ [,u_l])
= e T = )

A—p

A

= HX(tv Ky )‘)f(t>7

where X (¢, u, \) admits the following expansion in terms of W-generators:

65) X0 o= exp(iw_w oS0 —12)

1
_ Z Z AW with W = 6.
k=0 f=—00

Note that X;; and Xoo are closely related to the two-Toda vertex operators
defined in [6]. Acting on infinite vectors of 7-functions,'! they give

(5.9) Xu(p, A) =X1X1 = =x"(M)x(w) X (=t, )X (¢, 1)

Hwhere (§)% = 32,5, (%) (452)" and ( : ) = G
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= i l(3) xewn)

_ L(Z% i - kwékg)>
nez

=2\ e
A
= —X(t, \
- )\ ( 9 7#)7
(5.10)
Xoo(p, A) = X5Xo = —A"'x(A\)X* ()X (=5, )X (s, 1)A
= 5 ((G) xemn)
- N - a,ua)‘
p=A\\p ( ) €z
L SRS )\KkW(k)>
= — n.t
fr=A (kz:O L nez
ILL ~
= —X
Iu _ )\ (S’)\7/’L)
with!2

k

k n b - i

Wé,e) = Z ( : > (k)jWe( 7 and W(7£) — )g
j=0

Remark 2. One easily computes from (5.8) and (5.9):
WO =6,0, WV =J and WP =J?_n4+1)JY,  nez

n n n

0/0t, ifn>0

Jr(zl) = (—n)t_n ifn<0 , JT(LQ) — Z :Ji(l)J](l):
0 ifn=0 vhy=n
and
(5.11)
w =w® mw @ w® —w® L omw® 4 mim — 1w
= Ji(l) + mdyp , = J(g) +©2m—i— 1)JZ(1) m(m — 1)&;.

Before establishing Theorem 5.1 we first prove the following lemmas:

12Note that in the notation of [6]

X(t, A\, p) =

- A ~ - A
£ L1 A) and X(s, A, p) = s m Kaa(p, A).
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LEMMA 5.3.  The following hold:

. N n+1 X(—t, )X (t,u)Ty n X(=t, )X (t,pn)Tn

() )W) = - (§)" MR ()" MR
B . B -~ n X (5,0) X (—5,\)Tn nt+1l X(s,u) X (—8,\)Tp

(i) W5 (pTh) = (f)" FEEERAm - (2)1T ST s,

(iii) \Ifgvn(k_l)‘lll,n(ﬂ) — (/L)\)n X(*S,i\)fl(t,u)‘rn N (ﬂ)\)n_l M’

(iv) i Wopn(p!) = (ua) 7" XEERR ()7 XA T Tt

Tn—1 Tn

Proof. (i) By the explicit expression for X (¢, \), the right-hand side of the
first relation equals

_ (N>" 1 S5 tiui=x) (ng+1(t+ S el 7 ) IO e e [u‘ll,s>

A o1& A Tt1(t,s) Tn(t, s)

(1" Sr a0 et B (=
A Tn+1(t7 S)Tn(t78)

= Vi) ¥in(p)

by Corollary 3.7 with va — 0, v1 — 0, 21 = X and 29 = p, and finally by
(2.10).

(ii) Similarly

(é)" s -xh_L (_yn+1(t,s+[x1] )l + DY [u—l]))
75)

Iz 12\ » Tnt1(t, s) n(t

é " ezfosi(ui—ki) Tn(t7 s+ [/\71])7_”+1(t7 S — [luil])
I Tn+1(tv S)T"(t7 5)

= W, (AT ) Wen(p )
1

by Corollary 3.7, with z; — 00, 20 — 00, v1 = A1 and vy = w-
(2.10).

, and by

(iii) Also, the right-hand side of the third relation equals

neET"(tiu"’fsm"d n(t — [/1*_1]7 s+ [A_l]) 1 Tn—1(t — [N_l]v s+ P‘_l])
() ( ot (t,5) ) Tult, 5) )

= (ST i) Tt s F ATt~ [T )
Tn+1 (t7 5)7-" (tv 8)

= W, (A HWra(p)

by Corollary 3.6 with u =0, v = A™! and z = y, and by (2.10).
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(iv) Finally,

—n+162?°(s71u'i—t,:)\i) _i Tnt1(t + [)‘71]7 S — [Nil]) T (t + [)‘71}7 s — [Mfl])
() < B Tn(t, s) + Tn-1(t, ) >

— (MA)—n-‘—leE?c(Siui—tiXi) Tn(t + [)‘71]7 S)T’ﬂ(tv s — [1“71])
T’IL(t? S)Tnfl(u S)

= \I’in—l()\)\PQ,nfl(Mil)
by Corollary 3.6 with ¢ — t+[A7!], 2 = A\, v = 0and u = ! and by (2.10). O
In the next lemma we show that the Christoffel-Darboux type kernels,

formed by means of the two-Toda wave function (2.10) can be expressed in
terms of vertex operator acting on the 7-functions; set X := X(u, \):

LEMMA 5.4. When 1 < |u)| < |u|?, the following holds (bi-infinite case)

) T TN = — (§)" R = (K (1),
(i) Yjon U3, (AW (uh) = (2)" XX CoNm (1%, (7)),
(i) Sy U3, (0) = (uA)" HERTEARAL = (771K (1)),
(V) Xjon UE ) Way(uh) = (ua) 7" SERTEAT — (1%, (1)),

The proof is based on summing up the expressions in Lemma 5.3 and
noting that, given the inequalities above,

(%)n and (uA)" — 0 when n — —o0

and o
<—> and (uA)”" — 0 when n — +o00.
,u

Proof of Theorem 5.1 and Corollary 5.2. In the bi-infinite case, the state-
ment of Lemma 5.4 leads at once to (5.3), whereas in the semi-infinite case,
summing up the expression (i) of Lemma 5.3 yields a boundary term, by the
fact that 7o = 1. For (iii) the boundary term vanishes, since 7_; = 0. To
prove the first expansion of the corollary, let n T oo in the (1,1)-entry of (5.4),
assuming |u/A| < 1. Setting n = 0 in the (2,2) and (1,2)-entries of (5.4) yields
the second and third relations of (5.5), after first stripping the exponential part
from the equation. O
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6. A remarkable trace formula

Given two differential polynomials p(9;) and ¢(0s), define the customary
Hirota operation:

(6:1)  pO)a0.)S o= PG5 )1+ y.5+ gl — .5~ 2

y:z:O

THEOREM 6.1.  In the semi-infinite case, we have the following trace
formula involving elementary Schur polynomials, for n,m > —1:

1 ~ .
62 L"H'l Lm+1 1 — n 8 m _as T1 OTN-—-1-
02 Oéiél:\/ 1( )i TN (8, s)p +N(0)PmaN(—0s)T1 0 TN 1

Remark 1. Here is an alternative way of writing (6.2):

(6.3)
1 - <
Z (LY L5 )i = Tn(t, 5) i+i’§z+N pijpir ()pjr (=0s)Tn-1(t, )
0<i<N-1 ’ j+ji'=m+N
i,1',3,3' >0

where the p;; are the moments

i —//wye *Y) dx dy.

We shall need the following matrix of matrix operators:
(6.4)

Nip Nig \ [ Wiew=Des(A/ Wt Wiel =V s(A* /)Wyt
Not Nog )\ —Waelt " =Neg(A/NWH —Waelt=Ve"§(A* )XW !
where 6(A/A) = A6(A, A), with the delta function 6(z) = Y oo 2", as defined

n (1.3).

13

PROPOSITION 6.2. The following holds:
(6.5)

Ni1 Nig o Wy () ® UI(A) Wy (p) @ U521
Na1 Nag o —Uo(p ) @ WT(N) —Va(p ') @ U5(A)

Proof. Using (1.4) and Lemma 1.1, we compute
N = AWett=Negn AWt
= Wix(p) @ x" (AW
(Wix () @ (Wy) ™I (V) = W1 (u) @ Ti()

13Note that in the notation of [6], N1 = “%XNH and No = —“—;>‘N22.
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and
Nog = —AWy eW V5N A*) W5t
= =W X" () ® x(A) Wy
= —(Wax(p™ ) @ (W) "'X"(Ah) = =P2(u™h) @ ¥3(A 7).
The remaining relations are established in a similar way. O

Remark. The operators N(t, u, A) have been considered in [6]; they are
generating functions of symmetries on the W-manifold in the following sense,
by (2.8):

Nii = (=1)""xe=NMig(x L)
1A X (= AR ik k17 k—1+0
= (=11 A k(MF-TLE146),
(=1) M—Ag:l o g_ﬁ (M L)

PROPOSITION 6.3. In the bi-infinite case, the following holds:

(6.6) Y 2L = Ui(2) ® ¥i(2),
nez
Z ZLY = Uy(z @ W(zh).
nez

Proof. Setting = A = z in formula (6.4) for N;;, we find
Nii(t,z,2) = (—1)1'*1(5(Li/z) = (—1)14*1 Z 2 "L},
nez
which combined with Proposition 6.2 yields Proposition 6.3. O

PROPOSITION 6.4.  In the semi-infinite case, the following holds (see
notation (2.14)):

(6.7) YL = Wi(z) @ Wi(2),
nez
> zfnL;(n) = Wz HeW(z).
neZ

Proof. Acting with ), . zf”Lgn) on the wave function ¥y(z), recalling
that 7 is the projection 74 (3 ;c7) = > ;>0 a;2', and using the usual property
of the é-function in the third equality, we obtain:

(Z zl_nLgn)) (et = >ty (2"\111(2)6‘ Zfotizi)

nez nez
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0o, i z\"
o
neZ 1
= \Ill(zl)e_z(lwtiz{ _11
zZ1
Yt (2t—21)
= \Ijl( ) Zl t 26171

1—- 2

21

m .
= Ui(21) YU ()W () 2r B
i=0

by (5.5)

= (W1(21) ® Wi (21)) U1 (2)e” 20 B

which is valid for all z,z; € C; this establishes the first relation of Proposi-

tion 6.4.

Similarly, one shows for all z, zo € C

nez

leading to the second relation.

P
= Z \1]21 ‘PQJ

1

W5 (2 1)62?0“51_—2/,22

) 21 szZ

by (5.5)

= (U3(25) @ Wa(23 1)) Wh(z)eXr 5",

O

Proof of Theorem 6.1. Multiplying the first relation of Proposition 6.3
with the second transposed, and using Proposition 6.4 in the second equality,

we find

-, . —m n T(m
Z A" Lg)(LQ( ))T

n,me”Z

S S ()T

nez me7Z

(U1(A) @ UT(N)(a(u™h) @ U3(u1)
1(A) @ W5 (p H{(TFN), Ta (™)),

using regular matrix multiplication, in the last equality.
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Upon taking the trace of the matrix above up to N — 1, and using both
Theorem 5.1 and Corollary 5.2, we find

(6.8) 7n(t,s) S AT S (@M1, ™),

n,meZ 0<i<N-1
= 7n(ts) Y Cu(N)T5 () (TIN), Ta(p )
0<i<N-1

— )N LeET A sy~ A s+ 1Y)
L X5 (st A 1 (AT s — [ Y)

= )"+ s = [ D vt = s o [T

Then, using the Taylor expansion, in A~! and p~!, we find:

FeEDsF ) = an (00 f(ts F [u DA™

= an(:tét) (Z P (T05) £ (¢, S)IU,m> A"
n=0 m=0

o

= > (pa(E0)Pm(FO) f (1)) AT
m,n=0
Therefore, on the one hand,
69)  nt+N s =)= Y pa@)pm(=d)mi(t,s)A "™
m,n=0

on the other hand, using the explicit matrix representation of 7 (see [2]), we
see that

(6.10)
©p 1 L Vg (g L i
nE+ s — W) = // o2 it )zt =(si= 3000 Vo(w) g, dy

Y7 izt —siyt)
= e T Vamy)
//(1_£)(1_g)e dx dy

= Z AT //a:"ymeV” =Y) da dy

m,n>0
-n, —m
= Z Py A~
m,n>0

which, upon comparison with (6.9), leads to

,U'n,m(t; 3) = pn(ét)pm(_éS)Tl (t’ S)'
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Therefore (6.8) reads
N(ts) 3o AT Y (I ()

nmeZ 0<i<N-1

= (AN pi(0n)pi (=0Tt )N
i,7>0

Z P (=00)pjr (D) -1 (t, )N~ ™’

,3'>0

= Z AT ST pi0)pi(—0s)Ti(t, 8)pir (—0n)py (Os) -1 (t, 8).

n,mez i+i!=N4n—1
j+i'=N+m—1

Upon comparison of the coefficients of A™"u~"™ for n,m > 0, we find

~(ts) Y. (LPL)u

0<i<N-1
n T(m
= v(ts) Y (L")
0<i<N-1
since L\ = L7 L™ = (LI)™ for n,m > 0,

= E pi(ét)pj(_és)Tl(t7 5)pi’(_ét)pj’(és)TN—l(tv s)
i+i/=N+n—1
i’ =N+m—1

= PNn_1(0)DPNtm_1(=0s)T1 0 TN_1, for n,m > 0,

leading to the statement of Theorem 6.1. O

7. Two-Toda symmetries and the ASV-correspondence

Define the four vector fields
(W1, W) = Y;;(W1, Vo) := (=Nyj e W1, Niju Vo)
on the manifold of wave vectors ¥ = (¥, Wy) and the four vector fields
7= X7

on the manifold of 7-vectors. They are symmetries of the two-Toda lattice;
i.e., they commute with the basic (¢, s)-flows (see [6]).

THEOREM 7.1.  There exists the Adler-Shiota-van Moerbeke-correspondence
between symmetry vector fields on ¥ and those acting on T:

ay (et B (BT e - EAT),
\Ill \I/Q T T

Proof. For Ni; and Nag, the result follows from [6] by the conversion rule
from N; to Nj; (see footnote 13) and from (X(¢, A, u), X(s, A, ) to (Xy1, Xa2)
(see footnote 12). For i # j, we prove for instance the following two identities:
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_ NiyWa(z) (e — 1)X12T.

N e .

For the vector fields 7, = X197, acting on the 7-functions 7, consider the
derivation of ¥, with regard to that vector field:

(T1(2))n B e, (t,s)\  Talt,s)
(72) Uo(z) ( Tn(t, 8) )6_777n(t,8)
(e M7 (t, 8))Tn(t, s) — e Mru(t, s)Tn(t, s)
e~MT,(t, 8)Th(t, s)
Xlng(t,S)
Ta(t,s)

GRS

where in the above we have used the commutation of the symmetries with the
t-flows. Considering the vector field f = Xiof (see (5.2)) acting on column
vectors f = (fun(t,$))nez, we compute using (7.2) and, in the third identity,
the relation of Corollary 3.7, with n — n — 1, t — ¢t — [27}], s = s+ [\71],
2 =2, 29 =, v1 =0, vg = AL,

eStizt yn ((Xlz‘r(t — 27, 8))nTn(t, ) — (Xia7(t, 8))nTnl(t — [271], 5))

Wi(z)n ‘
Wi () et iy (¢, 8) T (t — [0, 5)
ezzi(zi—m)ueEi"D(tM—sN) (%) (’u)\)"_l

(=2 D (= =l st AT DT (ts) —p T a1 (= [T st AT (=127 L)
T (£,5) 7 (6= [~ 1],5)

) . -1 -1 -1
782(t7¢z’751)\ )Zn)\n71271 Tnfl(t [Z ]7S+ [)‘ DT’"(t [u ]75)
Tn (t, S)Tn (t - [/‘71]7 5)

ne1 X (=8, M) X (t, 2)Th—1

Tn

= —(\2) , using the definition of X (¢, z)

= =) W5;(A\")¥,(2), by Lemma 5.4 (i),
j<n
D e Vi (W) W3, (A ) W1(2)
\Illn(ﬂ)

NigeW n .
- _M7 by Proposition 6.2,

Ui (u)

thus proving

(7.3) (U1(2)n = —(N12¢¥1(2) ).

Comparison of both expressions (7.2) and (7.3) for ¥y (z) yields (i).



952 M. ADLER AND P. VAN MOERBEKE

(i) D) T

Consider now the derivative of ¥y with regard to the vector field 7,, =
X917h, acting on 7-functions. At first

(P2(2)n _ <e—n2¢n+1(t,s)>' Tn(t, 5)

(7.4) Do (2) n(t, ) e~ 7, 11(t, )

(€7 Fp1(t,8))Tn(t, s) — (€7 Tpi1(t, 8))Tn(t, s)
e 7,11(t, 8)T(t, s)

— (A1) (Xm)n.

T

Acting with the vector field f = X f on Us(z), and using (7.4), we apply,
in the third identity, Corollary 3.6 with n + n+1, with ¢ + t+[z71], s > s—[v]

and subsequently with z — X\, v — p~1, v 2

eDisizTtyn ((Xw(t,s[z]))mm(m(er(as))nwla,s[z]))

_ (W2 .
Wo o (p) DS =ty ()T 41 (85— [0 1])
o ) ) 1 n+l
— 7251-(27’7;/’) Sisipt—t;\Y) n 1
st (1)
% (A—z2) Tog2 (tHA " s—[e] = [u " D7 (t,5) —pATng1 ((H AT s — [0 )Ty (85— [2])

Tvz(tws)T'rL+1(t73_[H_l]

= €

Ss;z 1S\ (i>n pATn1 (t+ AN 8 — () Tnsa (b, s — [07'])
A AT (E, 8) Ty (t, s — [n1])

X(—=t, )X (5,2 HTnt1(t, s)

= (e Talt, 5)

= Z U1, (A)Tg;(z), from Lemma 5.4 (iv),
jzn
D jom P2 (p™ )W (V) P25 (2)
Won(u=t)

(N21,¥2(2))n .
= ———"—"2%" by Proposition 6.2,
Vo) P

and thus '
(U(2))n = (N214¥2(2))n-

Comparison with expression (7.4) yields (ii). The proofs of the other identities
contained in (7.1) can be done in the same style. Note that even the identities
involving N1; and Nagg, which were established in [6], can be shown in this
fashion. This ends the proof of Theorem 7.1. O
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8. Fredholm determinants of Christoffel-Darboux kernels

The following theorem involves determinants of the kernels:

Kiin(y,2) ==Y Wi(2) Uy Koin(y,2) =Y Wi(2)Ua(y™),
<n >n

Kion(y.2) =Y W,z NWy(y),  Koon(y,z) =3 Ws(z " )Wa(y '),
I<n >n

already mentioned in Theorem 5.1:

THEOREM 8.1. The following holds:

(det (K11,n(vi, Zj))gmgk) (det (Ko1,n (i, ZJ))1<Z ]<k)

(det (K12,n(yia Zj))1<13<k) (det K22 n yl, ZJ))ISi,jSk)

ez
< o Xa1(ye, z0)7 TTE=1 Xo1(ye, 2e)7 >
15y Xao(ye, z0)7 Tt Xoo(ye, 2)T '

(8.1) nez

nez

Proof. We work out the result for the kernels K19 and K71. Indeed, since,
using Lemma 5.4,

Kion(2j,yi) = Z‘I’zz DP1(z)
{<n

n—1 Za 1(taz —Sa yo‘)Tn l(t_ [ 3_1]75+ [yz_l])
Tn(t, s)

(yizj)

we have, using the second relation (4.1) of Theorem 4.2,

(8.2)

et (Z \Iféz(yil)‘l’w(zj)>
t<n 1<ij<k
k n—1 k 1 1
o a_ .o Tn—1(t —|2; "], 8+ i
o) (o5 )t
1 i1 Tn(t, ) 1<i,j<k

(Hw) INORRINE (H@mwy—wj
)

ikt = S s+
Tn(t, s)

k
= % (HXM(%%)T) :
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using the computation below. Observe indeed that compounding two operators
Xi2(2i, yi)
(Xiz(zr,90)7)n = (A "x(y)x(20) X (8, 21) X (=5, 91)7)n
yp T (1= s o+ [y )
yields
(Xi2(22, ¥2)Xa2(21, Y1) 7)n

= (Xuolezsy2)(az)" BT A (6= [ s + [y Dnez)

2
_ _ X (t;zt—sut zZ1 1
= (1222)" =) [ ] L I I [ Ly
j=1 22 Y2

T <t =I5+ Z[y[ﬂ)

1 1

_ <H yizi> H ezizl(tizjfsiyj) H (2‘;1 . Z;l) H (y;1 . y;l)
1 =1

1<i<j<2 1<i<j<2

2 2
© Tn_9 (t — Z[Zi_l]?S + Z[y;ﬂ) s

1

*

and so on; this establishes the equality (=) in (8.2) and the Kjs-identity in
(8.1).
Since, by Lemma 5.4,

Kiin(zj,y) = Z Wie(yi) W1e(z5)
l<n
_ (Z_j>n 1 eZZ‘tha(z;’—y?)T”(t - [zj_l] + [ i_l]a S)
Yi 1-— ;_]1 Tn(tv 3) ’

we have, using the first relation (4.1) of Theorem 4.2,

det (Z ‘I”{e(yz')‘lfle(zj)>
1<i,j<k

<n
k(k—1 A A(z k n
= (-1)% W)Az) (—1)k [] ( n’Ll)

ngi,jgn(@/i — %) =1

k kp,—1 ki, —1
_Hexta(z;‘—y;?‘)Tn(t_Zl[zj [+ 25y s

j=1
Lk

= — [[Xu(z,v)r
T
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In the last equality, we used the composition of the vertex operator

2"\ X(t,z,y)
Xi1(z,y) = Xj(t,y)X t,z:( )
) = Kl = (2 ) T2

several times, to yield

K k-1 Az _ kooam
HXll(Zivyi)T =(-1)"2z — H e2a=1(taz] =sayy) (H o
1 a=1

sz(zk —yo) \;5

k
<t+ >l -3l 1],3> ,
thus establishing the result, for the Kj; and K2 components of (8.1); the

remaining cases are more of the same. O

It is also interesting to compute the Fredholm determinant of the kernel
K = Ki3 5, namely
(8.3)

o0 Wk k
det(I—AK) := 1+;( - CCRMISYRN | (CENTE

over a set of the form F = FE; x Fy C R? with regard to the measure
p(z,y)dz dy.

COROLLARY 8.2.  The vector of Fredholm determinants (in the sense
above) equals

(8.4) det(] — AKT) = LA [ [y dwdy otz -

T

for the kernel KE = Kia,(y,2)IE(2), with Xia(z,y) being the corresponding
vertex operator, given before Theorem 5.1.

Proof. Putting the corresponding determinant obtained in Theorem 8.1 in
the Fredholm formula (8.1), we find for a subset of the form £ = E; x Fy C R?,

(det(I = AK"))nez
> —)\
1+Z( u
= ? il / /E’f - <IIIX $z,yz> H(P(%,yi)diﬂid%)
1
— ;kz:%y (—)\//EX(m,y)p(a:,y)dxdy> T

. le_)\ ffE dx dy p(m,y)x(%y)r
T

/ /det K(z4,y5)) 1<”<kH (4, y;)dz;dy;)




956 M. ADLER AND P. VAN MOERBEKE

9. Differential equations for vertex operators and
a Virasoro algebra of central charge ¢ = —2

Consider the vector of integrals

(9.1) Up = //Edwdyp(w,y)xu(%y)

over the subset E := [a, b] x[c,d] C R?, of the vertex operator Xj2(z,y), defined
in (5.2), integrated over the weight

p(x,y)dx dy = €V12(x’y)da:dy = X216 TY (I dy.

Also consider the vector of operators

0 0 2 . 0
9.2 Vo= =0 a3 S e S
( ) b ob da k i,jZZI J 8Ci+k,j
with
1
(9.3) 10 = Iz = 5 (30 + o+ k+ DI +nn+1)IY)
then the following theorem holds:
THEOREM 9.1. For allk > —1 and n > 1,
[Vlm (UE)n} =0,
with the vector J,(f) forming a Virasoro algebra of central charge ¢ = —2:
k3 —k
[32.37] = (k- 032+ (-2) ( > ) bt

Before proving Theorem 9.1, we first need a few lemmas. For the sake of
later investigations on matrix integrals (symmetric and symplectic), we intro-
duce operators depending on a real parameter o > 0. So, define Heisenberg
and Virasoro operators, depending on «,

a% k>0

k

Jlgl)(a) =:q I(—k)t_y k<0 and J,gQ)(a) = D=k i(l)Jj(l): ;
0 k=0

together with “vector operators” acting on vectors of functions f =
(fn(tlat27~-))n627

1@ = (@)
= (W@+n?)  and 50 =n ¥ = nd,
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(2) ( (2) )
o) = J
Iy (@) k, n( @) e

= — Z NS J] Ma): + <1 - %) ((k:+ DI () — ng)))

Z-‘r] k

- 0 _o S,
= ( ng J (@) : +(na+(k‘+1)(1 2)) Jip (@)
n((n —1)a+ 2)

(0)
+ J ) .
2 F nez

Note J,(gQ)(a) coincides for a = 1 with Jf) of (9.3). Given the vertex operator,
containing a parameter « as well,

X —i
Xa(u) = 6281)0“”16_0( Z;O K Biti?

and the “vector vertex operator,” remembering x(z) = (...,z7 %, 1,2,22,...)"

)

e} i — 0y 0
Xo(u) = A LDt tiut ayr 7 x (u),

we prove:

LEMMA 9.2.  The vertex operator X, := Xq(u) and J,geT)L = J,gz) ()
satisfy the relations:

Xy = [JY, Xo)+ Xo S,
)
—d N (Xu) = I Xau — Xau" L.

ou

Proof. Setting X := X, (u) and using

0

au™PX = [Btg, X] and u’X = lﬁt

A e

one immediately checks the first relation; although the following relation holds
for all k € Z, for brevity one checks it for k& > 1,

0 0
k+1 —i+k i+k
T —X = « U X —l— thu" X +a X —
8U ; ; 8tk
—i4k#0 i+k5£0
= ¥ - Mt Xl +a > X o
i>1 8tk; 1/ 8t74
—itk<0 —z+k>0

0 0
+ > iti[—,X] +aX—
i>max(1,—k-+1) Oti+h Oty



958 M. ADLER AND P. VAN MOERBEKE

= 2

i>1

0 o 0?
-2 x|+ 2 ¢ x
BT ] 3 ;k {atiatj ]
i,5>1

« o[ d o 0 0
-5 Zanlon ¥ +5 X L ¥ay

itj=k
4,j>1 i,j2>1

0
+aX8_tk

_ 95 o 9 i] (1)
= 3l ’X]+2i;k{[ati’X]’ e
i,j>1

T — k- 1)JM X +ax T,

R

where in the last equality, one has used the identity

) 0 o 0

— X],—| = u”J)X: E—1)ubX = (k-1 [—X}
g M) = (X (=1 = (6= 1)
0,521 i,j>1

Finally, using the above and the first commutation relation of Lemma 9.2, one
computes on the one hand,

agukJrl (X(w)u®) = (k4 DuFX u* + anuf X uo"
u

+ S[IP — (k= 1), X u) + a X g

| R

= (na+k+1D)u™rX 4 g [Jlf), Xu”a}

| R

(k= Dum (uFX = XJ0) + axume s

and, on the other hand,
T X um = Xum gl = S, xu]
+ (na +(k+1)— %(k + 1)> u (uFx — X7

+ onlgl) Xu™ 4+ Xu"aJ,gO)(om +1).

Using again the first commutation relation of Lemma 9.2, we see that the two
expressions are easily seen to coincide. O
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PROPOSITION 9.3.  Given the vector vertex operator,

u—l

oo i o 0
Xa(t,u) — Ayt Oy i x(u®),

define the generators J,(j)(a) by means of

FXalt,2) = 17 (0), Xalt,2)] gzkHXa(t,z) = 37 (0), Xalt,2)]

z

The q]],(f)(a)’s form a Virasoro algebra

{J;(f) (@), 1% (04)} = (k= 0J)(0) +c <k31; k) Skt

with central charge

=is((5)- ()

The J],(Cl)(a) form a Heisenberg algebra, interacting with Virasoro, as follows:

k
@00 @] = o
1 1
12@.30@)] =~ 3@ k1) (5 = 5) e

Proof. The proof follows from Lemma 9.2 and an explicit computation for
the central charge. O

PROPOSITION 9.4.  The vertex operator, defined in (5.2),
XlQ(ua U) = A71X<_S7 U)X(t7 U)X(U)X(U)

leads to a Virasoro algebra of central charge ¢ = —2,

0
5t Kaa(w,0) = I, Ko, 0)]

with generators (in t)

1 =50

a=1

= (R0 +en+k+ DI +nm+I”)

Similarly, the involution u < v, t « —s leads to the same Virasoro algebra
m s, with same central charge.
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Proof. Noticing that one piece of Xja(t,s;u,v) is precisely X, (t;u) for
a =1, we apply Proposition 9.3 for ao = 1:

%uk“XlQ(t, sju,v) = (;—uukﬂxl(t; u)) X(—s,v)x(v)
= [120). %1t )] X (—s5,0)x(v)
= [P, Xl
The central charge ¢ = —2 is obtained by setting a = 1 in the general formula
for ¢ in Proposition 9.3. O

Proof of Theorem 9.1. We consider the vector of operators given by the
double integral of a vertex operator,

(9.4) /ab dz /Cd dy% ($k+1xlz(x, y)p(z, y)) :

thought of as acting on a column of functions F'(¢, s,c). On the one hand, the
integral (9.4) equals

r=b

d
05 = @[ dyXia(e, et

r=a

_ k+12 k+12 b d Vig(z,y)
= |b 7 +a 50 dr | dyXis(x,y)e :

On the other hand, by Proposition 9.4, it equals

d b o
9.6) = /dy/ dzx (%x’”lxlz(ﬂc,y)) p(z,y)
d b . .
+ / dy/ dx Xqo(z, y)z* Zic,-jx“lyj p(x,y)

4,321

d b
([J}(f),] —+ Z ZCZ]L>/ dy/ d$X12(x’y)€V12(x,y) ’

ig=1 Ocivkyg

where the derivations d/da, 0/0b, 0/0c act on the operator only and not on the
function F'(t, s, c); note that for an operator A, (0A)F = [0, A|F. Comparing
the two ways (9.5) and (9.6) of computing (9.4), we obtain [V, Ug] = 0, with
Vi as defined in the beginning of this section. The rest follows from the next
argument:

[V, UR] = > U * [V, , UglUy ! = 0.
k=1

Incidentally, in view of Corollary 8.2, it also implies that [V,, e *UE] = 0, since

“AUg _ voo  (=N)"rm
e e =3 01 U O
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10. Vertex representation of probabilities
and Virasoro constraints

Consider a weight p(y, 2)dy dz = p;s(y, 2) = eVesW2)dy dz on R?, with
po = "0, where

(10.1) Vis(y,2) == cyz + i iyt — i si2".
1 1
Given the space of Hermitean matrices Hy, and given
spectrum M; = {z1,...,zn} and
spectrum My = {y1,...,yn}, with My, My € Hy,
we define, for a set F C R?,

Hy g = {(M1, M) € HY, with all (z,,) € E}.

Consider the product Haar measure dM;dMs on the product space ’H?V, with
each dM;, decomposed into its radial part and its angular part, as in (0.16).
Also define the probability measure

dMldMQeTth,S(MLMQ)
ff?—(?\, dMldMQ@Tr%xs(MlvMZ).

Recall from (9.3), the definition of the vector J],(f); also define another one
j](f):m

1
(10.2) JY = (I ez = §(J,§2) +@2n+k+ DIV 40+ 1)) e,
. - 1 - -
§® = @Qapﬁzzzigéﬁ4—@n4—k+1y¢”—%n@p+1)¢m%ﬁ%

Given the disjoint union

(10.3) E = Ey X By :=Ul_ [agi_1,a2;] x Ui_{[boi_1, bai] C R?,
define the following integral:

(10.4) Us = [ [ Xuala,p)m(e. y)dody,

of the vertex operator X2, defined in (5.2). The main theorem of this section

1S:

Rt =30 =12

t——s
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THEOREM 10.1.  Given the set E, as in (10.3), the probability

P(all M;-eigenvalues € Fy and all Ms-eigenvalues € Eo)

fﬁﬂEdMymbe“WAMw%> T

10.5 = n, _.
( ) f sz dMidMs eTr Vi, s (M, M2) T

is a ratio of two T-functions T and T,, such that
2 = ((Ug)"7)n-

Moreover, T, and TF satisfy the partial differential equations, labeled for
E>—1,

(10.6) ( Zakﬂ + Jy g) T, + cpk+n(0t)pn(—5s)rf o Tf_l = 0
k1 0 72) ) _E 3 AV-E . _E _
i=1 v
Remark. Whenever some a; or b; = 0o, we must interpret: ak+1 a?l or
bk'H o; = = 0; in particular 7, satisfies the same equations, but without the

boundary terms.
The following proposition is due to [12], [8], [9]:

ProrosiTION 10.2.

n(n—1)
27) " 2 (€Y )1<i j<n
T <iss
(107 o) A A@AQ)

PROPOSITION 10.3. For E = E; x Ey C R2, the following holds:

(10.8) //2 BCTT(M1M2)€TYZio(tiMf—SiMé)dMldMQ
H

N . .
= //N H(dl'kdykezf?il(tix}c_siyi)+0$kyk)AN(m)AN(y)‘
ET k=1

Proof. Consider a symmetric function f(z,y) := f(x1,...,ZN; Y1, -, YN)
in y1,...,yn for given z1,...,zyN; then we have, using the skew-symmetry of
the Vandermonde Ay(y),

/ An(@)An(y) f(@,y) det (e59), _, . dady
JRQN

- / R2N An(z) Z (_1)0AN(y)f(37vy)ezyxiy”(i)dxdy

O'GHN
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e / R2N AN(x) Z (71)0AN(y0‘—1(1),...7y0._1(N))

UEHN

N . .
@Y1y, ,ya-—l(N))ezl i ddy

o€elly

- / ]R2NA ( Z (= 1)0(_1)0) AN(yh...,yN)f(x’y)eEiVl‘iyidxdy

N
= N[ [ An@AN W) @)™ dady,

The function

N N

flz,y) = HIElez(ﬂﬂuyi) = HIE1 (i) IEy (yi)
1 1
has the desired symmetry property, so that, using (10.7), one computes

// ecTr(M1M2)€T1"Zio(tiMlifsng)dMld]wé
H

2
N,E

= // Hd$1delA2 AQ H eli= 1(tzxk slyk)

// dU]_dUQGCTr UlmUlTUQyU2T

N // N Hdm’ delA2 AR (y H e izt (tizy—siy})
E

// dUldU2€cT&":1:U2yU2T’

substituting Us for UITUQ,
N N
= ¢n //RQNHdl?indyiﬁ?v(ﬂf)A%v(y)f(%y)
1 1

H e Xzt (L, —siy}, )det( Cx‘yj)lgz‘,jgjv
An(z)An(y)

= cy //EN Hdmi II[dyiAN(;z;)AN(y) H ez (timy —siyy)+e ThYk
1 k=1

where the last identity follows from the previous calculation. O
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Consider now a more general weight p(y,z)dydz = pis(y,z)dydz =
eVes WA dydz on R2, with po = €Yo, where

o0 [ee] [ee] oo
(10.9) Vis(y,2) := Vo(y,z)+z tiy’—z siz' = Z cijyzz]+z tl-yz—z siz",
1 1 1

ij>1 1

with arbitrary V) and the inner product with regard to a subset E C R?

(10.10) (f,9)8 = /E dy dzpy (v, 2) f(1)g(2).

Given the moment matrix (over E),

(10.11) mn(t, s, ¢) =: (pij)o<ij<n—1 = (U, 27) B)o<ij<n—1,

according to [2], [3], the Borel decomposition of the semi-infinite matrix'®
Moo = 51_152 with S; € 'D_Oop, Sy € DO,oo

with S7 having 1’s on the diagonal, and S having h;’s on the diagonal, leads to
two strings (pM(y), p®(z)) of monic polynomials in one variable (dependent
on E), constructed, in terms of the character x(z) = (2")nezn>0, as follows:

(10.12) PPy) = Six(y), pP(z) = h(S3") x(2).

We call these two sequences bi-orthogonal polynomials; in fact, according to [3]
the Borel decomposition of ms, = S| 1S, above is equivalent to the “orthogo-
nality” relations of the polynomials:

(10.13) (P B = bnmhn.

The matrices
Ly :=S1AST!, and Lg:= SoAT Syt

interact with the vector of string orthogonal polynomials, as follows:

(10.14)  LipM(y) = yp(y), AL h PP (2) = 2pP)(2).
Also define vectors ¥; and U3, as follows:
(10.15) Wy(z) = eZtkzkp(l)(z) and U5(z) == e_zskzikh_lp@)(z_l)

(879 'x().

— eEtkszIX(Z) — efEskz_k

15Dy ¢ (k < £ € Z) denotes the set of band matrices with zeros outside the strip (k, £).
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As a function of (¢, s), the couple L := (Lj, L) satisfies the two-Toda lattice
equations (2.3), and ¥; and W3 satisfy the equations (2.7); remember that L,
¥, and P35 all depend on E.

Moreover, according to [2], Theorem 3.4, the determinant of the moment
matrix can be expressed as a 2n-uple integral over E® C R?™:

(10.16)

n
nldetm,(t,s,¢) = // A ()AL (v Vs (Wks0k) gy oy
(t,s.c) sy (08l >kr:[1( oy

— n!det(En(t)moo(O,O,C)En(—s)T>

n—1

- H hi(t,S,C)
0
= Tf(t,s,c),

where E,(t) := (the first n rows of eX1 A") is a matrix of Schur polynomials
pn(t). Also 7,(t,s,c) is a 7-function with regard to ¢t and s. Note that for
Vo = cxy and F = E; x E5, this integral is precisely the one obtained in
Proposition 10.3.

PROPOSITION 10.4.  Given the bi-orthogonal polynomials (pk, , plC ) for
a general weight py = €' on R2, the kernel defined in terms of (10.15),

(10.17)
K(y’y,;zvz/) = Kn(yazl) = Z \Ijlk \112 k:( 1)
0<k<n
= 2621131 )hkp()zll,
0<k<n

defines a projector; i.e., it has the reproducing property with regard to the
measure podz dz':

/ K(y,y;2, 2K (2,2 ;u,u)po(2, 2 )dz d2' = K(y,y';u,u)
RQ

and

(10.18) //2 K(z,2';2,2")po(2,2')dz d2' = n.
R

Proof. Using the explicit expression (10.17), using the fact that p; s(y, 2)
= pg(y,z)ezl (tiy*=5:2") in the second equality, and using the orthogonality
relation (10.13), in the third equality, one computes
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// K(y,y;2,2)K(z,2';u,u")po(2, 2" )dzd2
RQ

0<k<n

I

0<k,l<n

Z eZtly

0<k<n

and

Z eEt%y

<0§€<n

Etzy h 1 (2)
//TR Z pk k Py

.e—Esiu’i

h 1 (2)( ) —Ys;ult

)i P (e E)

(2)hg 'p”

i (1
Z eEth pg )

(u')e_z‘”“/i) po(z,2")dz d2'
()

P2 (S (2)h  prs (2, 2 )dz de!

= Ky(y,v') = K(y,y/;u,u),

//2K(z,z';z,z')po(z,z')dz dz'
R

/ Kn(z,2)po(z,2")dz d2
R2

Z//R W,

(k. prs(z, 2)dz d2

0<k<n

Consider, for E € R?, the vectors (see (10.16))

TE_

(10.19)

(=)

T

(// " ﬁ (dwkdykpt,s(xka yk))An(w)An(y)> ;
k=1

n>0
o (. R?
(Tn)nZO T (Tn )nzoa

with po as in (10.9), and the vector of operators Ug, defined in (10.4), but for
the weight pp as in (10.9). Given the set E C R?, define, in accordance with

(9.3):
(10.20) Vi o=
(10.21) Vi =

We now state:
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PROPOSITION 10.5. For E = E; x Ey C R2,16 we have

(10.22) 72 = ((Up)"7)n.

Proof. In what follows, we use the monic bi-orthogonal polynomials pz(»l) , p§2),

defined by p;s(z,y) on R?; therefore the h;(t,s,c) are the R? inner products.
We first compute, using (10.16) for E = R? and Proposition 10.3, and remem-
bering notation (10.4), and formulae (10.16) and (10.17):

:’in - (H hi1> //En ;!:[(dwkdykpt,s(xk,yk))An(f)An(g)

n—1 n
<H hi1> /./ [ dzedyepe.s (@i, ye)) det(p(2s (@)1 << det 0, (y:)1<i<n
0 E™ k=1

// H(dmkdykpo(xk,yk))det (emiz% Zpl(-ljl(mk)hi_llpf_)l(yz)e25”’2>
By i=1 1<k, <n

0<i<n—1

// H(d:vkdykpo(xk,yk))det< Z ‘I’li(mk)‘l’zi(yel))
By 1<k, 0<n

// H(Podxkdyk)det(Kn(ﬂfk,ye))1§k,e§n
" k=1

//n H(podwkdyk) <% HX12($k7yk)T> , using (8.1),
k=1 k=1 n

_ (% (//EXlg(my)po(my)dxdy)n‘r)n,

establishing (10.22). O

Proof of Theorem 10.1. In [2] (see for instance the introduction), we have

shown that the vector 7 = TR2, which is independent of the a;’s and b;’s,

satisfies the infinite set of equations, for k > —1,

0
Vir = (J(z) + icij——)T =0
g ”22:1 T Ock1ig
i - B
Vir = AP+ Y jey———)T=0.
k UZE 10¢; itk

16((Ug)"7)n means the n'® component of the vector (Ug)"r.
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According to Theorem 9.1 , we also have [Vi, (Ug)"] = 0 and thus
0= [V, (Ug)"]r = Vi(Ug)"7 — (Up)" Vit = Vi(Ug)";

taking the nfh component, we find (Vi(Ug)"7), = 0 and similarly with Vy
replaced by Vi. Since (Ug)"7), = 7 by (10.22), this leads to:

(10.23) ( Z ’““ 0

0 0
( Zbkﬂ(‘)b +Jkn+ Z]CU@ )Tf = 0.

ij>1 Cij+k
But, by p. 285 of [2] and by Theorem 6.1,

87’5
Ocap

n—1
=7F Z(L?Lg)n = Patn—1(0)Pgrn-1(=0s) T o T 1.
i=0

(10.24)

Remember, one is really interested in the probability, expressed by 7-functions
(see (10.8) and (10.16)),

ffH2 » dMldMQ eTth’S(M) TnE

P((My, My) € H;, ) = ——= =
(M, M) n’E) ffH%dM1dM2€Ter’S(M) n

for pg = €'0 = e“*¥; thus, we must set all cij = 0, but ¢ = cq1; this leads to the
statements (10.6), ending the proof of Theorem 10.1. O

11. PDE’s for the joint statistics of the spectra
of Gaussian coupled random matrices

Consider the Gaussian probability measure
(11.1) Cnd M dMye ™2 TH(MP+M3 —2eM M)

defined over the space of Hermitean matricex H2 = H,, x Hy,, with a coupling
constant c. Consider the joint probability

(11.2) P,(E) := P(all (M;-eigenvalues) € E, (Ma-eigenvalues)e Es)

for a set of the form EF = E x Ey := U;-n:l[a%fl, ag;] x Ule[bm;l, bai| C R2.
Before stating the theorem, we remind the reader of the differential operators
Ay, Bk, depending on the boundary points of E' and the coupling constant c:

(11.3)
.0 .0 1 L .0
(Za—aﬁ%—@)’ = (oLt 3

8 ® 0 0

AQ—ZCLJan c Bg—jzlbja—b]—C&,
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they form a Lie algebra parametrized by c:

1+ 2
(11.4) LB =0 [AL Ao = m5 Al [ Bl = A
-9 1+ c?
[Ag,Bs] =0 [Ay, B :1_—2231 [B1, Bs] :—1_2281.

We now prove Theorem 0.5, as announced in the introduction:

THEOREM 11.1 (Gaussian probability). The jomt statistics (11.2) satis-
fies the nonlinear third-order partial differential equation'” (F,, := 1 log P,(E)):

(11.5)
1},41 { 1}31 =0

Remark. When E; = Es, equation (11.5) is trivially satisfied.

n s n

Proof. From (10.5), it clearly follows that

Py (E) = E(t s, Cij)
B2(t, 8, ¢i5) ﬁ
where 7 is an integral over E" C ]R2”, ie., (z,y) € E} x B = E"™,
(11.6)
TE(t,s,ci5) = / - dxdyA,(z)An(y)

no g (e 2emnyR) 300 (birh s YD s Cipei
JJ e (i:0)#(1.1) ,
k=1
and where £ denotes the locus
L ={t;=s5;=0, ci1 = c and all other ¢;; = 0} .
Observe the following involution on 72(¢, s) = 7,(t, s, a, b, ¢):
(11.7) Tn(=s,—t,b,a,c) = 1,(t,s,a,b,c),
implying for the A;, B;, defined in (11.3) and V;, W;, defined below:

A; — (—1)iBi, V; (—l)iWZ' .
In view of (11.6), we Write down the Virasoro equations (10.23) for 7,

but with the shifts ¢5 — —5 + to, s2— 5 L | s5. Tt is convenient to consider new
Virasoro generators Vj and Wi, such that

E

0

11. =4 —

0
8_tk and Wk|£::|:

7in terms of the Wronskian {f,g}x = Xf.g — f.Xg, with regard to a first-order differential
operator X.
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namely, in terms of (10.20) and (10.21):

(11.9)
1 ~
Vi = P 1(V—1 +cV_y)
_ 0 | n(ti—cs1)
o 8t1 02 -1
1 . 0 0 .0 . 0
+ -1 Zz(tlati,1 +08285i,1)+ Z CU(ZGCFLJ' +Jcaci,j71)
i>2 g1
1,j#(1,1)
1 ~
W= (cV_1+V_y)
_ 9 n(ct1 — s1)
T sy -1
1 . 0 0 .0 0
B c2—1 ZZ(Ctl ati,l + s 857;71)—’_ Z C”(C’Laci—l,]’ ]aci,jfl) ’
i>2 i,5>1
i,j#(1,1)
19}
Voo o= VO_C&
3] L, 0 nn+1) , 0
= —— ti— S
i +Zz wto et i) o
i>1 i,j>1
(4,7)#(1,1)
- 17}
Wy = Vo—c%
0 .0 nn+1) .0
= 3% + Z:zsZ s, + 5 + Z JCij ey
i>1 i,j>1
(4,9)#(1,1)

With this new notation, and by virtue of (10.23) and (10.2), the 7,’s satisfy
for all n > 1:

(11.10) .Aan = Van and Ban = Wan, k= 1, 2.
In particular, on the locus £, we have from (11.9),
_ Ot __ OTn
A, akinlf Bi1y, LT o,
— (-0 4 nntl) o n(n+l)
A27n£—< 8t2+ 3 )TnL BQTHE_(852+ 2 ) nﬁ’
and so
(11.11)
8%1 log7,| = Ailogm, ; 8%1 logm,| = Bilogm, ;
8%2 log7,| =—Aslogm,| + —n(n;l) 8%2 log7,| = Blogt,| — (n;l)
L L L L
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Using [B1,Vi]| =0, we have

L

BiA T,

L

OF COUPLED RANDOM MATRICES

BiVity,
c
VB,
c
ViWhty
L
ENEINTET
Ot; \ Os1 12 )™ c

)

o2 n ne
8t1851 1—62 Tn

L
and so, on the locus L,
0? ne
11.12 log 7,| = 10g 7,y .
( ) 311051 0g T, ) BiAjlog T T a
Using [B2, Vi|| = 0, we see that
L
BoAimn| = BV,
L L
= VB,
= ViWor,|,
0 ( 0 nn+ 1))
= 4 — Tn
8t1 882 2 L
0? n(n+1) 0
— + — | ™ ,
0t10s9 2 oty r
and so, on £, we have!8
82
(11.13) log7,| = BaAjlog7,.
O0t10s9 r

971

Setting (11.11), (11.12), (11.13) into the formula of Proposition 3.3 (for k = 2,

as spelled out in Lemma 3.4) and its dual, namely

82
0s10ta log Tn

32
8 —10 T a
(11.14)  ——=—log ol 8%282 & and ——log Tntl
ds1 7 T a5 1og 7 ot 8,

18Using the following relation for non-commutative operators X and Y’

XYlogf = f%(fXYf—Xf Yf).

82 Y
0s10t1 IOg Tn
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one is led to an expression for B log 22 and, using the involution (11.7), a
1

Tn—
dual expression for A; log 7+

Tn—1
Tn41 ./4281 log Tn
11.15 —Ajlog L =
( ) 1708 Tn—1 A1Bylog 1, + 75
_By lOg Tn+1 _ Ba Ay log Tn
Tn—1 By Ay log 1, + 2nf1 '

C

Upon taking A; of the second expression, subtracting from it B; of the
first one and using [Ay, B1] = 0, one finds the following identity

BoAqlog T, Aoy log

'BidilogT, + 25 T AiBrlogr, + <

=0.

1

This difference amounts to the equality of two Wronskians (G, := %log Tn):
(11.16)

{BzAlGn L BLAIG +

C C
m}Al = {.AQBlGn , A1B1G,, + 21 }31 .

Because of the fact that
log P,(F) = IOg(Tn(E)/Tn(Rz)) = log 7, (F) — log Tn(R2),

together with the fact that A;7,(R%?) = Bi7,(R?) = 0, we have that
Fo.(E) := Llog P,(E) satisfies (11.16) as well, thus leading to (11.5). O

T

Remark. For small n, the equation (11.5) for 7, = det m,, can be checked,
using the explicit moment matrix my, = (fi;)o<i j<n—1, Where
i = / do [ dyziyfe 3G tyP-2cay)
Er B
It suffices to compute the action of A; and B; on ji;5, namely

(11.17)
Ui—1,5 + CJ i j—1

Arpij = pit1,j + Aspiiz = (i + V) pij — piva,

2 -1
jM‘,‘_l—f—C’L.,U,‘_L' .
Bipij = — i j1 + 2 12 = Bapij = (j+ 1)Mz‘j — Mij+2

and check equation (11.15), at least for small n.

12. Coupled random matrices with
the Laguerre statistics

Consider the Laguerre probability measure

(121) CndMlszeTr(_Ml—i_a log M1 —Ms+alog M2+CM1M2)’
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defined over the space of Hermitean matricex H2 = H,, x Hy, with a coupling
constant c¢. Consider the joint probability

(12.2) P,(E) := P(all (M;-eigenvalues) € E, (Ma-eigenvalues)e E»)

for a set of the form F = F; X Fy = Uzrzl[agi_l,agi] X Ule[b%_l,bgi] c R2.
Before stating the theorem, we remind the reader of the differential operators
Ay, Bi, depending on the boundary points of E and the coupling constant c:

(12.3)

) B .9 B
A= 0i5 ~ e 5= bigp, ~ a0
p

Jj=1
-~

0]
_2: 2
.AQ— a]a—a]—l—(n—kl—ka)fh—c

j=1

B L, 0 B

= 2 7 1 - .

Sea” Bs 2; b; a; +(n+1+4a)B: cac12
=

Note that Ay and Bs acting on 7,, depends on the index n.

THEOREM 12.1 (Laguerre distibution). The joint statistics (11.2), namely
P,(E) = 1,(E)/mo(RT), is a ratio of two functions, each satisfying the non-
linear third-order partial differential equation'® (G, := log 7, (E)):

(12.4)

{(82./41 + Ci)Gn y BlAlGn}

0
— {(.,4281 + C—)Gn , AlBlGn} =0.
Oci2

Aq dcat By

Remark. Equation (12.4) is actually an inductive set of equations with re-
gard to n, since it contains derivatives of the form 07, (E)/0ce; and 07, (E)/Oc12.
The point is that, according to (10.24), these derivatives can be expressed in
terms of (¢, s)-derivatives of the expression 7,,—1(F) in (12.5) below; to be
precise,

ot (E)

) pn—i—l(ét)pn(_és)Tl(E) o Tn—l(E)
C21

t=s=c;;=0,c11=c

- . ,z: MiEjpi’(_ét)pj’(és)Tn—l(E>
i+1'=n+1
J+i'=n
ivilvjajlzo

t=s=c;; =0,c11=c

The t, s-partials of 7,,_1(F) can then be expressed again in terms the operators
A;, B; applied to 7,—1, etc... .

This result hinges on knowing, as before, the Virasoro constraints for the
(t,s) deformations of the matrix integral (12.1). Unlike the Gaussian case,

in terms of the Wronskian {f,g}x = Xf.g — f.Xg, with regard to a first-order differential
operator X.
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which could be obtained by merely shifting the time, we invoke here a method,
due to [5], of representing the matrix integral by vertex operators acting on a
vacuum vector.

ProrosITION 12.2.  The integral

(12.5)
(E) = / drdyA, (2)An(y)
-

n

H p(‘rk‘)ﬁ(yk)ezzl(tix};_siy’i)+zi,j21 Ci.ix};yi’
k=1

with the weights p and p satisfying

/ . o’ ~ ~ 3t
(12.6) _ﬂzg:M and _QZQ:M’
P Yisoid b f Yiso®?
satisfies the following Virasoro equations for k > —1:
(12.7)
2r 9 )
(Z af“f(az)a—ai - Z( ng + Z meme 8cm+k+zz) ﬂiJlﬁz‘H)) T=0
1 >0 m,e>1
2r 9 9
(Zbk+1f(b)ab Z( A2+ D temeg——) - ﬂuﬂ&)m)) T =0.
1 i>0 m,e>1 ™y etk
Proof. See [5].
Proof of Theorem 12.1. Since
p(z) = p(z) = z%7,
with .
P and f(z) =
p z
we have By = —a, 01 =1, ag =0, a1 = 1 and all remaining «; and 3; = 0.

Therefore, for all k& > 0,

2r
0
& (2) (1) (1) =
(12.8) (21: ai+18_ai _ (Jk +ady =Tl + Y iy 3Ck+z,3>) =0

i,j>1

4,j>1

2r
0 ~(9 ~ 1) 0
bf“— — (J( ) —I—aJ( ( + jcii ) T=0,
(2; abi k k k+1 2: jaQJ+k

where J ),J N ,JI % ,.JI are defined in (10.2) and in the formulas following
Theorem 3.1. Guided by the same principle as (11.8), one redefines

=L 0 .0 n(n+2a+1)
Zl ' Zat T 2. i dey 2
i,j>1

(l}j)#(l,l)
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> 0 0 : 0 0
Vo = th Dti 8t2+ g;l zc@']m+(n+a+1)(l}1+a—h)

(6:5)#(1,1)

and similarly for Wj, using the map s <= —t and ic;;0/0ci44,j < jc¢i;0/0¢; jtk-
Here the involution acts as follows:

Ai = Bi, VieW.

Then 7, satisfies for k = 1,2

(12.9) Ak = Ve and By, = Wiy,
Evaluating A7, Brpmn, A1Bim,, ABi7, along the locus L, using the
commutation relation [A2, Wil = —caci21 and (12.9), and setting d,, =
n(n 4+ 2a + 1)/2, one checks
o, or,
a—tfc = _('Al_dn)Tn’ﬁ 8—;62 (Bl_dn)Tn‘ﬂ
0%,
6318:;1 = - ("41 - dn) (Bl - dn) Tn|£
L
9%, 0
= - — 1)d,) (B1 —d —Cc—
951013, (A2 — (n+a+1)d,) (Br —dp) 080217—”[:
and so,
dlog T, n(n+2a+1)
=Bl -
851 L ! Ong|£ 2
02 log 1, B | d 02 log 1, (A B+ 0 )1
—_— = - og T, and ————| = CH— | 108T,
0510t . 15108 Tnlz 010t - 2o Oca1 8 "z

Setting these expressions into equations (11.14), we find an equation and its
dual:

Tnt1 (A281+Ca ) log 1,
_./4 1 nt 2 2 ]_ = €2
1708 Tn—1 +(n+2a+]) A8 long
Bo Ay + c52-)log T,
“Brlog ™ 4 (2n+2a+1) = (BoAr + cep;) log 7

Tn—1 BlAl IOng

Finally, upon subtracting B; of the first from A; of the second, one is led to:

(A28 + Cac )log 7, (Ba A + cac )log 7,
Ai1Bilog 7, A

Bi1Ailog T, o

B

ending the proof of Theorem 12.1. O
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