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On explicit lifts of cusp forms
from GL,, to classical groups

By DAvVID GINZBURG, STEPHEN RALLIS, and DAVID SOUDRY*

Introduction

In this paper, we begin the study of poles of partial L-functions
LS (0 ® 7,s), where o ® 7 is an irreducible, automorphic, cuspidal, generic
(i.e. with nontrivial Whittaker coefficient) representation of Gy x GL,(A).
G is a split classical group and A is the adele ring of a number field F. We
also consider %QH(A) X GL;,(A), where ~ denotes the metaplectic cover.

Examining L°(c ® 7,s) through the corresponding Rankin-Selberg, or
Shimura-type integrals ([G-PS-R], [G-R-S3], [G], [So]), we find that the global
integral contains, in its integrand, a certain normalized Eisenstein series which
is responsible for the poles. For example, if G = SOg;41, then the Eisenstein
series is on the adele points of split SOg,,, induced from the Siegel parabolic

subgroup and 7 ® |det-|*"1/2. If G = Spy, (this is a convenient abuse of
notation), then the Eisenstein series is on Spy,,(A), induced from the Siegel
parabolic subgroup and 7 ® | det -|*~/2. The constant term (along the “Siegel
radical”) of such a normalized Eisenstein series involves one of the L-functions
L3(1,A%,2s — 1) or L®(7,Sym?,2s — 1). So, up to problems of normalization
of intertwining operators, the only pole we expect, for Re(s) > 1/2,isat s =1
and then 7 should be self-dual. (See [J-S1], [B-G].) Thus, let us assume that
7 is self-dual. By [J-S1], we know that L°(7 ® 7, s) has a simple pole at s = 1.
Since

(0.1) LS(T ®T,8) = LS(T, A2, S)LS(’T, Sym?, s)

and since each factor is nonzero at s = 1, it follows that exactly one of the
L-functions L%(7, A%, s) and L(r,Sym?, s) has a simple pole at s = 1. We
recall that if m is odd, then L%(r, A2, s) is entire ([J-S1]).

Assume, for example, that m = 2n and L°(r, A2, s) has a pole at s = 1.
Then the above-mentioned Eisenstein series (denote it, for this introduction,
by E;s(h)) on SOy4,,(A) has a simple pole at s = 1. (See Proposition 1 and Re-
mark 2.) Let G = SO911 and o be as above. Langlands conjectures, predict
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the existence of a functorial lift of o, denote it 7, on GLgg(A). 7 is an irre-
ducible automorphic representation of GLgy(A). In particular, L%(oc ® 7, s) =
L3(m ®7,s). Thus, if k < n, L%(c ® 7, s) should be holomorphic at s = 1.
Similarly, if L%(7,A2,s) has a pole at s = 1, (m = 2n), and L%(r,st,1/2)
# 0, (partial standard L-function) then the above-mentioned Eisenstein series
(denote it by E;s(h)) on Spy,(A) has a simple pole at s = 1 (see Proposi-
tion 1). Let G = §132k and o as above. Again, one expects the existence of
a “functorial lift” of o, denote it 7, on GLgk(A) (such a lift is not canonic,
it depends on a choice of a nontrivial character ¢ of F\A). One of our main
results (Theorem 14) states

THEOREM A. Let o0 ®7 be an irreducible, automorphic, cuspidal, generic
representation of Spap(A) X GLap(A), such that 1 < k < n. Assume that

(0.2) L(7,st,1/2) # 0

and
L%(r,A%,s) has a pole at s=1.

Then Li(a ® T, 8) is holomorphic at s = 1.

The definition of the partial standard L-function of ¢ ® 7 depends on a
choice of v; see [G-R-S3]. The proof of the theorem involves new ideas and
results which we regard as the main contribution of this work.

In general terms, we actually construct a candidate o = o(7) = oy(7),
on Spy,(A), which should lift functorially to 7. Moreover, o(7) fits into a
fascinating “tower” of automorphic cuspidal modules oy (7) of §f)2k(A), 0<
k < 2n — 1. (Define Spy(A) = {1}.) The “tower property” is the same as in
the theory of theta series liftings of dual pairs [R]. Thus, for the first index ¢,
such that oy, (7) is nontrivial, oy, (7) is cuspidal, and for higher indices, oy(7)
is noncuspidal.

Let us give some more details. We first consider the example where o is a
generic representation of SOg 11 (A) and 7 is on GLa, (A), such that L5 (1, A%, s)
has a pole at s = 1. The Rankin-Selberg integral for L° (¢ ®7, s), when k < 2n,
has the form

(0.3) / o(9)E¥t(g)dg
SOk 41 (F)\SO2+1(A)

where EY% is a certain Fourier coefficient of the Eisenstein series (on SO4p,(A))
along some unipotent subgroup Ny of SOy, and with respect to a character ¢y,
of Ni(F)\Ng(A), stabilized by SOgx11(A), for some corresponding embedding
of SOgi1 inside SOyy,. ¢ is a cusp form in the space of o. The integral (0.3),
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in case k = n, suggests that if L%(c ® 7, s) has a pole at s = 1, then o pairs
with the representation o(7), of SO2,41(A), on the space spanned by

[ Resg—1 M] v

SO2n+1(4A)

Now, when we try to compute the various constant terms of o(7) along the
unipotent radicals of parabolic subgroups of SOs,11, we find out that these
are expressed in terms of

[ Resg—1 ﬁ(h)} v

SO2¢41(A)

for £ < n. This immediately reveals the tower property. Indeed, we define
for any 0 < k < 2n, the representation o4 (7) of SOgx41(A), acting by right
translations on the space of

[ Resg—1 m} &

SO2k41(A)

This leads us to another main result of this paper.

THEOREM B. Let 7 be an irreducible, automorphic, cuspidal represen-
tation of GLa,(A). Assume that L°(t,A2,s) has a pole at s = 1. Then the
representations {ak(T)}iigl have the tower property, i.e. for the first index £y,
such that oy, (1) # 0, 0y, (T) is cuspidal and for k > €, o(T) is noncuspidal.

It is easy to see that 1 < /,, < 2n—1 and that oy, (7) is generic. Our main
conjecture for this case is

CONJECTURE.
1) 4, =n.
2) on(7) is irreducible and lifts functorially from SOgp41(A) to 7.

Remark. The conjecture implies that o,(7) is a generic member of the
L-packet which lifts to 7.

We define similar towers, prove Theorem B and state the above conjecture
in case conditions (0.2) hold, and also in case L°(r,Sym?, s) has a pole at
s = 1 (so here 7 is on GLg,(A) or on GL2,41(A)). In each case, we use a
corresponding global integral. For example, if conditions (0.2) hold, then the
global integral is of Shimura type, and we construct the representations oy(7)
of §f)2k (A) using a sequence of Fourier-Jacobi coefficients of Ress—1 £ s(h) (the
Eisenstein series is on Spy,(A)). In this case, we make one step towards the
conjecture and prove
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THEOREM C. Let 7 be an irreducible, automorphic, cuspidal representa-
tion of GLan(A), such that L%(r,A?,s) has a pole at s = 1 and L(1, st,1/2)
% 0. Then

op(t)=0, for k<n;

that is £, > n.

The proof of Theorem C is based on the following two key observations.
The first is

THEOREM D.  Under the assumptions of Theorem C, Ress—1 E; s(h) has
a nontrivial period along the subgroup Spy,, (A) X Sp,,, (A) (direct sum embedding

in Spyn(A))-

The second observation is that for an irreducible, admissible representa-
tion of Spy, (F'), where F' is p-adic, the existence of (nontrivial) Sps, (F') X
Spa, (F') invariant functionals negates the existence of the Fourier-Jacobi mod-
els which enter the definition of oy (7), provided k < n.

Note added in proof. Since the time of writing this paper, we have proved
large parts of the above conjecture. We can now prove that ¢, = n in all
four cases dealt with here. Thus, for 7 as above, oy, (7) is a nonzero cuspidal
module on G, (G = Spy,, SO2,+1,S029,,Sp,, respectively). The proof for
G= §f)2n appears in [G-R-S5|, where we also give the analogous local theory,
and construct for an irreducible supercuspidal, self-dual representation 7 of
GLan(k), k — a p-adic field, such that its local exterior square L-function has
a pole at s = 0, an irreducible, supercuspidal, generic (with respect to a
prechosen character 1) representation o = o,(7), such that y(o ® 7,s,v) has
apoleat s = 1. y(o®T, s,1) is the local gamma factor attached to o®T, by the
theory of Shimura type integrals considered here. In case G = Sp,,,, we prove
in [G-R-S6] that each irreducible summand of o, (7) has indeed the unramified
parameters determined by 7, at almost all places (once we fix ). Moreover,
on(7) is the direct sum of all irreducible, cuspidal, 1-generic representations
of Spy,(A), which -lift to 7. Thus, if we have the irreducibility of oy (7),
which is part of the above conjecture, then o, (7) will be the unique, ¥-generic
member of the “y-L-packet determined by 7.” The proof of the unramified
correspondence and of the fact that £, = n in the remaining cases will appear
in a paper which is now in preparation.

The results of this paper and those just mentioned were announced in
[G-R-S2]; see also [G-R-S1].
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Finally, this paper is organized as follows. In Section 1, we prove Theo-
rem D. In Section 2 we define the towers of representations o4 (7) and prove
Theorem B for all cases (SOsgx1,Spog, SOak, Spyi). In Section 3 we prove
Theorem C. Theorem A then follows as a corollary.

Acknowledgement. We thank Jim Cogdell for helpful discussions and for
his interest.

1. Spy, X Spy, — Periods of residues of Eisenstein series

1. The Eisenstein series of study and its pole at s = 1. Let G = Spy,,
considered as an algebraic group defined over a number field F. Let P = MU
be the Siegel parabolic subgroup of G. Consider an irreducible, automorphic,
cuspidal representation 7 of GLgy(A). Assume it is self-dual. Regard 7 as

a representation of My as well. Let ¢ be an element of IdeGDA T; l.e. ¢ is a
smooth function on G, taking values in the space of 7, such that

$(mug; ) = 61> (m)(g;rm) ,

for m € My, u € Uy, g € Gp, 7 € GLgy(A). We realize ¢ as a complex
function on Gy x GLa,(A), such that r — ¢(g;7) is a cusp form in the space of
7. Assume that ¢ is right K-finite, where K is the standard maximal compact
subgroup of G4. Let, for s € C,

¢¢ (gim) = H(9)* 2¢(g;m) , g€ Gu,m € GLay(A)
fis(g) = ‘P?,s(% 1),

where if the Iwasawa decomposition of g is auk, a € GLg,(A), u € Us, k € K,
then H(g) = |deta|. Now consider the corresponding Eisenstein series

E(g, 12 = >, [
YEPp\Gp

The series converges absolutely for Re(s) > n + 1, and admits a meromorphic
continuation to the whole plane. It has a finite number of poles in the half-
plane Re(s) > 1 and they are all simple [M-W, IV.1.11]. Consider the constant
term along U,

(1.1) Y(g, f2,) = / E(ug, f2,

= ff,s(g) + M(S)f:-b,s(g) s
where M(s) is the intertwining operator, given, for Re(s) > n + 1, by the
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convergent integral

M(s)£2(g) = / £ (w  ug)du
Up

I
2n ) Later on, it will be convenient to consider the inter-

for w =
< _IZn
twining operator as evaluation at m = 1 of

M(s)(02,) (gim) = / 7 s(w tugy m)du
Ur\Uy
which converges for Re(s) > n + 1. These operators are decomposable in the
following sense. Fix realizations V,, of the local representations 7, and fix an
isomorphism ¢ : ®V,, — V., where V; is the space of 7. Now write ¢(g)(z)
instead of ¢(g;x), for g € Ga, * € GLa,(A), so that ¢(g) € V. For each
place v, let ¢, be an element of Indg: 74, such that for almost all v, ¢, = ¢9

unramified and ¢2(1) = &Y — a prechosen unramified vector in V;,. Assume
that ¢ corresponds to ®¢,, that is £(QR¢,(g,)) = ¢(g). For such ¢, we have,

(1.2) M(3)f2,(9) = (@M (3)92. () (1)
where

02 J(gv) = H(g) " ?u(90)

and M, (s) is the vector-valued intertwining operator that is the meromorphic
continuation of the absolutely convergent integral given, for Re(s) > n+ 1, by
M ($)p (o) = [ iea(w g )du
Uv
It is well known that for ¢, = ¢°
L(ty, st,s — 3)L(1,, A%, 25 — 1)<,0¢?’ '
L(ty,st,s+ 3)L(1,A%,25) "

(Recall that 7 = 7.) The factors in (1.3) are respectively the standard and the
exterior square local L-functions attached to 7,. Let S be a finite set of places

outside which ¢, = ¢ and g, € K,-the standard maximal compact subgroup
of G,. Then in (1.2)

(1.4)

M(s)f2,(9)
_ LS(T, st, s — %)LS(T, A% 25 — 1)
N LS(7,st, s + %)LS(T, A2 2s)

where (£9)% = ®,¢5£0.

(1.3) M, (s)p2 =

((®uesMu(s)6% 4 (9,)@(EN%) (1)
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ProrosITION 1. Let S be a finite set of places, including those at
infinity, outside which T, is unramified. Assume that L°(r, st,%) # 0 and
L3(1, A%, 5) has a pole (simple) at s = 1. Then the Eisenstein series E(g, ff,s)
has a pole (simple) at s = 1.

Proof. Tt is enough to show that the constant term EY (g, ff} s) has a pole
at s = 1, and, by (1.1), it is enough to show this for M(s)fgs(g). The
L-functions L (7, st, s + %) and L(7,A?,2s), are holomorphic at s = 1. (Actu-
ally L5(r, st, s+ 3) and L5(r, A?,2s) are nonzero at s = 1. Indeed, form [J-S2,
Th. 5.3], L®(7, st, 2) is nonzero for Re(z) > 1. This is also true, by the same
theorem, for L(1 x 7,2) = L¥(1, A%, 2) L¥(7,sym?, z). From [J-S1] and [B-G],
L3(1,A%, 2) and L°(7,sym?2, z) are holomorphic at z = 2, and since their prod-
uct is nonzero at z = 2, it follows that each of these L-function is holomorphic
and nonzero at z = 2.) Thus, (1.4) will produce a pole of M(s)fﬁfs(g) at s =1,
provided we can choose data such that f<®V65My(s)gof;’,s(g,,)®(§0)5>(1) is
nonzero at s = 1. The last expression is holomorphic at a neighbourhood of
s = 1, since otherwise (1.4) will produce a high-order pole for M (s) ff, s(g), and
this implies that E(g, ff s) has a high-order pole at s = 1, contradicting the
simplicity of the poles of E(g, ff s), for Re(s) > 1/2. It is enough to consider
g =1. Let v € § be finite. Choose ¢, to have compact support, modulo P,, in
the open cell P,w~1U,, and such that the function on U,, u — ¢, (w™1u) is the
characteristic function of a small neighbourhood in U, of 1. Choose &, € V.,
so that ¢, (w™') = &,. Then M, (s)¢2 s(1) = c,&,, where ¢, is the measure (in
U,) of the neighbourhood above. Let v be archimedean. Consider, as above,
¢, which is compactly supported, modulo P,, in the open cell P,w~'U,, and
such that the function u — ¢, (w™'u) has the form b,(u)¢,, where b, is a
Schwarz-Bruhat function on U, and &, € V. gof,j’, s 18 a smooth section. Let

ais) = ] H5 Y2 (™ )by, (w)du
v archimedean U,

Clearly a(s) is holomorphic, and functions b, can be chosen so that a(1) # 0.

For this data,

LS(T, st, s — l)LS(’T, A% 25 — 1)

M(s)f2,(1) = als)— YT
L5(1, st, s+ 5)L7(1,A?,25)

hence M(s)ffﬁs(l) has a pole (simple) at s = 1. Note that ff,s is a smooth

section. Let So, be the set of archimedean places. Then

(60 )vese = £(®ves My (16,1 (N@(®ugs6) (1)

is a continuous nontrivial linear functional on &), Indg” T,, and hence it is
v

nontrivial on the dense subspace of ][ K,-finite vectors. Note, again, that
ZIESoo

K(@f,,)(l) )
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the intertwining operator is holomorphic at s = 1 at each place (otherwise, the
Eisenstein series has a high-order pole at s = 1, which is impossible.) This
provides a pole at s = 1 for M(s)ff,s(l) with ¢ being K-finite. O

Remark 1. In the last proposition the choice of S is immaterial. If there
is a set Sp such that L0(r, st, 3) # 0, then L9(r, st, ) # 0 for any set S (as
above), and similarly, if L°°(7, A2, s) has a pole at s = 1, then L(7, A%, 5) has
a pole at s = 1, for any set S (as above). The reason is that locally, at a finite
place v, where 7, is unramified L(7,, st, %) # 0 and L(7,,A?,1) # 0. Indeed,
since 7, is unitary the eigenvalues of its corresponding semisimple conjugacy
class (in GLg,(C)) are all strictly less, in absolute value, then qll,/ 2 [J-S3] and so
L(7y,st,s) (resp. L(7,,A? s)) is holomorphic and nonzero at s = 3 (resp. at
s = 1). Similar reasoning in the archimedean case implies that our assumption

on the standard L-function of 7 is equivalent to L(, st, ) # 0 (full L-function).

Remark 2. Let 7 be a self-dual, irreducible, automorphic, cuspidal rep-
resentation of either GLg,(A) or GLg,4+1(A). As before, we can construct
an Kisenstein series, induced from the Siegel-type parabolic subgroup of G,
where G is one of the following (split) groups

Sp4m SO4n,SO04n41, %4n+2

(the last group is the metaplectic cover of Spy,, ). The analogs of the quotient
of (products of) L-functions in (1.3) are summarized in the following table
(which includes the previous case of Spy,,)

LS (7,st,s—1/2) L5 (1,A? 25—1)

(1.5)
SPan LS (7,st,54+%) L5 (7,A2,25)
L5(1,A2,25—1)
50un pAcreeny
L5(1,Sym?2s—1)
SOun+1 “IS(r,sym e
S'V LS (1,8ym? 2s—1)
Pin42 L3(7,Sym?,2s)

Note that, in the last case, 7 is a representation of GLg,4+1(A), and in the
remaining cases, it is a representation of GLg,(A). In all cases, except the
last one, the functions ¢ and ff s are defined in exactly the same way. In case
§E)4n 19, We require that ¢ is a smooth function on §134n 12(A), taking values in
the space of 7, such that

(1.6) $((Mw, 1)g; r) = v (det m)(det m, det m)s > () d(g; rm) |

for m € GLap41(A), u € Ua, g € %4R+Q(A), r € GLapt1(A). Here 7y(x)
is the (global) Weil factor associated to a nontrivial additive character
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of F\A. 7 is a character of the two-fold cover of A*. It satisfies vy (z1 - x2) =
Yo (1) (22) (21, 22), for x1, 29 in A*. () is the (global) Hilbert symbol.
fﬁfs(g) is constructed by multiplying ¢(g) by H(g)*~'/2. We can now repeat
the proof of the last proposition (word-for-word) and conclude that the cor-
responding Eisenstein series has a pole (simple) at s = 1, if L%(7, A2, s) has
a pole at s = 1 in case SOyp, or L(7,Sym?, s) has a pole at s = 1 in cases
SOun+1 Or Spyp 4o

2. The Spy,, X Spy,-period of Ress—=1 E(g, ffs) We go back to the case
G = Spy,, T — self-dual, irreducible, automorphic, cuspidal representation.
We assume that L(7, st, %) # 0 and that there exists a finite set of places S,
including those at infinity, outside which 7 is unramified, such that L%(7, A2, s)
has a pole at s = 1. (See Remark 1 in the last section.) Note that this implies,
in particular, that 7 has a trivial central character [J-S1]. By Proposition 1,
Ress—1 E(g, f25) is nontrivial (s = 1 is a simple pole.) Consider the subgroup
H = Sp,,, X Spy,,, embedded in Spy,, by

Ay
(1.7) A B Ay DB A Ay —By
' Ci Di)  \Ca Do —Cy Dy
Cq

Each letter represents an n x n block. We sometimes identify, to our conve-
nience, h and i(h) in Spy,, for h € H. Denote

El(ga ¢) = Ress:l E(Q? f:—b,s) .

The main result of this chapter is

By

Dr

THEOREM 2.  Under the above assumption, E is integrable over Hp\ H
and (for a suitable choice of measures)

(1.8) / El(h,¢)dh:/ / ¢(k;<“ b))d(a,b)dk:.

Hp\Hj KH Con(A)GLy (F)2\GLy (A)2
Here Ky = KN H and Cs, is the center of GLay,.

This theorem and its proof are very similar to Theorem 1 in [J-R1]. Note
that the inner GL2-integration, on the right-hand side of (1.8), is the integral
(32) in [F-J.] (with s = J,x = n = 1). By Theorem 4.1 in [F-J], a necessary
condition, for this integral to be nonzero, is that L%(7, A% s) has a pole at
s = 1, and, in this case, the integral is of the form a(k;®)L(r, st, %), where
a(k; ¢) is a nontrivial linear form, for each £ € K. Under our assumptions
on 7, the right-hand side of (1.8) is not identically zero. The proof for this is
entirely similar to that of Proposition 2 in [J-R1]. All the requirements there
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are supplied by [F-J.]. Thus a(¢) = [ «(k,¢)dk is nontrivial and hence the
Ky
period of Ey along H is nontrivial. Note that, exactly as remarked on the

bottom of p. 178 in [J-R1], formula (1.8) supplies another proof for the fact
that if L(7, st, 3) # 0 and L%(, A%, s) has a pole at s = 1, then E(g, f?s) has
a pole at s = 1. Moreover, the last remarks, together with (1.8) prove

COROLLARY 3.  Let 7 be a self-dual, irreducible, automorphic, cuspidal
representation of GLa,(A). Then E(g, fﬁjs) has a pole at s = 1 and F1 (-, ¢) ad-
mits a nontrivial period along H, if and only if L(T, st, %) #0 and L3(1,A2%, s)
has a pole at s = 1.

The rest of this chapter is devoted to the proof of Theorem 2.

3. Truncation. Asin [J-R1], we consider the truncation operator applied
to E(g, ff s). Denote, for a real number ¢, by X, the characteristic function of
all real numbers larger than ¢. The only nontrivial constant terms of E(g, ff} s)
along unipotent radicals of standard parabolic subgroups, are those taken along
U or {1}. Thus, the truncation operator A¢, ¢ > 1, applied to E(g, ffs) is

(1.9) A°E(g, 1) =E(g, f2) — > EY(yg, f2)Xe(H(v9)) -

vEPR\GF

Since E(g, ffy s) is smooth and of moderate growth, A°E(g, ff-z? s) is rapidly de-
creasing. Also, the sum on the right-hand side of (1.9) has finitely many terms
(depending on g and ¢). In particular, A°E(g, fq‘?, s) is meromorphic in s. (See
[A1], [A2], for more details.) Similar remarks are valid for A°E1 (g, ¢). By (1.1)
and (1.9), we have

(1.10)
AE(g, f2,) =E(g, f2) — Y. (f2:(v9) + M(5)fLs(v9)Xe(H (7g))
YEPrp\Gp
= > X (HOg)— D, M) (vg)Xe(H(vg)) -
YEPF\GF YEPF\Gp

This last equality is for Re(s) > n 4+ 1. X¢ is the characteristic function of
the interval (0,c]. Denote the first sum, in the last expression of (1.10), by
05 (g, fﬁs), and the second — by 65(g, ff-b,s), so that

Note again that the sum defining 65(g, ff s) has finitely many terms (depending
on g and on ¢). In particular 65(g, fﬁs) is meromorphic in s, and so 65(g, ff,s)
defines a meromorphic function in the whole plane. (1.11) is now valid as an
equality of meromorphic functions.
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Denote Resg—1 M (s) = M. Since f.?, s 18 holomorphic, then an application
of A¢ to F; yields similarly,

where
(1.13) 059.0) = Y. Mi(f2,(vg)Xe(H (7)) -
YEPF\GF

Since A°E(g, ff s) and A°E(g, ¢) are rapidly decreasing, they are bounded and
hence integrable on Hp\H,. We will prove

PROPOSITION 4. 0{(~,ff’s) is integrable on Hp\Hp, if Re(s) is suf-
ficiently large, 95(-,f¢73) is integrable on Hp\Hy, if Re(s) > 0, (and M(s)
exists) and 05(-, ¢) is integrable on Hp\Hy. The following formulae are valid,
with a certain choice of measures:

(1.14)
. 8 Csfl a
O, £2,)dh = otk () diabyak
AR, K1 Cop(8)GLy (F)2\GLy, (A)2
(1.15)
[ estuszan
Hp\Hy
c s a
= / ML (4 Dtatiar
KH Can(8)GLuy (F)2\GLn (A)?2
(1.16)

[ o5t on

Hp\Hy

:c—l/ / M (92, (K <“ b> d(a,b)dk .
K i Can(A)GLy (F)2\GLy (A)2

This proposition will finish the proof of Theorem 2, exactly as in [J-R1,

p. 181]. Integrating (1.11) along Hp\H,, first for Re(s) > 0, and using (1.14)
and (1.15), we get

(1.17) / AE(h, f2,)dh = Sc_ll //¢(k:;<“ b>d(a,b)dl~c

Hp\H,
[ mewans(*, Diena.
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By analytic continuation, this makes sense in the whole plane.
Taking residues in (1.17) at s =1,

(1.18)
/ ACEl(h,qb)dh://qS(k;(a b)d(a,b)dk
Hp\H,
ot [ anceg s (4, e ar

://¢(k;(“ b))d(a,b)dk— / 65 (h, $)dh .

Hp\Hy

We used (1.16). Comparing (1.18) with (1.12), we conclude that Ej is inte-
grable on Hp\ Ha and that (1.8) is satisfied.
Each of the functions 7 has the form

(1.19) i)=Y &) .
YEPF\GF
where
fTs 9)X“(H(g)) , J=1
(1.20) &(9) = § M(s)(fLs)(9)Xe(H(g)) , j=2 -

Mi(f2)(9)Xe(H (9) . j=3

The sum (1.19), in case j = 1, converges only for Re(s) > 0. Before proving the
integrability of §; on Hp\Hy, and then compute its period on H, we proceed
formally,

(1.21) / 0,;(h)dh = / > &yh)dh

Hp\H, Hp\H, YEPF\GF

-y [ stman.

VEPRNGE/HE -1 ppynHp\H),

The set Pp\Gr/Hp is finite and will be described soon. Our task will be to
show the integrability of each &;(vh) (in h)) on v 'Pry N Hp\Hy, and then
compute the integral.

4. The set Pr\Gr/Hp. The description of this set is known. It appears
as an ingredient in the “doubling method.” See [PS-R, Lemma 2.1], for the
description of the action of Hr on Pr\GF, realized as the variety of maximal
isotropic subspaces of the symplectic space of dimension 4n. Using this de-
scription and passing to a different basis of F*", so that H = Sp,,, X Sp, is
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embedded in G by (1.7), we arrive at the following set of representatives for

Iy
(1.22) R L 0<d<n,
Iy
where
In—d
Iy
0 —Ip—q
1.23 b= =
( ) Vd Infd —I, 4 0
Iy
I —q Inq
Note that
I, _4 I, _q “In—d
Id Id
")/ _ 0 —dn—d In—d
d Infd 0 Infd Infd
1 Iy
I _q4 Iy q

A computation of the stabilizer of v, shows that

(1.24)
Hp N~y Prvyg

a T Yy b u =z
:{< c |, c u )eHF
a* b*

Write this as the semidirect product My x V,;, where

a b
Md:{< c , c )
a* b*

1 x Y 1 U z
Vi = {( Ln—qy =" |, Iyn—qy o > € HF} :

Id Id

a,be GLd(F)
¢ € Spy(n_a)(F) |

a,be GLd(F)
€ € Spy(n—q)(F)
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We now collect several conjugation formulae which will be used later. For

a b
r= Z( Ln—q) ; Ln—q ) ;
a* b*

(i is the embedding (1.7))

_ I,
(1.25) YTy 1 — n—d

I; 14

Forrzi( c , c ),Wherec:<

14 14

C1
C3

C2
Cq

is the (n — d) x (n — d) block description of ¢ € Spy(,_q)(F),

1 0
c1 —co —co
1, 0
-1 —C3 Cq4 | —C3
(1.26) Vary, = o o
Iy
c3 C4
I;
For
I; = e1 Y1 Iz €2
I,_4 0 6/1 I, _4 0
V=1 / )
Iy

)GVd,
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I; x1 0 —e1 |1 0 0 wn
I,.g0 0O —¢, 0 0
x2  Ig —e2 —y2 —e2 0
_ I_a x)
1.2 - n 1
I; O 0
—x5 In_q —27
Iq
Iy
For 3m'zz’< 8 ef ,hn) ;
e
Iq
Iy
Infd
Iy
1.2 Il = <
(1.28) Yam'y, A —— ko
0 I
—e* Infd
0 I
where
Iy
Infd
Iy
I q
k(] - Infd 0 0 Infd
0 i
In—d In—d
0 1

5. A formal proof of Proposition 4. We first prove Proposition 4 formally,
without paying attention to convergence issues. Denote

Qa=;'PywnH,

a T Yy b u =z
Q&z{( c 7|, e u >€H
a* b*

a,be GLy
¢,e € Spyna) |
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! is a parabolic subgroup. Write its Levi decomposition as M/, x V. Note

that Mg C M),
Following (1.21), we have to compute the integrals
Lig= / &i(yah) for 0<d<n and j=1,2,3.
Qa(F)\Hp
Let 0 < d < n. Write the Iwasawa decomposition in Hy,
h=vmk , m' € Mj(A) , v e Vy(A), ke Ky,
dh = 6~ Y(m/)dvdm/ dk

where § is the modular function corresponding to the parabolic subgroup Q.
Then

(1.29)

Lig= / / / & (vavyyt - yam' K)o~ (m! ) dvdm!dk .
K Mg(F)\My(&) Va(F)\Va(h)

By (1.27), the projection to GLg, of 'dewd_l, as v varies in Vy is a unipotent
radical N in GLay, (since 0 < d < n). Then H(y4vy;"') =1, and from (1.20)
we see that (1.29) involves an inner integration of a cusp form in 7 along
Ny(F)\Ng4(A), and hence

(1.30) Iia=0, for 0<d<mn, j=1,2,3.

In case d =0, Qo = {(c,¢) | ¢ € Spy,,}. We have

(1.31) Lio= / / &; (701'(0, )Yy oi(e, 1)>dcde .
San(A) Sp2n(F)\Sp2n(A\)

By (1.26), the projection of voi(b,b)y; * on GLay, as b varies in Spy, is Spa,
(embedded as a subgroup of GLg,). Since H(7gi(c,c)yy ") = 1, we obtain in
(1.31) an inner integration of a cusp form in 7 along Sps,, (F')\Sps, (A), which
equals zero by [J-R1, Prop. 1]. Thus,

(1.32) Lio=0, for j=1,2,3.

The only remaining case is d = n. Here v, = Iy, and

- a Yy b =z P
Qn—{<0 a*)?(o b*>€H’a7b7€GLn}_Qn

Using (1.25) and (1.27), we have
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a

L= @( . k)\det(ab)ﬂ"”’d@ﬁ)dk

Ky GL(F)?\GLn (A) o

ta

:/ / /5”'( ! AU k)

Ky GLp(F)2\(QLy (4)2)0 Fx\A* t—1g
|72 | det(ab)|d*td(a, b)dE .

Here (GL,(A%))? = {(a,b) € GL,(A)?| | det(ab)| = 1}. Of course, in (1.33), we
made a choice of measures. d*t will soon be specified. Thus, by (1.20) (recall
also that, by our assumptions, 7 has a trivial central character)

(1.34)
ha= | / ¢<k;<“ b))d(a,mdk | e
Kn GLn(F)\(GL,(A)2)0 tulsl";*\A*
t|<"<c

1dt _ o1
T =" for

C
Choose d*t such that the corresponding d*¢-integral equals [ ¢°~
0

Re(s) > 1. The d(a,b)-integration yields one on Cay,(A)GL,(F)*\GL,(A)2.
This proves (1.14). In a similar fashion, we get, for Re(s) > 0,

(1.35)
— ¢ V(g [ @ (1—s)—1 4t
B = Mtk (O, bk [0 L
K GLn (F)2\(GLn(4)%)° ¢

Cc

_ _S/ / M(s)(@f’s)(k;<a b))d(a,b)dk,

S
Ky Con(A)GLy (F)2\GLy, (A)2

and
(1.36)
I3p=c! / / My (024) (k; (a b))d(a,b)dk :

Kb Con(A)GLy (F)2\GLy (A)2

In the next section, we justify our formal calculations.
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6. Justification of the formal proof of Proposition 4. By (1.21), we have
to examine the absolute convergence of the integrals I 4. The case d = n is,
actually, rigorously proved in the end of the last section (1.34)—(1.36): I,
(resp. Ip,) converges absolutely for Re(s) > 1 (resp. Re(s) > 0) and I3,
converges absolutely.

PROPOSITION 5.  Let 0 <d < n. Then:

1. I 4 converges absolutely, for Re(s) large enough.
2. Iy 4 converges absolutely, for all s where M (s) is defined.
3. I3 4 converges absolutely.

In all three cases, I; 4 = 0.

Proof. We start with formula (1.29). We will prove the absolute conver-
gence (at the indicated domains in s) of

(1.37)
K Ma(A\M}(A) Ma(F)\Ma(h) Va(F)\Va(A)
- &i(yavyytvaryg s vam'k)8 () dvdrdm! dk.
Iq
We realize My(A)\M/(A) as { ( x , I2n> ’x € SPa(n—dq) (A)} and
Iy

then use the Iwasawa decomposition, following the Siegel parabolic subgroup
R =L"w U, in Spyg,_q)-
T = (e Zf) K

dr = dedzdk' .

Here e € GL,_4(A), z € U} = {z| <In_d IZ ) € UA}, k' € K' — the
n—d

standard maximal compact subgroup of Spy(,,_q)(A). Let

14

Wq =
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Then, by (1.25)—(1.28), the integral (1.37) equals

a
39) [ osthecbonatths (V) (0 warelablr
2(n—d) c

- Xjc(|ab| |rez|)dyd(a, b)dededzdk' dk .
The integration is on
Y € Mogxon—a)(F)\Magxam—a)(A), (a,b) € GLg(F)*\GLg(A)*
cE Sp2(n—d) (F)\Sp2(n—d) (A>7 €c GLn—d(A)7 CAS uzl%a ke K’
(embedded naturally in Spy,(A))and k € Kg. k.. is the compact part of the
Iwasawa decomposition in Spy, (A) of the matrix, multiplying ko, on the right-
hand side of (1.28), and 7. is the projection to GLy(,—_q)(A) of its “Siegel

parabolic part.” ¢; is defined as follows (see (1.20)). For g € G4 and m €
GL2,(A),

02 s(g;m) j=1
di(gim) = M(s)(g2s)(gsm) . j=2 ,
My(g2,)(gsm) , =3

and for t € R
Cc t ) — 1
ch<t): {X ( ) J
X.(t) 7=2,3
Finally,
s—n+d-—1, j=1
sji=ql—-s—n+d-1, j=2,
—n+d-—1, ji=3
s+n, 7=1
s;: l—-s+n, j=2.
n, J=3
In (1.38), we denote, for a matrix z, |x| = |detz|. Examining (1.28), we see
that
(139) Wale,z = m;zwd )
where

(1.40) mgz(”” *)<bd ),
' e Me. 2
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and m, . is the projection to GLy(,_q)(A) of the “Siegel parabolic part” in the
Iwasawa decomposition in Spyg,_qy(A) of

In—d
U, = - Infd
’ —e " —z 1,4
0 —e* Infd

We want to establish the absolute convergence of (1.38). For this, we use
the majorization of cusp forms on GLa,(A), given in Proposition 6 of [J-R1].
Since ¢; is K-finite, we find that, for each integer N > 1, there is a constant

c, such that
a(m oy
qu(k’ < 0 T>)

for all k € K, m € GLyg(A), r € GLy(,—a)(A). Now, it suffices to replace the
d(a, b)-integration in (1.38) by an integration on GLog(F)\GL2g(A). By (1.40)
and (1.41), it remains to consider

N
(1.41) < c'max{l, ]m|2(”_d)|r|_2d} ,

)72 Mgl (€] me,])*

(142) I, = / max{L, |2 (|e*] |me..
"X o1l €] me|)dgded: |

where g is integrated over GLog(F)\GL24(A), e-over GL,,_4(A) and z — over
U, . Before proceeding to each case, let us prove two lemmas.

LEMMA 6.  For alle € GL,,—4(A), z € U],
(1.43) le*| |me,.| < 1.
Proof. Write the Iwasawa decomposition of u, ., at each place v, following
the Borel subgroup of Spy(,_q)(Fy),
131
_ to(n—d)

Uy = Uey,z, = t2—(1 0 k, .
n—

!
Then

(144)  |me, o |7 = ltageay - -+ 0l = llecameayln A AeaT |
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where {e1,...,2(n—d); €—2(n—d), - - - —2,E—1} is the standard basis of row vec-
tors in Fi "~ For a row vector v = (x1,...,20) € FL, we let
maxj<;<y |£L’1| , V<00
Lo 1/2
lol =4 (X23)"", F =R
i=1
£ 2
Z ]a:,\ y FV =C.
i=1

(If v is archimedean, the norm on /\2(”_50}7;1 (=) 45 defined through the or-
thonormal basis obtained from the standard basis {e1,...,e_1} above.) From
(1.44), we get (with self-explanatory notation)

Mey,e) ™ 2 [(E—(nea) ® En-a) A+ A (ec1 @ Bl -
where E,,_q, ... F; are the rows of the matrix —e};
En—a
—e, =
Ey
(See definition of u, ,.) In particular,
ey | 7F 2 (| Bra Ao A B = e)| = len]

This implies (1.43) at all places v; hence (1.43) is satisfied. This proves the
lemma. d

LEMMA 7.  Lett be a real number. Then the integral
/ / (Ie*] [me..))!ded=
, GL, - d
converges, provided t is large enough.
Proof. We first consider the local analog of A, at each place v,
Ay —/ / (le*| |me,z|) dedz .
/ GLn d FI./

Split A, into two summands A,(})—i—A,(,2), where in A,(jl), we integrate over |e| < 1
and in AY — over le] > 1. We have

// le*| |me,z)) dedz—// le| |me.z|) dedz .

le[<1 le|>1
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We changed variable e — —e™! and z — —z and Me, is the projection to
GL,,—4(A) of the “Siegel parabolic part” in the Iwasawa decomposition in

SPa(n—a)(A) of

In—d
ﬁe z In_d
’ e z In_a
-1 e ‘ In—d

Let dg(e) be the additive measure on M,_q4(F,). Then de = 229, and

|€|n7d

(1.45) AD < [ (el 1] ol
\

e|>1
Asin (1.44),
(1.46) [zl = l(e—an-a) B En-d ® 2n—a) A+ A (E_(n-dy—1 B E1 B 21)
N(E—n-d) @ En_a) N+ N(e—1 @ Bl

where
En—d Zn—d En_q
e = : , 2= : , e = :
&1 Z1 Ey
Hence
(1.47)

ezl ™ > [ (e—2(n-d) + En—d + Zn—d)
A Ae_modyr +E +21) AEp_g A+~ A B
= |[(e—2(n-ay+En—d+2zn—d)
A Ae—medy—1FHEL + 21) Nen—ar1 A A egmeall - €]
= [[(e—2(n—ay+En—a)
AN N (E—nea)yTE1) N en—dar1i N Neamqll - le] = ale)le] .

From (1.46), we also obtain
(1.48)
Me2| 7 > (e—andy + En-a+ 2n—a) A+ A (E_(n-ay—1 + E1 + 21)|| = ale, 2) .

From (1.47) and (1.48)
e, 7" = a(e) el - afe, 2)V?
hence, for ¢t > 0,

(1.49) (| 17e,z)" < (Jelale) " ale, 2)71)2 .
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Let, for a matrix b,
max{1,[[b]|}, v <oo
A(b) = L+ B2, B =R .
L+ o), F,=C
Then, by the definitions of a(e) and a(e, z),
ale) > lel and a(e) > Ay(e)
ale,z) > le] and afle,z) > Ay(2) ;

hence
ale)ale, z) > le| A (€)M, (2)Y? .

Using this in (1.49), we get
(el e,z )" < Au(e) ™A (2) 71 .
Thus the integrability of Al(,l) follows from that of
/ M)A dy(e) - / M)z
le|>1 u,

which is valid, for ¢t > 0, by Proposition 7 in [J-R1]. Similarly,

dqe
=[] imelydeds = [ (e e s
le|>1 le]<1
. // |e|t_”+d|m€’z|tdaedz</ |Me.»|'dgedz |
le|<1 le|<1

for t > n — d. As before

|’l7~16’2‘_1 > A(e) and |me | > A(2) ;

hence
// t/2/\ (2)" t/2d )dz < // t/4)\ (2)” t/4da(e)dz
le]<1 le]<1
All in all,
A= AP a@ < [ [ e ) e = )
U, GLy,_a(F))

and the last integral converges absolutely for ¢ > 0, by Proposition 7 in [J-R1].
By the same proposition, [] 7, (t) converges for ¢t > 0. This proves the absolute

v
convergence of A and Lemma 7. O
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We go back to the convergence of I ; in (1.4.2).
Case j =1, 0 <d <mn. Here (in (1.42))

(1.50) g9l < e(le”] [me,[)7" .
(2)

Integral (1.42) splits into two summands [ flg + 1,7 In the first summand, we

1
integrate along
(1.51) g < (Je*| [me, )"
We have

(le*] Tme, )Y~ < ele”] [me,:))7"

due to Lemma 6 and the fact that ¢ > 1. Thus (1.50) is redundant in Iﬁ;. We
have

s2) 1= [ e ) dgdeas
lgl<(le*| |me,z )4/ 4

9€GL24(F)\GL2g(4)

eeGLn_d(A),zEL{A

The dg-integration in (1.52) is proportional to
(le*| me,z/m=4 " )
d
ps—nAd—127 * g (s—n+d-1)
L= ('] )
0

for Re(s) >n —d+ 1. I}lcg is then proportional to
(1.53) / (T e A 2

(that is, it is enough now to get the absolute convergence of (1.53)). By Lemma
7, since Re(s) > 0, (1.53) converges absolutely. Now consider I @'

(1.54)

(le*| |me,z)¥m=d<|g|<c(le*] |me,-]) 7!
g€GL24(F)\GLag(A)
e€GL, _4(A), ZGL{A

. |g|—2(n—d)N+s—n+d—1(|6*| |meyz|)2dN+s+ndgd6dZ )

The dg-integration is proportional to

(C(‘6*| ’me Z|)—1)—(n—d)(2N+1)+s—1 (|6*’ ‘me z|) ﬁ(—(n—d)(ZN—i—l)-{—s—l)

—(n—d)2N +1)+s—1 L (—(n—d)(2N +1)+s—1)
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Thus (1.54) is a difference of two integrals. One is proportional to
I = /(]e*\ e, )P CN D=4 g g
and the other is proportional to
o = /(|e* I o) T2 7 e

The integral J; converges absolutely, since we may choose N as large as we
want, and then apply Lemma 7 and similarly, in Jy, we assume that Re(s) > 0,
and get the convergence again.

Case j =2, 0<d<n. Here (in (1.42))
(1.55) gl > e(le*| [me:)7
Again, split (1.42) into two summands Iélc% + I§2). In the first summand,
integrate along (1.51). Thus, by (1.51) and (1.55),

c(le] fme) ™t < lgl < (€] [me, )"

and, in particular, (|e*| |me.[)™" ¢ > c. Since ¢ > 1, this contradicts
Lemma 6. Hence the domain of integration of 12(13 is empty, and we need
only consider 152(3. The integration in 152(3 is over g satisfying (1.55) and

lg| > (le*] |me.)¥™ % By Lemma 6, this last condition is redundant (in
the presence of (1.55)). Thus,

(156) ILg=1) = / g7~ =DV (¥ | 1m, .| dgded: .

lgl>c(le*| [me,z|)~*
gE€GL2q(F)\GL2g4(A)
e€GL,,_4(A), zeL{A

The dg-integral in (1.56) is absolutely convergent, once we take N large enough
(relative to s,n,d), and is proportional to
o

t—s—(n—d)(?N—i—l)ﬂ _ (C(‘e*’ ‘me,zDil)is*(nid)@NJrl)

e o) t —s—(n—d)(2N +1)
c(le*] |me,z|)~
Thus (1.56) is proportional to
(‘6*’ ‘me’2|)2n(N+1)fd+1dedZ ,
e€GL,,_4(A)
ZEMA

which converges absolutely, provided we choose N > 1 (Lemma 7).

Case j =3, 0 <d <n. This case follows exactly as Case j = 2.
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Case j =1, d = 0. By (1.38)-(1.40), we have to consider integrals of
the form

/ / - <In e*> mez2)(|e"] [me,|)" " dbded>

ZGMA e€GLy, (A) bESP,y, (F)\Spa,, (A)

le*| |me,z|<c
for ¢ in the space of 7. Note that, by Lemma 6 (and ¢ > 1), |e*| |m. .| < ¢
always holds. Since ¢ is bounded, (and Sps, (F)\Sps, (A) has finite volume),
it is enough to consider the convergence of

/ (1€ o) ded= .

This integral converges absolutely for Re(s) large enough (Lemma 7).

Case j =2,3; d=0. Similar to case j = 1, we have to consider

/ / / b (In €*> me.z)(€*] [me,])' ="+ dbded: .

ZEU!,  e€GLn(A)  bESpP,y, (F)\Spa, (A)

A Jex] mez|>e
The domain of integration is empty here, by Lemma 6 and the fact that ¢ > 1.

We proved assertions (1)—(3) of Proposition 5. They provide the justifica-
tion to the formal proof in Section 4, which shows that I; 4 = 0 for j = 1,2,3
and 0 < d < n. This concludes the proof of Theorem 2. O

2. A tower of correspondences for GL,,

1. Definition of the tower. Let T be an irreducible, automorphic, cuspidal,
representation of GLa,(A). Assume that 7 is self-dual. As recalled in the in-
troduction, exactly one of the partial L-functions L (7, A2, s) or L® (7, Sym?, s)
has a pole (simple) at s = 1. Consider the Eisenstein series on SOy, (A), in the
first case, and on SOy, 11(A), in the second case, induced from the Siegel-type
parabolic subgroup, the representation 7 and the same complex parameter s,
as in Chapter 1 Denote it by E(g, ff s), keeping the notation of Chapter 1. In
subsection 1.1, we have seen that it has a simple pole at s = 1. Let

By taking a sequence of certain Fourier coefficients of E; along certain unipo-
tent subgroups of SOy, in the first case, and of SOyy4+1, in the second case,
and restricting to subgroups of the form SOgj11(A) (resp. SO9x(A)), we obtain
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a “tower” of spaces of automorphic representations oy (7) of SOg;41(A) (resp.
of SO9(A)) which are generic

SO4n—1(A)
/ f
(2.1) 7 on Gly,(A) — Soszrl(A)7
N :
N SO3(A)
SO, (A)
SOyn(A)
/ :
(2.2) T on Gl (A) — SOQn(A).
N f
N SO2(A)

{1}

We will prove that the last step in the tower is always nontrivial and that
in the first step k, where oy (7) is nonzero, oy (7) is also cuspidal. In this
sense, the towers resemble Rallis original symplectic-orthogonal towers. In case
(2.1), we can be more precise and distinguish two cases, according to whether
L3 (7, st, %) # 0 or not. If L(r, st,%) # 0, consider the Eisenstein series
E(g, ffs) on Spy,,(A) (as in Chapter 1). Again, by 1.1, E1(g, ¢) = Rels E(g, ff,s)
is nontrivial, and by taking a sequence of certain Fourier—Jacokfi coefficients
of Ei(g,¢), we construct another tower of liftings to automorphic, generic
representations of éBQk (A)

é5471—2(A>
ya . :
(2.3) 7 on GLg,(A) — Sp27‘l(A)
N o
Spa(A) = SLa(A)
N\ {1}

Towers (2.1) and (2.2). Let G be one of the groups SOy, or SOyy,+1, acting

from the left on the column space W = F4" (resp. W = F*"*1) equipped with
1

the quadratic form defined by o . Let {e1,...,69n,6—9n, ... 61}
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(resp. {€1,-..,€2n,€0,E—2n,---,E—1}) be the standard basis of W. Let V[ =
Span{eq,...,g¢} (1 < £ < 2n). This is an ¢-dimensional isotropic subspace
of W. Its dual in W is V, = Span{e_1,...,e_¢}. Consider the parabolic
subgroup Py of G, which preserves Fj = Vzt—k—l (resp. B = V;?Chk) Its Levi
decomposition is Py = M} x Uy. Uy is abelian, in case dim E; = 1, or in case
dim Fy = 2n, when G = SOy, and otherwise, it is a two-step nilpotent group.
The Siegel parabolic subgroup P corresponds to k = —1 (resp. k = 0) Let E},
be the dual of Ej inside W, and let W, be the orthocomplement of Ej + Ej
in W. Then
My = GL(Ey) x SO(Wy) ,

and U ,‘jb is isomorphic to the space of matrices of size dim E}, x dim Wj. Let

ap = dim Ey, 0 = dim Wj. In matrix form, an element of M} has the form
a

m = b , where a € GL(E)) and b € SO(W}), and an element of

a*

U ,‘;b has the form

I,, Y *
(2.4) u = Ig, Y’
I,
Conjugation by m gives
1y, aYb~! *
(2.5) mum ™! = Ig,  bY'(a*)7!

I,

If we realize U ,‘jb as £, QW) , where W is the dual of W}, written in the form
of rows in () coordinates, then conjugation (2.5) by m of u, which corresponds
to eQu, gives ae@u - b—!. Define
o — teg, dimW =4n+1
7 Vteon + e o0n, dimW =4n .
Denote (again) the symmetric bilinear form on W} by (,), where (*v1,fvg) =
(v1,v2), for v; and ve in Wj. Denote

(2.6) Yk = E—a, QU0 -
Fix a nontrivial character 1) of F\A and define the following character v of
Ur(F)\Ug(A). Let u in UP®(A) correspond to y € Ex(A)QW; (A). Then

(where (, ) is extended naturally to (Ej + E})(A)®@W}(A)). In matrix form
(u as in (2.4))
(28)  vi(u) = { V(Yonppt1), dimW = dn +1

Y(Yon p-1k41 + Yonk-1k42), dimW =dn
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The stabilizer of ¢, in SO(Wy,) is H = SO(W)), where W) is the orthocom-
plement of vy in W},. Note that
Hk-g{SO2k, dimW =4n +1

(2.9) SOQk+1, dimW = 4n

The stabilizer of ¢ in GL(E}) is the mirabolic subgroup (of type (ay — 1,1));
in particular, it contains Z,, — the standard maximal unipotent subgroup of
GL(E)). Extend vy to Z,, (A) by the standard nondegenerate character of
Za, (A), defined by 1, i.e. it takes z in Z,, (A) to w(akzl 2p0+1). This defines
a character ¢y, of Ni(A), where Ny = Z,, - Uy.

Consider the Eisenstein series E(g, ff s) of Chapter 1 (mentioned in Re-
mark 2, following Proposition 1). Recall that 7 is an irreducible, automorphic
cuspidal representation of GLg,,(A), which is self-dual. ¢ is a smooth K-finite
function in Indggﬁg 7. P = M x U is the Siegel-type parabolic subgroup of
G = SO(W). Finally

(2.10) ¢ (g:im) = H(9)* ?p(g;m), g€ Ga,  m € GLyy(A)
£2.9) = ¢2.(g:1)

and if g is written in the Iwasawa decomposition auk, for a € GLa,(A), u €
U(A), k €K, then H(g) = |detal.

Assume that E(g, ffs) has a pole at s = 1. Let ox(7) be the representa-
tion, by right translations, of Hy(A) on the space spanned by the vy-Fourier
coefficients of Ei(g, ¢), along Ny, restricted to Hi(A). That is, the space of
or(7) is the space of automorphic functions on Hy(A), of the form (2.11)

(2.11) pr(h) = pu(h, &) = / By (oh, &)n(v)dv .

Ni(F)\Ng (A)

The tower (2.3). Here G = Spy,. Let W = F*" (column space), with the
1

symplectic form ( , ) defined by Jy, = . Let

-1
{e1,...,€2m,6-9n,...,€_1} be the standard basis of W. Define Vf, 1</ < 2n,
as in the previous case, and Fy = V;{L_ - Let Py be the parabolic subgroup of
G, which preserves FEj. Its Levi decomposition is P, = M} x Uy. U}, is abelian
in case dim By, = 2n (i.e. k = 0), and otherwise it is a two step nilpotent



836 DAVID GINZBURG, STEPHEN RALLIS, AND DAVID SOUDRY

group. Let E; and W be as in the previous case. Then M) = GL(Ej) x
Sp(Wy) = GLgj,— X Spyi. The Siegel parabolic subgroup P corresponds to
k =0. Let Ny = Zoy_j-Uy (Z2p—k is the standard maximal unipotent subgroup
of GL(Ey) = GLg,_k). Define a character ¢, on Ni(A) to be trivial on Ug(A)
and the standard nondegenerate character (corresponding to ¥) on Zo,_(A).
Note that 1y is fixed by Sp(Wy)a. The group Ny /Ny is isomorphic to the
Heisenberg group Hj in 2k + 1 variables. In matrix form, v in IV; looks like
this

Z ok x k %
1 e y

v = Ly, e x|, 2€Zoyp_(py1) -
1 %
Z*

Then the isomorphism takes v modulo N1 to (€;y) where é = e- (Ik 9] ) .
k

Denote the composition of this isomorphism with the quotient map N, —
Ni/Niy1 by ji. Consider the Weil representation of éf)Qk(A) — the global
metaplectic cover. It comes with a choice of a nontrivial additive character
of F\A. We choose . Denote the Weil representation by wy, 1, and extend
it to Hy(A) - Spy,(A) by the Stone von-Neumann representation (of central
characters v) on Hj,(A). We still denote this representation by wy, . It acts on
the space S(AF) of Schwartz-Bruhat functions on A¥. Consider its automorphic
realization on the space of theta series

(212)  05,(h) = > wer(WE(@);  h €My Spy(A), €€ S(AP).
TEFk

Let 7 be an irreducible, automorphic, cuspidal representation of GLa, (A).
Assume that L5(7, A%, s) has a pole at s = 1 and that L(7, st, %) # 0. Then
the Eisenstein series E(g, ffi s) has a (simple) pole at s = 1 (subsection 1.1).
Let o (7) be the representation, by right translations, of §f)2k (A), on the space
spanned by coefficients of Fourier-Jacobi type on Ej(g, ¢), namely the functions
pr(h), where

(2.13)  pi(h) = pr(h, ¢, &) = / Er(vh, )05, , (i () )y, (v)do
N (F)\Ng(4)

Here h € é\f)%(A), ¢- as in subsection 1.1 and & € S(A¥). The appearance of
h in E;(vh, ¢) factors through Spyy(A). Denote, for this tower Hy = Spyy,.

The case of GL,,, where m is odd. Assume that m = 2n + 1. Let 7 be
an irreducible, automorphic, cuspidal representation of GLg,+1(A). Assume
that 7 is self-dual. In this case, it is known that L(7, A%, s) is holomorphic,
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and hence L°(r,Sym?, s) has a pole at s = 1. Consider the Eisenstein series
E(g, fﬂfs) on Gy = §134n+2(A). It has a pole at s = 1. As in the last case,
consider the groups U, and N (only now dim Ey = 2n — k + 1). 9y is the
character of Ni(A) = Zoy_k+1(A)Uk(A), which is trivial on Ug(A) and is the
nondegenerate character on Za,_k+1(A). As in the tower (2.3) and (2.13),
let o1 (7) be the representation, by right translations, of Spy;(A) on the space
spanned by coefficients of Fourier-Jacobi type on Ej(g, ¢) namely the functions
pr(h), where

(2.14)  pi(h) = pr(h, ¢, §) = / Ey(vh, ¢)9§,7k(jk(v)h)wk_1(v)dv .
Ny (F)\Ni(A)
Here h € Spyy(A), ¢ — as in subsection 1.1 and £ € S(A¥). Note that in (2.14),

we may take any preimage of h in Spy,(A).
This defines a tower for 7 on GLay,41(A)

e :
(2.15) 7 on GLopt1(A) — Spy,(A) .
\, :
Spy(A)
N )

Denote, for this tower, Hj, = Spy,,.

The definition of oy (7) through formulae (2.11), (2.13) and (2.14) is not
accidental. It is prescribed by Rankin-Selberg integrals which represent the
standard L-function for Hy x GL,, (see [G-PS], [G],[So], [GRS2]). More pre-
cisely, let o be an irreducible, automorphic, cuspidal representation of H k(A)
(Hj, is considered in each of the cases G = SOupn, SOunt1,SPsp, SPan2)- Let ¢
be a cusp form of o, then the integral

(2.16) / o(h)pr(R)dh
Hy(F)\H(A)

is the residue at s = 1 of the Rankin-Selberg integrals mentioned above (it is
obtained from (2.16), by replacing E(h, ¢) with E(h, f.,‘ffs) in the definition of
pr(h).) We remark that similar towers of unitary groups can be constructed
with the aid of similar global integrals (the theory should resemble the previous
cases; see [T], [Wt].)

2.  The tower of correspondences. Let G be one of the groups SOy,
SO4n+1;SPuap, §f)4n 19, and let 7 be an irreducible, automorphic, cuspidal and
self-dual representation of GL,,(A), where m = 2n or m = 2n + 1, such that
the corresponding Eisenstein series FE(g, ffy s) has a pole at s = 1. Consider



838 DAVID GINZBURG, STEPHEN RALLIS, AND DAVID SOUDRY

the representation oy (7) of Hp(A), acting by right translations in the space
spanned by the functions pi(h) ((2.11), (2.13), (214)).
Our main theorem in this chapter is:

THEOREM 8.  Assume that o(7) =0, for 1 <k <{—1. Then oy(7) is
either zero or cuspidal on Hy(A).

This is the well-known property of the symplectic-orthogonal towers of
theta liftings [R]. (See also [GRS3], for another tower for G5, within exceptional
groups.) The towers we present here “should start” at level & = n. We cannot
prove this at this stage(*), but at the third chapter, we will prove that, in case
G = Spy,, okx(1) =0, for 1 < k < n. Once we prove that o, (7) is nontrivial,
then o,(7) is a cuspidal representation of H,(A), associated to 7 (such that
E(g, ffs) has a pole at s = 1). The correspondence 7 — o, (7) should be the
explicit backward map to the functorial lift from GL,, to H,, (m = 2n,2n+1).

We first prove (recalling that P = M x U denotes the Siegel parabolic
subgroup of G),

PRropPOSITION 9.

1. The constant term of E1(g,¢) along any unipotent radical of a standard
parabolic subgroup, different from P, is zero.

2. The Whittaker coefficient of E1(g,®), along the maximal unipotent sub-
group of G, is zero.

3. Let Z,, be the standard maximal unipotent subgroup of GL,,, embedded
naturally in M — the Levi part of P. Consider the standard nondegenerate
character of Zpy,(A), defined by 1, and continue to denote it by 1. Then
the following coefficient is nontrivial,

/ / B (zug)(z)dzdu .

Zm(F)\Zm(A\) UF\UA

Proof. Part 1 follows, since E(g, ff} s) is concentrated on P. Part 2 fol-
lows since the Whittaker coefficient of E(g, ff s) is holomorphic at s = 1.
(The proof uses the formula on p. 352 of [Sh], for the Whittaker coefficient
of E(g, ff, s). The product of L-functions, which appears there, is that given
by the denominator in each case of (1.5). As explained (in parenthesis) in the
proof of Proposition 1, each such denominator is nonzero (and holomorphic)
at s = 1. To complete the argument, use Proposition 3.1 in [Sh]. The proof
in case E(g, ff? s) is on §f)4n is exactly the same.) As for part 3, consider the

() Added in proof. As we mentioned in the introduction, we now can prove that o, (7) # 0. The
case G = Spy,, appears in [G-R-S5]. The remaining cases will appear in a work under preparation. The
fact that the unramified parameters of 7 and o, (7) correspond, for G = Spy,, appears in [G-R-S6].
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constant term of Fj(g, ¢) along U. Then by part 1, it defines a cusp form £ on
GL,(A) = My and so £ has a nontrivial Whittaker coefficient (with respect
to Z,, and v). This proves Proposition 9. O

Proof of Theorem 8. The proof uses Fourier expansions and Proposition
9 (parts 1 and 2). We present the proof in cases G = SOy, 41 and G = Spy,,.
The proof in the two remaining cases is entirely similar.

Case G = SOyp+41. Let R, denote the unipotent radical of the standard,
maximal parabolic subgroup of Hy = SOy, whose Levi part is isomorphic to
GLy x SOg(¢—p) (I < p < £). The elements of R, naturally identified with
matrices in SOqy, are of the form

I, X Y
(2.17) Ly X
Ip

The corresponding element in SOy4y 41 is

Ianﬁ
I, X1 0 Xy Y
I, 0 0 X,

(2.18) r= 1 0 0 :
I, X
Ip

Ianf

where X = (X1, X2). We want to prove that

/ pe(r, d)dr =0, forall 1<p</
Rp(F)\Rp(4)

which, by (2.11), means that

(2.19) / / Er(ur, 6)u(v)dvdr = 0

Ry (F)\Rp(A) Ne(F)\Ne(A)

We want to relate the integral (2.19) to an integral over the group Ny_,. For
this, it is convenient to conjugate the variables in (2.19) by the Weyl element

Ip
Iané
p= Ly—py11
IQn—Z
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Conjugating vr, in (2.19), by 3, we get a matrix of the form
I, 0 Xy t Xo D Y

L Z A b C E D
I, 0 0 C X}
(2.20) pBorft = 1 0 v t |,
I, A X]
Z* 0
L I,

with t =0 and Z € Z5,_y. Note that

2n—0—1

o) = | D Zijr | vlbane) -
j=1

Denote S = BN;R,3~!. The identity (2.19) (after replacing 3 - ¢ by ¢) is
equivalent to

(2.21) / E1(s,0)0(871s8)ds = 0 .

Let S be the subgroup of matrices (2.20) with L = 0, t = 0 and Z = Iy, 4.
Denote by £ the subgroup of matrices (2.20), that have all coordinates above
the diagonal equal to zero. As usual, we identify Z,, , as a subgroup of S.
Then the left-hand side of (2.21) equals

(2.22) / / / By (szz, ¢)he(f  s28)dsdrdz .
Zon—e(F)\Zan—e(A) LF\Lh §p\S,
Denote by u; a matrix of the form (2.20), with all other variables, except

for t (and any appropriate Y) being zero. Consider the function of FP\AP,
t— [ Ey(ush, )8 sB)ds (his fixed). Take its Fourier expansion and

Sr\Sy
substitute ¢ = 0. Then it is easy to see that it equals
(2.23) ) [ EwOn ey,
T Uep (F)\\Ue—p(8)
where
Ip
0 Iop—g—1
n 0 1
77(0) = IQ(E—p)—H
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Recall that Uy is the unipotent radical of the standard parabolic subgroup Pj.
Using (2.23), we see that (2.22) equals

(2.24) / / / By (uwz, )y (uz)dudzdz |

Zon—e(F)\Zan—e(A) LENLy Up—p(F)\Ur—p(A)

where £’ is the subgroup of matrices (2.20) in £, such that the last line of L
is zero. Denote by £ the subgroup of matrices (2.20) in £ such that L has
all lines zero except for the last one. Write
L=z
Zony =297
where £(1) consists of all matrices (2.20) in £ such that L has all lines zero

except for line 2n — ¢ — 1, while £ corresponds to L with line 2n — ¢ — 1 (and
of course line 2n — ¢) being zero. Also

o={(e )} = {(€ D) end

Then (2.24) equals

o ]

£ Zp\zy Le\Ly ZN\2Y LN Vep(F\Ue—p(A)
- By (uzW M zz20), ¢)W_p(uz(1)g)d(. )

Note that z() e L'X) and 2(1) ¢ Zg) commute. Consider the function on

FP\AP g+ i E1(uah)e_p(u)du (h fixed), where
Up—p(F)\Ue—p(4)

I, 0 a
Iop—v—1 0O
1
a = Ly—py41
1 0 a’
Ipy1 O
I,

The Fourier expansion of this function (at a = 0) is

(2.26) > / / Eq (uah)be_p(u)(n - a)duda .

NEEY po\ar Uy, (F)\Ur—p(A)



842 DAVID GINZBURG, STEPHEN RALLIS, AND DAVID SOUDRY
Let
Ip
0 Iop—g—2
1) _ n 0 1
Lyo—py43
1 Dpyo
n 0 I,
Then, fixing Z, Z, z(¥) in (2.25), the inner-triple integration equals, using (2.26),

3 / / / By (u- (f gD )20
£\ neFr ZENZD) PP U p(FN\Ue-p ()
Wz . 7220 @) -v(n- a)he_p(uzM)dudadzV dzM .

Note that nMan® ™" 21 = G2/®) and ¥(n - a)r_p(z1)) = Pp_p(2'Y). We get
that (2.25) equals

e [ ]
ﬁ(?)[:(\l) ZF\ZA »CF\»CA Z(1>\Z(1) FP\AP Ug_p(F)\Ug_p(A)

. El(uaz(l)ggiv(l)x(o)’ qﬁ)wg_p(uz(l)%)d(- )

Repeat the same steps, only that now, consider the function on FP\AP

28)
— 1) ey
b / / / By (uaz! bh O)ho— p(uz )dudadz

ZIN\ZD FPAP Uy (F)\Uep(4)

for h fixed and

(2.

I, 0 b
In—¢—2 0
_ 1
b= Lye—p)+3
1 0 v
Iop—i—2 0
Iy
Write the Fourier expansion of the function (2.28), as in (2.26), and use
Ip
0 IQn—f—E
i 0 1
77(2) = Iye—p)+5
1
0 Isp—¢—3
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instead of 77(1) in the previous step. Split L=L®. /:', Z =297 r®
consists of all matrices (2.20) in £, such that L has all lines zero, except for line

2n— £ —2, while L corresponds to L with lines 2n —¢—2,2n—¢—1 and 2n —/,

Iy o x 0 - ¢ 00
being zero. Z(?) = 1 0 , 4 = 1 0] € Zopy
1 1

Note that for 22 ¢ Z(2), 77(2)’577(2)712(2) = b2’®, for 2/® € Z® such that
P(n - b)wg,p(z@)) = wg,p(z’@)), and so on. We repeat this procedure until we
get

(2.29) / / Eq (v, ¢)e—p(v)dvde
(FNU;_ (&)

Ly Us (F

where U, is the subgroup of matrices in Ny,
(2.30)
I, A X D Y
Z B C D

Iye—py41 B' X' |, with A having zero in the first column .
z* A
Ip

Consider the function

(2.31) (73 j>~> / El(v<7g j)Ah,mw_p(v)elv

Uy, (FNUG,(A)
where m € GL,(A), e € AP (columns...) and

m e
1

m € A
< 0 1> = I4n72p71 ,

The function (2.31) is “automorphic” and “cuspidal,” in the sense that all con-
stant terms are zero, as follows from Proposition 9. Thus its Fourier expansion
(as for cusp forms of GLy1(A)) yields that (2.29) is equal to

(2.32) > / / By (7, )by (v)dvda
VE€Zp(FNGLp(F) £, N,_ (F)\Ne_p(A)

Y
where 7 = Iyn—2p11
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Let us record the identity that we proved

(2.33) / / Ey(vr, ¢)ipe(v)dvodr
Rp(F)\Rp(A) N¢(F)\Ne(A

-y / [ Bwias o o)

’YEZP(F \GLp ‘CA NZ p \NZ p )

or, in the notation (2.11),

(2.34) / prd)dr = % / pe_pF, 8 - $)do

Rp(F)\Rp(A) YEZp(F)O\GLyp (F

By our assumption pg(h,¢) = 0, for 1 < k < ¢. Note that po(1,¢) is the
Whittaker coefficient of E(-, ¢), which is zero (Proposition 9). Thus, (2.34)
implies that the constant terms of p,; along the unipotent radicals R, are zero,
for 1 < p < £. This completes the proof in case G = SOypy1. O

Case G = Spy,. Let R, denote the unipotent radical of the standard,
maximal parabolic subgroup of Spy,, whose Levi part is isomorphic to GL,, x
SPa(s—p) (1 < p < {). We identify the elements of R, with their image in Spy,,,
i.e. with matrices of the form

]271—(
I, X Y
by X '
Ip

Iané
We want to prove that

/ pe(r,p,§)dr =0, forall 1<p</{,

Ry(FN\Rp(2)
which, by (2.13) means that
(2.35) / / Ex(or, )65, G (0)r)(v)dvdr = 0 .

Rp(F)\Rp(A) Ne(F)\Ne(4)

As in the previous case, it is convenient to conjugate vr in (2.35) by the Weyl
element
Ip
Ianf
B = Ia(e—p)
IQn—Z



EXPLICIT LIFTS OF CUSP FORMS 845

We get matrices of the form

L 2 A C B

(2.36) Borf~t = -y A X'
Z*
LI,

where z € Zg,,_y. Note that

(2.37) Je(v) = (Lan—e, Aon—t: By 4; Con—s.1)

2n—~0—1

o) =(2) =¢( > Zijn) -
j=1

Denote by U’ the group of matrices of the form (2.36), with L, X, Y being
zero and Z = Is,_y. Denote by L the subgroup of matrices of the form (2.36)
which are lower triangular. Finally, we identify Z5, , with the subgroup of
matrices of the form (2.36) where A, B, C, X, Y, and L are all zero. Put, for
v € Ny(A),

Je(BvB™") = je(v)
Ge(BuB™) = () -
The integral (2.35) becomes

[

Rp(F)\Rp(A) Zan—e(F)\Zan—e(A) Lr\Ly Up\Uy
- By (u'zzBr, qb)HfM(}g(u(x)r)@(z)du’dwdzdr.
By definition,
03, Gelw'e)r) = 3wy e(Ge(u'z)r)E(n.1)

neFP
teFl—p

= 3wy ((1.0,0;0)j(u'z)r)E(0, 1) .

neFP
teFt—p
By the formulae of wy ¢, it is easy to see that for fixed 1,z and r, the function

u' = Y wy((1,0,0;0)j(w'z)r)E(0, )
teFe—p
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is left-U}, invariant. Now it is easy to see that

By (u'vzr, )65, , (o(u'z)r)du’
U}\UA

= / Z El (n(o)ulxzﬁr’ qb) Z sz((U, 07 O; O)f.]vf (U,IE)’F)&-(O, t)dul

€Fr l—p
U}/T\UA n teF

=3 [ BOnone) Y wnditn®ang. o

FP,., , 0—
ne UF\UA teFt—p
where, as in the previous case, n(9) lies in £ and is such that, in the notation
0
of (2.36), L = | After interchanging summation and integration, we

n
changed variable v/ — 7@ u/n(©) . Substituting this in (2.38), we obtained

o [

Rp(F)\\Rp(A) Zon—o(F)\Zan—e(A) Lp\Ly Up\Uj
C Ey(u'zzBr,0) Y wy (e z)r)E(0,1) - o(2)dudadzdr .
teFt-r

Here £’ is the subgroup of matrices in £ such that Lo, , = 0 (in the notation
of (2.36). Let £(©) be the subgroup of matrices in £, such that all rows of L
are zero except for the last row. Note that for r € R,(A) and t € F*7P,

wy,e(r)€(0,t) = £(0,7) .
Thus, “conjugating r back” in (2.39), we get
(2.40)

[

EESS) Zan—e(F)\Zan—¢(A) LYN\Ly Ue—p(F)Ug—p(A)

- B (W22a98, ¢) Z ww,g(ﬂ(uw(o)))é’(O,t)-Jg(z)du'd:rdzda(o) :
teFt—p

Take ¢ of the form & ®¢&z, where £; € S(AP) and & € S(A~P). Then, in (2.40),

w0 (Ge(ual))E(0, 1) = €1(a)wyo—p(Gep(u))éa(t) .
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Thus, (2.40) becomes

ww fao [ ]

E(O) Z2n—Z(F)\ZZn—E(A) ‘C'/F‘\EA Uﬁ—p(F)\Ul—p(A)

- By (uzza®g, ¢)Hi%e_p(jg,p(u))W,p(uz)dudxdzda(o) .

Now we are exactly at the same situation as in (2.24). We use a sequence
of Fourier expansions on F1, as in the previous case. Note that when we com-
plete uz to a matrix in Ny_, by inserting elements in the zero, superdiagonal
coordinates, then j,_p(u) remains unchanged. Therefore, we finally get

(2.42) >

VE€Zp(FNGLp(F) £, N,_ (F)\Ne_p(A)
By (720, )0, (ie—p(0) e—p(0)61 (5 () dvd

where for © € £, we write, as before, z = (9 -/, with «’' € £/, and j(z) = a.

~

Also, for v € GL,(F), 7 = Lin—2p . We record the identity that
,y*

we proved (for £ = £&RE))

(2.43) / / Ex(vr, )65, (o (0)r) e (v) dvdr

Rp(F)\Rp(A) Ne(F)\Ne(A)

- ¥

VE€Zp(FN\GLp(F) £, N, \N,_,(A)

Er(v328, )05, (Ge—p(0))e—p(0)61 (4 () dvda

or, in the notation (2.13),
(2.44)

pr6,6@0) = 3 / Pep(Ar, B, £2)61(j(2))d

Rp(F)\Rp(A) YE€Zp(F)\GLp (F

By our assumption pg(h, ¢,&) =0, for 1 < k < £. Note that in py(1) = po(1, ¢)
“there are no £ and no theta series.” This is simply the Whittaker coefficient of
Eq (-, ¢), which is zero (Proposition 9). Thus (2.44) implies that the constant
terms of py along the unipotent radicals R, are all zero. This completes the
proof in case G = Spy,. O
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3. Corollaries and conjectures. We keep the notation of the previous
sections. The first step of each of the towers (2.1), (2.2), (2.3), and (2.15)
is clearly trivial, as follows from Proposition 9(2). In the first two towers,
0on—1(7T) (resp. oan(7)) is just the restriction of Ei(-,¢) to Hap—1(A) (resp.
Hs,(A)) and is hence nontrivial. In the last two towers, 0g,—1(7) (resp. o2, (7))
is easily seen to be nonzero for some choice of ¥. Thus, from Theorem 8, we
conclude

THEOREM 10.  There is a natural number £,, and a choice of ¢ in the
last two cases, such that

2n — 1, case (2.1)
2n case (2.2)
2.4 < ’
(245) = 2n — 1, case (2.3)
2n, case (2.15)

op(t) = 0, for k < £y, and oy, (T) is a nontrivial cuspidal representation of
Hy, (A).

We have the following*)

CONJECTURE 1.

(2.46) by =mn;
1.€.
SOgp+1, case (2.1)
_ ) SOq, case (2.2)
(247) He, = SPans case (2.3)
SPons case (2.15)

PROPOSITION 11. oy, (7) is generic in the sense that it admits nontrivial
Whittaker coefficients.

Proof. Since oy, (7) is a nontrivial cuspidal representation, we can write
it as a direct sum of irreducible, automorphic, cuspidal representations. Pick
a summand o. Then

(2.48) / o(h)pr, (R)dh £ 0

Hyp, (F)\Hep, (A)

) Added in proof. See the footnote, right after Theorem 8. Moreover, we can now also prove
that og(7) = 0 for k < n in the remaining cases. This will appear in a work under preparation. Thus,
Conjecture 1 is now proved.
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for cusp forms ¢, in the space of 0. As mentioned in (2.16), the integral (2.48)
is the residue at s = 1 of a Rankin-Selberg integral for Hy,, x GL,,, where
m = 2n, in cases (2.1)—(2.3) and m = 2n + 1, in case (2.15). This integral
represents (after a normalization) the standard partial L-function L°(c®r, s).
(In case Hy = §f>2k, the L-function depends on 1).) However the Rankin-
Selberg integral above is nonzero, if and only if ¢ is generic. This is seen from
its Euler product expansion (see [G-PS],[G], [So] and [G-R-S3]). In particular,
it follows from (2.48) that o is generic. This implies that oy, (7) is generic. O

PROPOSITION 12.  Let1l < k < £,. Let o be an irreducible, automorphic,
cuspidal, generic representation of Hy(A). Then L% (c®T,s) is holomorphic
at s = 1.

Proof. By assumption, we have

(2.49) / o(h)pr(h)dh =0
Hy(F)\Hp (&)

for all cusp forms ¢ in the space of o. As in the proof of Proposition 11, the
integral (2.49) is the residue at s = 1 of a Rankin-Selberg integral

(2.50) [ ewnama
Hy (F)\Hg(A)

which represents the standard partial L-function L°(c®rt,s). In cases (2.1)
and (2.2) (see (2.11)),

(251)  Pos(h) = Pya(hid) = / E(vh, f2,)x(v)do

Ni(F)\Ng(4)

and in cases (2.3) and (2.15) (see (2.13), (2.14)),

(252) Pk,s(h) = Pk,s(h> ¢a 5) = / E(Uh, fg),s)eflj7k(]k(v)h’)wk(v)dv .
Ny (F)\Np, (&)

For decomposable data, the integral (2.50) equals an Euler product of the form

(2.53) [T AW, P, - LS (o®r,s) |

ves

where S is a finite set of places, containing those at infinity, outside which the
above data is unramified. A(W,, P} ,) are the “local integrals” at the places
of S. W, is a Whittaker function in a prescribed Whittaker model of o, and
Py is a corresponding local object obtained from Py, 5, depending on ¢, (resp.
(¢, &,)). Thus the product (2.53) is holomorphic at s = 1 for all data at S.
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We can choose data at S (i.e. Wy, ¢,, &, ) such that A(W,, P} ) is holomorphic
and nonzero at a neighbourhood of s =1 (see [So], [Sol], [G:R—SB]).

We conclude that L%(o®r, s) is holomorphic at s = 1.(Recall, again, that
for Hj, = Spy;, this L-function depends on .) O

We will prove in the next chapter one part of Conjecture 1, which is
THEOREM 13.  In case (2.3),
by >mn g

i.e. for an irreducible, automorphic, cuspidal representation T of GLa, (A), such
that

L5(7,st,1/2) #0
and
L%(1,A%s) has a pole at s =1,

we have
op(t) =0, for 1<k<n.

Combining this and Proposition 12, we get one of the main results of this
paper.

THEOREM 14. Let o®T be an irreducible, automorphic, cuspidal,
generic representation of Spa(A) X GLay(A), such that 1 < k < n,

Lo(r, st,1/2) #0
and
L%(1,A%s) has a pole at  s=1.

Then Li(a@n s) is holomorphic at s = 1.

Finally, assume that ¢,, is given by Conjecture 1. Let ¢ be an irreducible
summand of the cuspidal representation oy, (7). As in the proof of Proposition
11, and as in (2.53), keeping the same notation, we can find data at S, such
that

H AW, Pé;s)LS(U@T, s)

ves

has a pole at s = 1. We expect that, for all data, A(W,, P/ ) is holomorphic

at s = 1, so that L°(c®r, s) has a pole at s = 1. We cannot, prove this at this
stage. We make the following stronger conjecture.*)

() Added in proof. See the footnotes after Theorems 8 and 10.
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CONJECTURE 2. The number £, is given by Conjecture 1, and oy, (T)
is irreducible. Moreover, T is the functorial lift of oy, (T) from Hy, to GLp,
(where m = 2n in cases (2.1)—(2.3) and m = 2n+ 1 in case (2.15).)

Remark 1. Let o be an irreducible, automorphic, cuspidal generic repre-
sentation of Hy, (A). Let 7 be its Langlands functorial lift to GL,,(A) (m as
above). Assume that 7 is cuspidal. Since L%(c®7,s)(= L°(t®T,s)) has a
pole at s = 1, we may apply our theory and find, by definition, that o is a
summand of oy, (7). Thus oy, (7) contains all generic o which lift to 7. Conjec-
ture 2 implies that there is a unique generic o which lifts to 7 (i.e. o = oy, (7)
is the unique generic member of its L-packet.)

Remark 2. Case (2.3) is a remarkable generalization of Waldspurger’s re-
sult [W] on the theta correspondence between irreducible, automorphic, cus-
pidal representations 7 of PGLa(A) such that L(r,1) # 0 and 1/-generic rep-
resentations of SLy(A). Our generalization is to 7 — on GLan(A) such that
L3(1, A%, 5) has a pole at s = 1 (this is automatic for n = 1 and 7 with trivial
central character) and L(r,st, 5) # 0. To 7 we associate oy, (T) on Spy,, (A).

3. Proof of vanishing of o4(7), for £k < n, in Case G = Sp,,

In this chapter, we prove Theorem 13. The main part of the proof is a
local statement about the disjointness of Sp,y,, X Spy,-invariant functionals on
representations of G and certain eigenfunctionals with respect to a subgroup
of Ni. For this chapter, we let G = Spy,,, H = Spy,, X Spy,,, embedded in G
through ¢ in (1.7). We fix 1 <k < n.

1. A preliminary reduction. Let 7 be an irreducible, automorphic, cus-
pidal (self-dual) representation of GLa,(A), such that L5(r,st, 1) # 0 and
L3(,A%, 5) has a pole at s = 1. Consider the following subgroup, N®) of Ny,

Z u  x k%
1 0 y =

3.1 N® = {v = Lr 0 % |€Glze Z2n_(k+1)} :
1
Z*

and its character
(3.2) xx(v) = Yp(V)Y(y) = Y(z12+ 223+ -+ 22n—k—22n—k—1FU2n—k—1)V(Y) .
LEMMA 15.  We have o (1) = 0, if and only if

(3.3) / Eq(v,¢)xk(v)dv=0.
N®)(F)\NF)(A)
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Proof. The elements of o (7) are given by pg(h, ¢,€) in (2.13). or(7) =0,
if and only if pr(1,¢,£) = 0 (for all ¢ and £). We have

(34)  p(L.6,8) = / Ey(,6) 3wk G (0))E (@) on(0)dv

Nio(F)\Ni(4) zEF*
Let
Z ok % ok k%
1 e 0 y =«
I, 0 0 =«
(35) Nk,l = {U = k I o % € Nk},
1 =x
Z*
Iop 1
1 0 a O
. _— Ik 0 d
(3.6) Nk72 = {a = I 0 € G} .
1
Iop 1

Then Nj, = Nj 1 x N2, and we can rewrite (3.4), using the notation in (3.5)
and (3.6), as

Ei(va™,¢) > wyr(ie(a))é(@ + ) (v)i(y)dvda

FFE\AF N 1(F)\Ng,1(4) S i

_ / / By (va*, 8wy i (G (0*)E () (0)0(y) dvda

FR\Ak N (F)\Ny, 1(A)

_ / / B, (va*, ) (2ewya) i (v) b (y)E (e)duda .

FR\AF  N(K) (F)\ Ny 1(A)

Here wy = . . Consider v in the last integral, and take it in the

1
form (3.5). Write
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Ton—k—1
1 e
where v/ € N*®) and € = I , . We have
Ik e
1
Ion—k—1
Iop—k—1
1 0 0 2ewila
« I, O 0 e~
(3.7) ea* = I, 0 a*e
1
Iopn—k—1

Using this in the last integral, and changing variable y — vy —2ewy'a, we obtain
pe(1,0,8) = / / / E1(v'a*e, ¢) X, (v)E(e)dv'dade .
e€Ak aeFR\AF /e NK®)(F)\N ) (A)

Thus, for given ¢, pr(1,¢,€) =0, for all £ € S(A¥), if and only if

E (v a*€, )X, (v )dv'da = 0, for all e c A* .
FR\AR N®E)(F)\NF) (4)
Thus, pi(1,¢,&) =0, for all ¢ and all &, if and only if

(3.8) / / Ey(va*, ¢)xk(v)dvda =0, for all ¢ .
FR\AE NG (F)\N ) (4)

Consider in (3.8) a right translation of E; by €, where e € F*. Using (3.7),
and changing variable y — y + 2ewyla, and then v — éve !, recalling that F;
is left G(F') invariant, we obtain from (3.8)

(3.9) / / E1(va*, ¢)xi(v)(2ewy'a)dvda
FR\AE N (F)\N ) (4)

which is a general Fourier coefficient of the following function on FF\A*

(3.10) a— / Eq(va™, ¢)xk(v)dv .

N®E(F)\NF)(A)
Thus the integral (3.8) is identically zero (for all ¢), if and only if the integral
(3.9) is identically zero, for all ¢ and all e € F*, which is equivalent to the

function (3.10) being identically zero, for all ¢. This completes the proof of
the lemma. I
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Our aim now is to show (3.3), for k < n.

2. H-inwvariant functionals and (N(k),Xk)—eigenfunctionals are disjoint.
We formulate the local result which is the heart of the proof of Theorem 13.
In this section, F'is a local non-archimedean field.

THEOREM 16.  For 0 < k < n, the Jacquet module Jyw) ,, (Indci 1) is
zero.

Note that N(© is the standard maximal unipotent subgroup of G, and o
is its standard nondegenerate character. As a corollary, we get

THEOREM 17. Let m be an irreducible, admissible representation of
Spa, (F). Assume that (the space of) m admits nontrivial H-invariant func-
tionals. Then, for 0 < k < n, jN(k)’Xk(’iT) = 0, i.e. ™ has no nontrivial

(N®), x1,)-eigenfunctionals.

The reason is that m admits nontrivial H-invariant functionals, if and only
if 7 admits nontrivial H-invariant functionals (soon to be explained) and this
happens if and only if # embeds in Ind% 1 = C*°(H\G), which is the same as
the existence of a surjection

G N
IndCHl—wr%ﬂ'

and by the exactness of Jacquet functors and Theorem 16, we get Jy )., ()
= 0. Let us explain why 7w admits nontrivial H-invariant functionals if and
only if 7 does. By [MVW, p. 91], @ = 7% where 7% is the composition of

L2n € GSpy, (F), such that 6 is not a
61,

square in F'. It is clear that conjugation by 6* preserves H (see (1.7)). Thus,

if m acts on the space V; and ¢ is a (m, H)-invariant functional on V;, then

0(r®(h)€) = £(m(h®)E) = £(€) for h € H and & € Vi = Vs, so that £ serves as
6

7 with conjugation by 6* =

an H-invariant functional for 7° as well.

The proof of Theorem 16 will be given in Section 4 of this chapter.

3. Theorem 16 tmplies Theorem 13. We return to the global setup. In
this section, F' is a number field and 7 is as in Section 1. Consider the residue
representation E7(7) in the space {Fi(g,¢) = RelsE(g, fifs)}. It lies in the

S=

residual spectrum of L?(G(F)\G(A)). Write F1(7) = @, a direct sum of
irreducible representations (realized in concrete subspaces V). Let k < n.
Denote the Fourier coefficient (3.3) by Wy, = Wi (E1(-, ¢)). We want to show
that Wy is zero on each summand 7;. By Theorem 2 and Corollary 3, the pe-
riod along H is nontrivial on E;(7). Therefore, there is a summand 7;,, such
that the period along H is nontrivial on (the space of) m;,. Write m;;, ~ ®m, ,,

a tensor product of local representations. Pick a decomposable vector @ f2, so
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that the period is nontrivial on its corresponding automorphic form in Vg, .
Let S be a finite set of places such that for v ¢ S, fJ is the (prechosen)
unramified vector of m;,,. Fix any vy ¢ S, and consider the restriction of
the period along H on the subspace of Vz, , which corresponds to decompos-
able vectors ®f,, where, for v # vy, f, = fJ, and f,, varies in the space
of 7jy,- This defines a nontrivial H (F,,)-invariant functional on m;, ,,, and
hence, by Theorem 17, J, ) (Tigo) = 0. This implies that Wy, is triv-

Vg »Xk,l/o
ial on m;,; otherwise, using the same reasoning as above, W}, defines a non-

trivial (N,ng),ka)-eigenfunctional on Tj, .., that is a nontrivial element of

J N N (Tig o), Which is a contradiction. To complete the proof of Theorem
13 (using Theorem 16), it remains to prove that W is trivial on all summands
m;. Indeed, let m;, i # ip, be any other summand. It is clear that m; and 7,
are locally isomorphic at almost all places. (For almost all v, 7; , and 7;, ,, are
isomorphic to the unique unramified constituent of IndIGDV” 7,®| det -|*/2.) What
we just proved implies, for almost all v,

jNIEk)zxk,u (ﬂ—i,lj) = jNIEk>7XkJ,V <7Ti0’y) - O

and, in particular, Wy, is trivial on ;.
It now remains to prove Theorem 16.

4. Proof of Theorem 16. We return to the notation of Section 2. F is a
local non-archimedean field. G = Sp,,,(F), N®®) = N®)(F), ete. (0 <k < nis
fixed). Let T" denote the diagonal subgroup of G and W, the Weyl group of G.

We prove Theorem 16 by standard Bruhat theory. For this, we have to
describe the double cosets H\G/N¥) and show that for all g € G,

(3.11) Xplg "t HgN N®) £1 .

We start by realizing H\G inside G. Let

I,
£ = _IZn
I,

and define

0(g) = cge ! = ege .

Note that 6 is of order two, and that 6 preserves root subgroups. The central-
izer of ¢ in G is H, i.e. 6(g) = g, if and only if g € H. Let

Y ={g'0(g) | g G} .

Then
Y 2 H\G,
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by
. -1
f:Hgw— g 0(g) .

The natural right action of G on H\G, is translated, via f to a twisted conju-
gation of G on Y

y-9=49 'yd(g) .
As a first step, we show, after [Sp] (see also [J-R2, Lemma 2]).

PROPOSITION 18.  Each y € Y can be written in the form

(3.12) y =u twab(u) ,
where u e NO we W, aeT, such that
(3.13) O(wa) = (wa)~! .

(W is chosen to be generated by the simple reflection matrices.)

Proof. Since (N (O)) = N we can write the Bruhat decomposition of y
in the form

(3.14) y=uiwab(ug) , ui e NO weW,aeT.

By definition of Y, its elements satisfy

(3.15) O(y)=y ', yeY.

Applying (3.15) to (3.14), we get

(3.16) 0(uyH0(wa)us = O(uy ") (wa) tuy

By the uniqueness property of Bruhat decomposition, and the fact that
0(Na(T)/T) = No(T)/T ,

we get, from (3.16)
O(wa) = (wa)~"

which is (3.13). By definition of 6, we have

(3.17) O(w)=t-w,

where ¢ is diagonal, with £1 along the diagonal. From (3.13), we get
Bw)a = w (wa lw ) ;

hence

(3.18) O(w) =t -w ',

where ¢’ is diagonal with +1 along the diagonal. We conclude that

(3.19) w? =6,



EXPLICIT LIFTS OF CUSP FORMS 857

where ¢ is diagonal, such that 62 = I. (i.e. w is of order two in Ng(T)/T). Note

that (3.19) implies, that when we write w as a permutation matrix in GL4y, (F),

up to signs, then w;; # 0 if and only if wj; # 0 (w;; = fwj; = £1). Note that

since w is symplectic, we have wy; # 0, if and only if way41—k ant+1—i 7 0.
Consider, for a Weyl element -,

Nj ={ue NO | yunyt e NOY
Ny ={uc NO | yuy e NEO)} :
(NEO) is the opposite to N(©).) From (3.19), it is clear that
(3.20) NS =N', and Ny=N_, .
It is also clear that
(3.21) O(NE) = NE .

This follows from (3.17), (3.18), and the definition of §. We may assume that
ug, in (3.14), lies in N__,. Write, in (3.14), u1 = vy vy, where v} € N;ll and
vy € N__,. Writing (3.15) again,

(3.22) 0(vy) L 0(v)) T O(wa)ug = O(uy ) (wa) "t oy

Since (wa) 'v; (wa) € a tw NS wa € NO) | we conclude, from (3.22) and

the uniqueness in the Bruhat decomposition that us = v]". Thus

y=(v7) " (o)™ - wa)f(v]) .

This means that the N(©-orbit of y is the same as that of (v;)™" - wa, and so
)71 wa. Using (3.15) again, we get

we may assume that y = (v
O() " 0(wa) = (wa) ™" v .

Applying 6, and using (3.16), we get

(3.23) )t = (wa)f(v])(wa)t .

Consider the map

AMu) = wab(u)(wa) ™t .

It is clear, from (3.13), (3.20) and (3.21), that A defines an automorphism of
order two of N'_,. By (3.23), A(v{") = (v{)~!. Since N;_, is nilpotent, there
isve Ni,l, such that

o = Aw™) v
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and so
y=(v]) - wa=v"Av) - wa
= v 'wab(v)(wa) "t wa = v - wa - H(v) .
This proves Proposition 18. O
Let
Loy _j—1 u lies in the standard
Uk = { U maximal unipotent subgroup}
Iy k1) |of Spogyo(F)
Clearly

NO = g®) NE&)
U®) normalizes N and for u € U®), v € N*¥)| we have
(3.24) X (uvu™t) = X (v) .
Note that U®) N N*) is the center of U¥). From Proposition 18, we have, of
course, that the N*)-orbits in Y have representatives of the form
(3.25) uw o wa-O(u)

where u € U*) and wa as in (3.13).

Now, in order to prove (3.11), we have to show that Xj is nontrivial on
the stabilizer, in N*), of elements of the form (3.25). An element v € N*) is
in the stabilizer of (3.25) if and only if

’U_l . (u—lwae(u))H(U) = u_lwae(u) ;

ie.
(wvut) T wab(uvut) = wa .

By (3.24), it is enough to assume that v = I in (3.25). Thus, we have to solve
v wa- () =wa , veN®

We find it more convenient to replace v by 6(v). Of course, this is permissible.
The last equation transforms to

(3.26) w(ava™Hw ™t = eve .

Thus, if v is in the stabilizer of wa, w must “preserve the root structure” of v.
Let us call wa, satisfying (3.13), nonrelevant, if equation (3.26) admits

solutions v in N*), such that Xi(v) # 1. Otherwise, call wa relevant. So, in

order to prove (3.11), we must show that all wa satisfying (3.13) are nonrele-

vant, if k£ < n.
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Let Ly, be the set of roots “inside N*)”. For a root a, and t € F denote
by z4(t) the corresponding standard unipotent matrix. Let Ay C Ly be the
subset of roots «, such that Xj(x,(t)) # 1. The following two lemmas are
useful.

LEMMA 19. Let a € Ay. Assume that = w(a) € Ly \ Ag. Then wa
s nonrelevant.

Proof. 1t is similar to [J-R2, Prop. 2|. Let
(3.27) 0 = Za(t)23()Tar 5(c)

where z445(e) = 1, in case o + [ is not root. We will show that there are
t, s, e, such that v solves (3.26) and Xy(v) # 1. We have

(3.28) wre(tw Tt =zg(ct) , c=+1.
By (3.19),

(3.29) wrg(s)w !t =z4(c's) , =41,
so that,

To(cdt) = Wz (w2 = zo(a(w?)t) .
We conclude,
(3.30) a(w?) =cd .
Similarly, if « 4+ 3 is a root, then
(3.31) wrarple)w !t =x01p(c"e), ' =+£1.
Using (in our case, since a and [ have the same length)
[za(t), 25(s)] = zayp(dts) ,
where d = 1,2 (depending on (), we get
Tarp(cdts) = [xg(ct), 10(c's)] = [xa(c's), za(ct)] ™! = z0rg(ddcts)™
= Tatp(—Cedts) .
Thus
(3.32) d'=—cd = —a(w?) .

Now substitute (3.27) in (3.26) and use (3.28), (3.29) and (3.31). We then
have to solve
(3.33)

zg(ca(a)t)za(c'B(a)s)Tarp(c"aB(a)e) = za(a(e)t)zs(B(2)s)Tasrs(aB(e)e) -

Write the right-hand side of (3.33) as
25(B()8)a(a(e))aara(aB(E) (e + dis))
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Thus, we must solve

(3.34) cala)t = B(e)s
(3.35) dB(a)s = ale)t

and if o + 3 is a root, also
(3.36) d"aB(a)e = aB(e)(e + dts) .
To solve (3.34) and (3.35), we must have

ie.
(3.37) cdaB(a) = af(e) .
We have,

We used (3.13), (3.19) and (3.30); (3.37) now follows (Recall that ¢, = £1.)
Now solve (3.36)

("ap(a) — af(e))e = af(e)dts .

Thus, we only have to make sure that ¢’aB(a) — aB(e) # 0. Indeed, by (3.32)
and (3.37),

¢"af(a) — afi(e) = —cc'af(a) — aB(e) = —2a8(z) £ 0.

__cda(a)t?

Thus, choose, s = Cg((aa))t, e =—"55 " Thenvin (3.27) solves (3.26) and
Xi(v) =o(t) # 1.
This proves Lemma 19. O

LEMMA 20. For w and a satisfying (3.13),
Wiant1—i = 0 .
That is, w has zero along the second main diagonal.

Proof. Let i be such that w;ant1—i # 0. We may assume that i < 2n
and w;any1—; = 1. Then, clearly, wsn11-;; = —1. Let us concentrate on
the SLg-subgroup of G embedded in the coordinates (i,%), (i,4n + 1 — i) ,
(dn+1—14,4) and (4n+1—1i,4n+ 1 — ¢,7) and equate these coordinates only
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in equation (3.13), ewas = a~'w ™. Write a = diag(ay, ..., asm,ay ;... a;").

. —1
Since a4n41-i = a; = we get

()= )6 )

(note that e has no effect here), which is impossible. O

To prove (3.11), we first show

LEMMA 21.  If wa is relevant, then

wi; =0 forall 1<4,5<2n—k;

hence (since w is a Weyl matriz) w has the form

—
0 --- 0
2n—k{ *
w— 0 0
o 0 0
* }2n—k
0 --- 0
————
2n—k
Proof. Assume that wy; = 1. Then
1
w = w'
1

where w’ is a Weyl matrix in Spy,,_o(F).
that

Consider the simple root «y, such
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Consider the root as, such that

1
1 ¢
Lo (t) = I4n76
1 —t
1
1
Then ay € Ag and w(ag) € Li\Ag, unless w has the form
I3
w = w/// ,

etc. By Lemma 19, w is nonrelevant, when we get to the i*" simple root
of GLgy—k, i, and w(oy) € Li\Ay (clearly, w(ay) € L), 1 < i < 2n — n.
Otherwise,

IQn—k—l

Ton—f—1
with w — a Weyl matrix in Spy,(F'). For such w, equation (3.13) implies, for
a = diag (aq,... ,agn,ai}, .. ,afl),

a?=1 , i=1,....2n—k .

P =

Iop—r—1
1 0 y
Thus (3.26) is solved with v = z,(y) = Iy, 0O
1
Ton—k—1
Note that Xj(v) = ¢ (y) # 1. Thus, w11 = 0. Now, note that
wgn,kyj:() j:1,...,2n—k‘
(and hence,
wi’gn,kzo z:l,,2n—k)

Indeed, if, say, wo,—j; = 1 for j < 2n — k. Then, by (3.19) (and the following
remark) w(n) € Li\Ag, or w(n) =n. In the first case,

Ij_l
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Using Lemma 19, we see that wa is nonrelevant. If w(n) = n, use the argument
above, which shows that a2, , = 1 and hence z,(y) solves (3.26), so that wa
is again nonrelevant. Now, assume that wj; = 1, for 1 < j < 2n — k. Then,
wij # 0. For simplicity, we assume that wi; = 1 (wj1,w1; = 1 are allowed,
in general). It is easy to see that w(a;) € Li\Ag, unless w(a;) = a1, which
takes place if and only if wjy12 # 0. Again, we assume for simplicity that
wjt1,2 = wa j+1 = 1 (recall (3.19)). Now consider w(aj4+1). Again, w(aj41) €
Li\Ay, unless w(ajy1) = ag. We continue in this manner, and get that wa is
nonrelevant, if we find j’ such that j + ;5" < 2n —k —1 and w(aj4;) € Lp\Ag
(and then use Lemma 19). Otherwise, the upper left (2n — k) x (2n — k) block
of w has the form (up to signs)

J 2n — k
! !
0 0 1 0
1
1 0
0
Jg— |1
1
1
2n—k — \ 0 -0 0 - 0

Now it is clear that w(ag,—g—1) € Li\Ag, and by Lemma 19, wa is nonrelevant.
We continue in the same manner, row by row, in the upper left (2n—k)x (2n—k)
block, and get the lemma. O

LEMMA 22.  If wa is relevant, then
wij =0, 1<i<2n—-Fk, 2n+k+1<5<4n

and hence (by Lemma 21 and (3.19)) w has the form

2n—k 2n—k
0 .- 0 0 --- 0
s S ; }%_k
(3.38) w— 0 --- 0 0 --- 0 '
0 --- 0 0 --- 0
: . : . 2n—k
0 0 0 0
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Proof. By Lemma 19, we know that wq 4, = 0. Assume that wi 4n41—;
# 0, for 2 < j < 2n — k. Note that by (3.19), want1—51 # 0. It is clear
that w(aj—1) € Ly, and w(aj—1) € Ly\Ay, unless woani2—j # 0 (and hence
Wiant2—j,2 7 0) in which case w(oj—1) = aq. In the first case, it follows from
Lemma 19 that wa is nonrelevant. In the second case, we have w(aj—2) € Ly,
and w(aj—2) € Lp\Ag, unless w3 4n+3—; # 0 (and hence wan43—j3 # 0), in
which case w(aj_2) = a2, and so on. If at a certain stage we find a simple
root a;_j, such that w(oj_j) € Ly\Ay, then we are done, by Lemma 19.
Otherwise the upper-right (2n — k) x (2n — k) corner of w has the form

J

——N e
0---+1 0
+1 ‘
w = : J
+1
0 0

and j is even (Lemma 20). Consider the coordinates of w in positions

(4,4n— 1), (%,471—%4—1), (%+1,4n— %), (% +1,4n — % +1) and the corre-
sponding Sp,-Weyl submatrix w; of w

0 0 b 0
0 0 0 ¢

wj= | _ .1 0 0 0 , bc=41.
0 b1 0 0

Put a; =d, aj . =e Then, in (w) = ewe, w; either remains unchanged, or
it is Hiultiplieé by —1. The second case takes place only if j = 2n, and then
k=0.

Denote the submatrix of #(w), which comes in place of w; by

0 0 v 0
0 0 0 ¢
_C/ 0 0 0 ((blcl) = :l:(b, C) = :l:(:l:l’ :l:l)) .
0o = 0 0

Now examine condition (3.13) in the above coordinates only. Then, we
must have
d= —ble .

Clearly w(aj/2) = ajja. Now equation (3.26) is solved with v = zq, ,(t).
Indeed, we have

.

WaTq . (T a twl = Wy . (—bc't wl = Zo . (cC't
J
i .

[N}
[V
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while

5.’130[1 (t)E = $O¢1
2

2
We have a; (¢) = —1, if and only if j = 2n, and similarly ¢ = —¢, if and
2
only if j = 2n. Otherwise () = 1 and ¢ = ¢. Since ¢? =1, zq, (t) solves
2 3
equation (3.26) and since Xi(zq; (t)) = 9(t), we find that wa is nonrelevant.

2
We continue in this manner, row by row, in the upper right (2n — k) x (2n —k)
block, and get the lemma. O

So far, we did not use the fact that k& < n. To conclude the proof of (3.11),
and hence of Theorem 13, we note that if £ < n, the matrix w of type (3.38)
cannot be invertible, given that it is a Weyl matrix in Spy,, (F').
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