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Abstract. The minimum number of mutually non-overlapping congruent copies
of a convex body K so that they can touch K and prevent any other congruent
copy of K from touching K without overlapping each other is called the protecting
number of K. In this paper we prove that the protecting number of any regular
polygon is three or four, and both values are indeed attained.

1. Introduction

The Newton number N(K) of a convex body K is the maximum number of mutually non-
overlapping congruent copies of K that can touch K. The problem of finding the Newton
number of the d-dimensional ball B? is a challenging open problem in discrete geometry for
dimensions d > 4, d # 8,24. Though the answer is trivial for the plane, N(B?) = 6, it
is well known that once the exact value of N(B?) was a point of controversy between Sir
Isaac Newton and David Gregory. Newton conjectured that the answer is 12 while Gregory
thought 13 is also possible. It took almost two hundred years before Hoppe [3] proved that
Newton’s conjecture, the '12’, was correct. But even in the plane the question for N(K)
becomes nontrivial if K # B2 The exact value of N(K) is known only for some special
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convex discs K, e.g., for regular n-gons [1, 5, 7, 8, 10, 11, 12|, for Reuleaux triangles [2], for
certain isosceles triangles [2, 6, 10], and for certain rectangles [5]. Also, some estimates are
given for more general classes of convex discs involving different parameters of the discs, e.g.
diameter, width, etc. [2, 4, 9, 10].

In this paper we consider the counterpart of the Newton number problem, i.e., the prob-
lem of finding the minimum number of mutually non-overlapping congruent copies of a convex
body K so that they can touch K and prevent any other congruent copy of K from touching
K without overlapping each other. This quantity will be called the protecting number of K.

We note the existence of a more restrictive variant of the above problem, the so called
blocking number problem introduced in [13]. The blocking number of a convex body K is
the minimum number of mutually non-overlapping translates of K so that they can touch K
and prevent any other translates of K from touching K without overlapping each other. It
is proved in [13] that the blocking number of any plane convex body is four.

Turning back to the protecting number it is clear that the protecting number of B? is
four. However, the protecting number problem is less trivial for convex bodies different from
B?%. Tt is easy to see that the protecting number of any plane convex body K is at least
three. Indeed, if K; and K, are two non-overlapping copies of K which touch K then the
convex cone or strip containing K and surrounded by the lines separating K from K; and
K, respectively, can always contain a third copy of K which touches K. In this paper we
concentrate on regular polygons and first we prove

Theorem 1. The protecting number of any regular polygon is not greater than four.

This theorem together with the above observation shows that the protecting number of any
regular polygon is three or four. We also prove that these values are indeed attained and, in
addition, the value three is attained infinitely many times.

Theorem 2. The protecting number of the square is four.
Theorem 3. The protecting number of the regular 6n-gon is three for all positive integers n.

Finally, we mention a rather surprising consequence of the last theorem. There exists a con-
vergent sequence of convex discs (with respect to the usual Hausdorff metric) with protecting
numbers three such that the protecting number of the limit disc is four. We note, however,
that there do not exist convergent sequences of convex discs with protecting numbers four
such that the protecting number of the limit disc is three. The proof of this latter statement
is easy and is left to the reader.

2. Proof of Theorem 1

First, let K be a regular n-gon, where n > 8 and n # 9,13, and let K, K5, K3, K, be the
images of K under the reflections with respect to the sides of K with indices [ %], |2], [22],
n, respectively. Then K, Ky, K3, K4 are mutually non-overlapping. Consider a further con-
gruent copy K’ of K which does not overlap K, K, K3, K3, K4. Then the incircle of K’ also
does not overlap K, K, Ko, K3, K,, of course. The angle between any two consecutive pairs
of the halflines emanating at the center of K and going through the centers of K, K, K3, K,4
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is at most [%]27“ which is not greater than 3?“ Easy calculation shows that the distance
between the centers of K and K’ is greater than the diameter of the circumcircle of K which
implies that K and K’ are disjoint. Thus K, K5, K3, K, form a protecting system for K.
In Section 4 we will prove that the protecting number of the regular hexagon is three so
it remains to show that the protecting number is not greater than four for n = 3,4,5,7,9, 13.
Figure 2.1 shows protecting systems consisting of four elements in these cases. The proof of
the fact that these systems are indeed protecting systems is similar to the previous argument

and is left to the reader.

P o
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Figure 2.1 Protecting systems for regular 3-, 4-, 5-, 7-, 9-, 13-gons
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3. Proof of Theorem 2

According to Theorem 1 it is enough to show that three unit squares cannot protect a unit
square. Let S be the unit square with vertices A(0,0), B(1,0), C(1,1), D(0, 1) and suppose,
for contradiction, that a collection & = {Si, 52, S3} of three unit squares is a protecting
system for S. Consider the four images of S under the reflections with respect to the points
A, B, C, D. Each of these four squares is overlapped by the union of § since § is a protecting
system for S. Furthermore there are two squares among the above four squares which are
overlapped by the same member of S. Without loss of generality we may assume that S;
overlaps the images of S under the reflections with respect to the points C' and D. Let
E F,G, H denote the vertices of S; in the counterclockwise order such that F lies in the

relative interior of the side C'D.
\ G )

Figure 3.1

We claim that { HDC+ A DCF < %”. For convenience, introduce the angles « = {HDC — 7,
B = &DCF — %, v = LFEC and let z denote the length of the segment DE (see Figure
3.1). Then

siny — x COS r—1
tan o = Y-z and tanfg = L
cos 7y sin 7y
and thus
tan o + tan
tan(a+ 3) = b

1 —tanatan g
siny(siny — x) + cosy(cosy + = — 1)
sinycosy — (siny — z)(cosy+z — 1)

1+ z(cosy — sin~y) — cosy
2?2 —x + x(cosy — sinvy) + siny

It is enough to show that tan(a + 3) < 1, i.e.,

1+ 2z(cosy —sinvy) — cosy < 22 — 2 + x(cos y — sin 7) + siny
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or, equivalently,
z(l—1x) <siny+cosy— 1. (1)

If we translate S; parallel to C'D towards the midpoint of CD then the right hand side of
inequality (1) does not change while the left hand side increases. If a or 3 becomes zero during
this translation then we stop in that position. Otherwise we translate S; until F reaches the
midpoint of C'D and then we rotate S; around E clockwise if vy < 7 and counterclockwise if
v > % until & or # becomes zero. During this rotation the right hand side of inequality (1)
decreases while the left hand side does not change. Thus it is enough to prove inequality
(1) when « or § is zero. By symmetry, we may assume that o = 0. Then inequality (1) is
equivalent with the inequality

siny(1 — sinvy) < siny + cosy — 1,

i.e., cos’y < cosy which holds for 0 <y < % trivially. This proves the claim.

Next consider the square S” with vertices (0, 1), (— sin a, 1+cos ), (— sin a—cos a, 1 +cos a—
sina), (—cosa,1 —sina). Since S; does not overlap this square, Sy or Sz, say Sp, overlaps
it. Let J be that point of AB whose distance from A is sin a(sin & + cos ). We show that
the half line emanating at J and having direction vector (—1, —1) does not intersect Ss. This
trivially holds if S, has points on C'D thus we have to deal with two cases only,

(1) a vertex of Sy lies in the relative interior of AD,
(2) A lies on the boundary of S,.

Let K, L, M, N denote the vertices of Sy in the counterclockwise order.

Case 1. Without loss of generality we may assume that K lies on AD. For convenience,
introduce the angle ¢ = {AKN. If ¢ > 7 then we are done. On the other hand, if
¢ < % then L = (—cosp,1 — x) for some x < sina since S; overlaps S’, and thus N =
(—sinp, 1 —x — cos ¢ — sin ). The line going through N and having direction vector (1,1)
is a support line of S,. The intersection point of this line with the line AB has coordinates
(0,2 — 1+ cos ¢) and this point is on the left of J since

z—14cosp <sina—1+cosy <sina < sina(sin o + cos a).

Case 2. Without loss of generality we may assume that A lies on KL. For convenience,
introduce the angle ¢ = L DAL. We will distinguish three cases, (2.1) p < @, (2.2) a < p <
T, (2.3) T <o

Case 2.1. The line going through K and having direction vector (1,1) is a support line of

Ss. The intersection point of this line with the line AB has coordinates (AK (sin ¢+ cos ¢), 0)
and this point is on the left of .J since sin ¢+ cos ¢ < sina+cosa and AK < sina. The first
estimate follows from the fact that the function sin ¢ + cos ¢ is monotone increasing on the
interval 0 < ¢ < 7 while the second estimate follows from the fact that the vertex L must

lie above the lowest vertex of S’.

Case 2.2. The line going through K and having direction vector (1, 1) is a support line of .S,.
The intersection point of this line with the line AB has coordinates (AK (sin ¢ + cos ¢),0).
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Now AL is greater than the distance of A from S’ which is cos @ and thus AK < 1 — cos o
On the other hand sin ¢ + cos ¢ < v/2 holds trivially. To prove that the above intersection
point is on the left of J it is enough to show that

V2(1 = cos @) < sin asin a + cos a)
or, equivalently,
V2 < sin? o + sin a cos o + V2 cos o (2)

for 0 < a < 7. The derivative of the right hand side of (2) is

sin 2ar + cos 2a — \/isina: \/§sin (2a+ %) —\/isina >0

for 0 < o < T hence the right hand side of (2) is a monotone increasing function on the

interval 0 < o < T. Taking the fact that the right hand side of (2) is V2 for a = 0 into
account the assertation follows.

Case 2.3. The line going through N and having direction vector (1, 1) is a support line of
Sy. The distance of N from S’ is greater than one since the second coordinate of the lowest
vertex of $"is 1 —sina > 1— ? while the second coordinate of N is less than — sin ¢ < —?.
Rotate S, around N counterclockwise until S; and S’ touch each other. During this rotation
Sy cannot overlap S. Observe that after the rotation L cannot be on the boundary of S’
otherwise £ DLN would be smaller than 7. However, { DLN > {DLA+ £KLN > ¥ since

£LLDA < % and LD < DA in the triangle ADL. Therefore after the rotation the lowest

vertex of S’ lies on LK and the line LK does not intersect the interior of S. Now translate
Sy along the line LK until L coincides with the lowest vertex of S’ and then rotate Sp around
L counterclockwise until Sy touches S (see Figure 3.2).

Figure 3.2

Note that during the above three transformations the line going through N and having
direction vector (1,1) remains a support line of S, and the first coordinate of the intersection
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point of this line with the line AB does not decrease. Moreover, after the transformations
this intersection point has coordinates (v/2(sin & + cos2) — 1 + sina — cos @, 0). To prove
that this intersection point is on the left of J it is enough to show that

\/i(sin% + cos %) — 1+ sina — cosa < sin a(sin « + cos «)

or, equivalently,

V2 (sin%+cos %) + (1 —cosa)(sina — cos ) < 2

for0<a<Z.

Thus the halfline emanating at that point of AB whose distance from A is sin a(sin o +
cos ) and having direction vector (—1,—1) does not intersect S;. Repeating the above
argument with the square with vertices (1,1), (1 + cos3,1 —sinf), (1 +sin3 + cos 3,1 +
cos 3 —sin ), (1 +sin G, 1 + cos 3) we conclude that the halfline emanating at that point of
AB whose distance from B is sin 3(sin 8 + cos ) and having direction vector (1,—1) does
not intersect Ss.

To complete the proof, i.e. to prove that & cannot be a protecting system for S, it is
enough to show that

for 0 < a < 7. But this inequality holds trivially since sin §+cos § < v/2 and sina—cosa < 0
%

sin a(sin @ + cos ) + sin (sin 5 + cos §) < 1

if a + 3 < 7. Indeed, in this case the square whose diameters are parallel to the coordinate
axes and whose topmost vertex is J does not overlap the elements of S. Since the function
cos 8 + sin 3 is monotone increasing on the interval 0 < 8 < 7

sin B(sin 8 + cos ) < sin <% — a) (sin (g — a) + cos (g — a))

= cos a(cos @ — sin )

from which the assertation follows. This finishes the proof of Theorem 2.

4. Proof of Theorem 3

We have already seen that the protecting number is at least three thus it is enough to show
that three non-overlapping congruent copies K, Ky, K3 of a regular 6n-gon K can protect K.
Let Ay, Ay, A3 be the midpoints of the sides of K with indices 2n, 4n, 6n, respectively, where
the sides are counted counterclockwise. Set K; such that the center O; of Kj; is collinear
with A; and the center O of K, and A; is a vertex of K;, i = 1,2,3. Let K’ be a further
congruent copy of K which does not overlap K, K, Ky, K3. Without loss of generality we
may assume that the center O’ of K’ lies in the convex region bounded by the halflines
emanating at O and going through O; and Os, respectively. Let B; be the image of A; under
the rotation around O; clockwise by an angle . Similarly, let By be the image of A, under
the rotation around O, counterclockwise by an angle . Then B; and B, are vertices of K
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and K, respectively. Let r and R denote the radii of the incirle and the circumcircle of K,
respectively. The incircle of K’ does not overlap K; and K5 hence the distance of O’ from
the triangles A; B0 and A3Bs0s is at least r. Therefore the distance of O’ from K is at
least R with equality if and only if O’ coincides with the intersection point of the lines O, B,
and Oy B,. In the case of equality B; and B, are midpoints of sides of K’ which implies that
OO’ goes through the midpoint of a side of K’. Thus K’ is disjoint from K, i.e., K, Ky, K3
protect K.

5. Concluding remarks

In this paper we have proved that the protecting number of any regular polygon is three
or four, and both of these values are indeed attained. We conjecture that this statement
remains true for the class of all plane convex bodies as well.

Conjecture 1. The protecting number of any plane convex body is three or four.

Finally we note that the protecting number problem seems to be interesting for not
necessarily convex discs as well (a disc is a subset of the plane homeomorphic to B?). It
is easy to see that the protecting number of any disc is at least two. On the other hand,
certain discs can be protected by two non-overlapping congruent copies of themselves (see
Figure 5.1).

Figure 5.1 Non-convex disc with protecting number two
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