Université de Metz, Département de Mathématiques, CNRS. UPRES- A - 7035, Ile du Saulcy, 57 045 Metz cedex 1, France. e-mail: benayadi@poncelet.univ-metz.fr}
Abstract: \font\frak=eufm10 \def\f#1{\hbox{\frak#1}} A quadratic Lie superalgebra is a Lie superalgebra ${\f g}={\f g}_{\bar 0}\oplus{\f g}_{\bar 1}$ with a non-degenerate, supersymmetric, even and ${\f g}$-invariant bilinear form $B$, $B$ is called an invariant scalar product of ${\f g}$. In this paper, we study properties of the decomposition of a quadratic Lie superalgebra ${\f g}={\f g}_{\bar 0}\oplus{\f g}_{\bar 1}$ relative to a fixed Cartan subalgebra of ${\f g}_{\bar 0}$. Finally, we give two characterizations of the basic classical Lie superalgebras among the quadratic Lie superalgebras.
Keywords: Classical Simple Lie Superalgebras, Quadratic Lie Superalgebras, Reductive Lie algebras, Roots of Lie superalgebras.
Classification (MSC2000): 17A60, 17A70, 17B05, 17B20, 17B70
Full text of the article: