
Beiträge zur Algebra und Geometrie
Contributions to Algebra and Geometry
Volume 49 (2008), No. 1, 265-268.

Homogeneous Spaces and
Isoparametric Hypersurfaces

Stefan Immervoll

Mathematisches Institut, Universität Tübingen
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e-mail: stim@fa.uni-tuebingen.de

Abstract. In this note we establish a relation between isoparametric
hypersurfaces with four distinct principal curvatures in spheres and ho-
mogeneous spaces. Let m1, m2 denote the multiplicities of the principal
curvatures. Then the orbit N(m1, m2) = {A ∈ h(2m1 + m2) | tr(A) =
0, rank(A) = 2m1, and A3 = A} of the action of the orthogonal group
O(2m1 + m2) on the real symmetric matrices h(2m1 + m2) contains a
totally geodesic, m2-dimensional round sphere. Here N(m1, m2) is en-
dowed with the metric induced by a scalar product on h(2m1 + m2)
defined by the trace.
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1. Introduction

In this note we establish a relation between isoparametric hypersurfaces and ho-
mogeneous spaces. Let M denote an isoparametric hypersurface with four distinct
principal curvatures in a sphere. Then the principal curvatures of M have at most
two distinct multiplicities m1, m2, see [6], Satz 1. By [7], [1] the only possible pairs
(m1, m2) with m1 = m2 are (1, 1) and (2, 2). For the possible pairs (m1, m2) with
m1 < m2 we have (m1, m2) = (4, 5) or 2φ(m1−1) divides m1 + m2 + 1 (see [8]),
where φ : N → N is given by

φ(m) = |{i | 1 ≤ i ≤ m and i ≡ 0, 1, 2, 4 (mod 8)}|.
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Conversely, each pair (m1, m2) that satisfies these conditions occurs as a pair of
multiplicities. In the sequel we will not assume that these pairs are ordered such
that m1 ≤ m2.

By using this characterization of possible pairs (m1, m2) the result on homo-
geneous spaces presented in this note may be stated without referring to isopara-
metric hypersurfaces. Our proof, however, is based on the algebraic structure
of isoparametric triple systems associated with isoparametric hypersurfaces with
four distinct principal curvatures in spheres. We are now going to explain this
theorem.

The orthogonal group O(2m1 + m2) acts on the vector space h(2m1 + m2) of
symmetric matrices, the self-adjoint endomorphisms of the Euclidean vector space
R2m1+m2 , by conjugation. The orbit

N(m1, m2) = {A ∈ h(2m1 + m2) | tr(A) = 0, rank(A) = 2m1, and A3 = A}

consists of all symmetric matrices that have the eigenvalues ±1 with multiplicity
m1 and the eigenvalue 0 with multiplicity m2. We endow h(2m1 + m2) with the
scalar product defined by (A, B) 7→ (1/2m1)tr(AB). Then O(2m1 + m2) acts on
h(2m1 +m2) by isometries and, with respect to the induced metric, N(m1, m2) ≈
O(2m1 + m2) / O(m1)×O(m1)×O(m2) is a homogeneous manifold contained in
the unit sphere Sh(2m1+m2). In this paper, we prove the following

Theorem 1.1. Let m1, m2 denote the multiplicities of the four distinct principal
curvatures of an isoparametric hypersurface in a sphere. Then the homogeneous
manifold N(m1, m2) ⊆ h(2m1 + m2) contains an m2-dimensional totally geodesic
round sphere SN(m1,m2) that is a great sphere of Sh(2m1+m2).

It would be interesting to find a proof of this result within the theory of homoge-
neous manifolds and to analyze how this result can be improved and extended to
other values of m1, m2. Conversely it might then be possible to derive restrictions
on the multiplicities of the four distinct principal curvatures independently of [7],
[1] and [8].

2. Isoparametric triple systems

The proof of Theorem 1.1 is based on the theory of isoparametric triple systems
developed by Dorfmeister and Neher in [2] and subsequent papers. In this section
we explain how these algebraic structures are related to isoparametric hypersur-
faces with four distinct principal curvatures in spheres and we describe their basic
properties. The proof of Theorem 1.1 then follows easily from Theorem 2.1 below.

An isoparametric hypersurface M in the unit sphere S of a Euclidean vector space
V is a (compact, connected) smooth hypersurface in S with constant principal
curvatures. The sphere S is foliated by the isoparametric hypersurfaces parallel
to M and the two focal manifolds, see [6], Theorem 4. A great circle S that
intersects one of these hypersurfaces or focal manifolds orthogonally at one point
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intersects these submanifolds of S orthogonally at each intersection point. More-
over, the intersection points of S with the two focal manifolds follow alternatingly
at spherical distance π/g, where g denotes the number of distinct principal cur-
vatures of M , see [6], Section 6, cf. also [5], Proposition 3.2. We call such a great
circle S a normal circle.

For g = 4, there exists a triple product structure associated with the isoparametric
hypersurface M , i.e. a symmetric, trilinear map {·, ·, ·} : V ×V ×V → V , satisfying
〈{x, y, z}, w〉 = 〈x, {y, z, w}〉 for all x, y, z, w ∈ V and some other conditions. In
this way, we get an isoparametric triple system (V, 〈·, ·〉, {·, ·, ·}), see [2] or [3], [4].
The focal manifolds are given by

M+ = {x ∈ S | {x, x, x} = 3x} and M− = {y ∈ S | {y, y, y} = 6y}.

For x, y ∈ V and λ ∈ R we set T (x, y) : V → V : z 7→ {x, y, z}, T (x) = T (x, x),
and Vλ(x) = {z ∈ V | T (x)(z) = λz, 〈x, z〉 = 0}. For p ∈ M+ and r ∈ M− we
have Peirce decompositions

V = span{p} ⊕ V3(p)⊕ V1(p) = span{r} ⊕ V0(r)⊕ V2(r).

The dimensions of the Peirce spaces V3(p), V1(p), V0(r), and V2(r) are given by
m1 + 1, m1 + 2m2, m2 + 1, and 2m1 + m2, respectively, where m1 and m2 denote
the multiplicities of the principal curvatures of M , see [2], Theorem 2.2. Let us
now explain the geometric meaning of these Peirce spaces. By differentiating the
identity {x, x, x} = 3x for x ∈ M+ we see that for every p ∈ M+ the tangent space
TpM+ is contained in V1(p). For reasons of dimension we get TpM+ = V1(p), cf. [6],
proof of Satz 4. As a consequence, V3(p) is the normal space NpM+ of TpM+ in
TpS. Analogously, for every r ∈ M− we get TrM− = V2(r) and NrM− = V0(r).
By [4], Theorem 2.1, we have the following

Theorem 2.1. Let (V, 〈·, ·〉, {·, ·, ·}) be an isoparametric triple system. Let S be
a normal circle of S that intersects M+ at the four points ±p, ±q and M− at the
four points ±r, ±s. Then V decomposes as an orthogonal sum

V = span(S)⊕ V ′
3(p)⊕ V ′

3(q)⊕ V ′
0(r)⊕ V ′

0(s),

where V ′
3(p), V ′

3(q), V ′
0(r), V ′

0(s) are defined by V3(p) = V ′
3(p)⊕ span{q}, V3(q) =

V ′
3(q)⊕ span{p}, V0(r) = V ′

0(r)⊕ span{s}, and V0(s) = V ′
0(s)⊕ span{r}.

In Theorem 2.1 we may assume without loss of generality that r = (1/
√

2)(p + q)
and q = (1/

√
2)(r + s). Then the linear map T (r, s) leaves the subspaces V ′

3(p),
V ′

3(q), V ′
0(r), V ′

0(s) invariant with T (r, s)|V ′
0(r) = T (r, s)|V ′

0(s) = 0, T (r, s)|V ′
3(q) = id,

and T (r, s)|V ′
3(p) = −id. Analogously we have T (p, q)|V ′

3(p) = T (p, q)|V ′
3(q) = 0,

T (p, q)|V ′
0(r) = −id, and T (p, q)|V ′

0(s) = id, see [4], proof of Theorem 2.1.

Proof of Theorem 1.1. Choose r ∈ M− and s ∈ V0(r) ∩ S arbitrarily. Then the
great circle S through r and s is a normal circle because of V0(r) = NrM−. As a
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consequence, we have s ∈ M− and T (r, s) leaves the orthogonal complement V2(r)
of span{r} ⊕ V0(r) = span(S) ⊕ V ′

0(r) invariant, see Theorem 2.1. Furthermore,
T (r, s)|V2(r) is self-adjoint and has the eigenvalues ±1 with multiplicity m1 and
the eigenvalue 0 with multiplicity m2. In the sequel we identify (V2(r), 〈·, ·〉) with
the Euclidean vector space R2m1+m2 . Then the linear map

γ : V0(r) → h(2m1 + m2) : s 7→ T (r, s)|V2(r)

is injective and the image of V0(r)∩S is contained in N(m1, m2). We set SN(m1,m2)

= γ(V0(r) ∩ S) = γ(V0(r)) ∩ Sh(2m1+m2). Then SN(m1,m2) is a great sphere of
Sh(2m1+m2) and, in particular, an m2-dimensional totally geodesic round sphere in
N(m1, m2). �

References

[1] Abresch, U.: Isoparametric hypersurfaces with four or six distinct principal
curvatures. Math. Ann. 264 (1983), 283–302. Zbl 0505.53027−−−−−−−−−−−−

[2] Dorfmeister, J., Neher, E.: An algebraic approach to isoparametric hypersur-
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