Uma classe de séries infinitas envolvendo termos de seqüências generalizadas

João Luiz Martins e Adilson J. V. Brandão

Resumen

In this article we introduce a recurrence formula for certain infinite series whose terms include factors that belong to a generalized Horadam-type sequence. This recurrence formula is used to calculate the sum of the series $\sum_{n=1}^{+\infty} n^k W_n x^n$ without the need of derivatives and at a lower compu-

tational cost. Some results are a presented below which were obtained by numerical implementation of the recurrence formula for some particular values of k and x.

1 Introdução

Neste artigo, considera-se a série

$$\sum_{n=1}^{+\infty} n^k W_n x^n \tag{1}$$

em que x é um número real, k é um inteiro não-negativo e $\{W_n\}_{n=0}^{+\infty}$ é uma seqüência numérica arbitrária. Aplicando-se o critério da razão [6] a (1), observa-se que sua convergência está diretamente ligada ao caráter (comportamento) da seqüência $\{W_{n+1}/W_n\}_{n=1}^{+\infty}$. Uma questão que se coloca é a seguinte: a partir da escolha de seqüências $\{W_n\}_{n=0}^{+\infty}$ que venham possibilitar que expressões do tipo $\{W_{n+1}/W_n\}_{n=1}^{+\infty}$ sejam seqüências convergentes, é possível obter uma fórmula para a soma da série (1)?

A finalidade deste trabalho é responder essa questão para o caso em que $\{W_n\}_{n=0}^{+\infty}$, são seqüências dadas recursivamente por

$$W_{n+2} = pW_{n+1} - qW_n \,, \quad n \ge 0; \tag{2}$$

sendo $W_0 = 0$, $W_1 = 1$ valores iniciais, $p \in q$ inteiros arbitrários.

Usando-se a forma de Binet [3] e o método das diferenças finitas [1], mostrase, mediante o fato de que $p^2 \geq 4q$ que a seqüência $\{W_{n+1}/W_n\}_{n=1}^{+\infty}$ converge

para o limite $\alpha_+=(p+\sqrt{p^2-4q})/2$ se p>0e para $\alpha_-=(p-\sqrt{p^2-4q})/2$ se p<0 .

Em seguida, obtém-se a identidade

$$\sum_{n=1}^{+\infty} W_n x^n = \frac{x}{1 - px + qx^2} \tag{3}$$

sempre que $x \in (-1/\alpha_{\pm}, 1/\alpha_{\pm})$.

É possível encontrar uma fórmula de recorrência para a soma da série (1), mediante a utilização da identidade (3), do desenvolvimento binomial de Newton [6] e de alguns rearranjos dos termos dessa série.

A importância da fórmula para a soma dessa série está no fato de que a implementação numérica fica facilitada pela sua característica de recursividade. Algumas somas para a série (1), utilizando-se essa fórmula, são apresentadas para os casos especiais em que os coeficientes são as seqüências de Fibonacci, Pell, das Médias Aritméticas e dos Naturais.

2 Preliminares

Considere a seqüência $\{W_n = W_n(0,1,p,q)\}_{n=0}^{\infty}$, estabelecida em [3], [4] e [5], dada pela fórmula de recorrência

$$W_{n+2} = pW_{n+1} - qW_n; (4)$$

onde p e q são inteiros arbitrários.

A forma de Binet [3] para W_n é dada por,

$$W_n = \left(\alpha_+^n - \alpha_-^n\right) / \sqrt{\Delta}; \tag{5}$$

onde $\Delta = p^2 - 4q$,

$$\alpha_{+} = \frac{p + \sqrt{\Delta}}{2} \quad e \quad \alpha_{-} = \frac{p - \sqrt{\Delta}}{2}$$
 (6)

são as raízes distintas da equação $x^2 - px + q = 0$.

Considerando $p^2 \geq 4q$ e fazendo uso das expressões (5) e (6), é fácil ver que a seqüência

$$\left\{\frac{W_{n+1}}{W_n}\right\}_{n=1}^{\infty} \tag{7}$$

converge para α_+ se p > 0 e α_- se p < 0.

A próxima seção é destinada ao estabelecimento de uma fórmula de recorrência para a soma da série

$$S(x,k) = \sum_{n=1}^{\infty} n^k W_n x^n;$$
(8)

sendo $\{W_n\}$ a seqüência (4), x um número real e k um inteiro não-negativo.

3 Fórmula de Recorrência

Antes de apresentarmos a soma da série (8), vamos estabelecer alguns resultados que deverão ser úteis na especificação dessa soma.

A série

$$S(x) = \sum_{n=1}^{\infty} W_n x^n, \tag{9}$$

converge sempre que $|x|<1/\alpha_{\pm}\ (\alpha_{+}\ \ {\rm se}\ p>0\ \ {\rm e}\ \ \alpha_{-}\ {\rm se}\ p<0).$

Além disso, sua soma é a função

$$S(x) = \frac{x}{1 - px + qx^2}. (10)$$

De fato, a convergência da série (8) pode ser vista mediante o uso do teste da razão [6] e do fato de (7) ter como limite α_{\pm} . Para mostrar que (10) é a soma de (9), considere

$$S(x) = \sum_{n=1}^{+\infty} W_n x^n$$

= $W_1 x + W_2 x^2 + \dots + W_n x^n + \dots$ (11)

Multiplicando (11) por -px, obtém-se

$$-pxS(x) = -pW_1x^2 - \dots - pW_nx^{n+1} - \dots$$
 (12)

Depois, multiplicando (11) por qx^2 , tem-se

$$qx^{2}S(x) = qW_{1}x^{3} + qW_{2}x^{4} + \dots + qW_{n}x^{n+2} - \dots$$
(13)

Finalmente, somando as expressões (11), (12) e (13) e fazendo uso da fórmula de recorrência (4), obtém-se

$$S(x) = \frac{x}{1 - px + qx^2},\tag{14}$$

que é a soma da série (9).

É óbvio que, dentro do intervalo de convergência, a série (8) pode ser obtida através da aplicação na série (9) do teorema de derivação termo a termo [6].

De fato, tal fórmula é obtida aplicando-se o operador $D = \frac{xd}{dx}$, k vezes na conhecida série (9).

Definindo

$$S(x,k) = \sum_{n=1}^{+\infty} n^k W_n x^n , \qquad (15)$$

uma fórmula de recorrência pode ser expressa da seguinte forma:

$$S(x,0) = \frac{x}{1 - px + qx^2},\tag{16}$$

$$S(x,j) = D[S(x,j-1)] \quad j = 1, 2, \dots, k.$$

O problema do algoritmo (16) é o alto custo de, em cada passo, obter a derivada de uma função. Por isso, encontrar uma soma para a série $\sum_{n=1}^{+\infty} \frac{nW_n}{2^n}$ não parece difícil, a partir do algoritmo (16). Entretanto, para determinar a soma da série $\sum_{n=1}^{+\infty} \frac{n^{100}W_n}{2^n}$, aplicando-se esse algoritmo, a obtenção do resultado torna-se bem exaustivo e computacionalmente muito caro.

Um dos propósitos deste artigo é obter uma outra fórmula de recorrência para a série (8) sem o uso de derivadas e a um custo computacional mais baixo. Inicialmente, apresenta-se uma expressão para a soma

$$R(x,k) = \sum_{n=k}^{+\infty} W_n x^n = \sum_{n=1}^{+\infty} W_n x^n - \sum_{n=1}^{k-1} W_n x^n.$$
 (17)

Utilizando a identidade (9), tem-se

$$R(x,k) = \frac{x}{1 - px + qx^{2}} -$$

$$- (W_{1}x + W_{2}x^{2} + W_{3}x^{3} + \dots + W_{k-1}x^{k-1}).$$
(18)

Efetuando a soma em (18) e usando a fórmula (4), obtém-se

$$R(x,k) = \sum_{n=k}^{+\infty} W_n x^n = \frac{W_k x^k + W_{k-1} x^{k+1}}{1 - px + qx^2}.$$
 (19)

Através do uso do teste da razão [6] e do fato estabelecido em (5), (6) e (7), é fácil ver que

$$\sum_{n=1}^{+\infty} n^k W_n x^n \tag{20}$$

converge sempre que $|x| < \frac{1}{\alpha_+}$.

Com o intuito de obter uma fórmula de recorrência para a série (8), considera-se

$$S(x,k) = \sum_{r=1}^{+\infty} n^k W_r x^r$$

$$= 1^k W_1 x + 2^k W_2 x^2 + \dots + n^k W_r x^r + \dots$$
(21)

Mas,

$$S(x,k) = (1^{k} - 0^{k})(W_{1}x + W_{2}x^{2} + \dots + W_{n}x^{n} + \dots)$$

$$+ (2^{k} - 1^{k})(W_{2}x^{2} + W_{3}x^{3} + \dots + W_{n}x^{n} + \dots)$$

$$+ (3^{k} - 2^{k})(W_{3}x^{3} + W_{4}x^{4} + \dots + W_{n}x^{n} + \dots)$$

$$\vdots$$

$$+ (n^{k} - (n-1)^{k})(W_{k}x^{k} + \dots + \dots).$$

$$(22)$$

Ou seja,

$$S(x,k) = (1^{k} - 0^{k}) \sum_{r=1}^{+\infty} W_{r} x^{r} +$$

$$+ (2^{k} - 1^{k}) \sum_{r=2}^{+\infty} W_{r} x^{r} +$$

$$+ (3^{k} - 2^{k}) \sum_{r=3}^{+\infty} W_{r} x^{r} + \dots +$$

$$\vdots$$

$$+ (n^{k} - (n-1)^{k}) \sum_{r=n}^{\infty} W_{r} x^{r} + \dots$$
(23)

Utilizando a identidade (19), segue então que

$$S(x,k) = \sum_{n=1}^{+\infty} \frac{[n^k - (n-1)^k](W_n x^n + W_{n-1} x^{n+1})}{(1 - px + qx^2)}$$
(24)

sempre que $|x| < \frac{1}{\alpha_{\pm}}$.

Separando (24) em duas séries e utilizando uma mudança de variável na segunda série do lado direito, tem-se

$$S(x,k) = \frac{1}{1 - px + qx^2} \sum_{n=1}^{+\infty} [n^k - (n-1)^k] W_n x^n + \frac{1}{1 - px + qx^2} \sum_{r=0}^{+\infty} [(r+1)^k - (r)^k] W_r x^{r+2}.$$
 (25)

Usando o desenvolvimento binomial e rearranjando os termos integrantes de (25), encontra-se

$$S(x,k) = \frac{1}{1 - px + qx^{2}} \times \left(\sum_{n=1}^{+\infty} \sum_{j=1}^{k} {k \choose j} (-1)^{j+1} n^{k-j} W_{n} x^{n} + x^{2} \sum_{n=0}^{+\infty} \sum_{j=1}^{k} {k \choose j} n^{k-j} W_{n} x^{n} \right).$$
(26)

Portanto,

$$S(x,k) = \frac{1}{1 - px + qx^2} \left(\sum_{j=1}^k {k \choose j} \left[(-1)^{j+1} + x^2 \right] S(x,k-j) \right)$$
(27)

sempre que $|x| < \frac{1}{\alpha_+}$.

A fórmula de recorrência (27) permite obter a soma de séries do tipo (8) a um custo computacional pequeno em comparação ao algoritmo (16).

4 Somas de Séries Especiais

Esta seção tem a finalidade de apresentar a soma de séries do tipo (8) em que $\{W_n\} = \{F_n\}$, $\{W_n\} = \{P_n\}$, $\{M_n = W_n = (W_{n-1} + W_{n-2})/2\}$ e $\{N_n = W_n = 2W_{n-1} - W_{n-2}\}$, que são as seqüências de Fibonacci, Pell, das médias aritméticas e dos naturais, [2], [3], [4] e [7], respectivamente.

<u>Soma da Série de Fibonacci</u>. A sequência de Fibonacci $\{F_n\}$ é obtida de (4), tomando p=1 e q=-1. Para obter a soma da série de Fibonacci

$$S_F(x,k) = \sum_{n=1}^{+\infty} n^k F_n x^n,$$
 (28)

basta substituir p=1 e q=-1 em (27). O resultado é dado por

$$S_F(x,k) = \frac{1}{1-x-x^2} \sum_{i=1}^k {k \choose i} \left[(-1)^{j+1} + x^2 \right] S_F(x,k-j), \tag{29}$$

válido para $|x| < \frac{1}{\phi}$; com $\phi = \frac{1+\sqrt{5}}{2}$.

<u>Soma da Série de Pell</u>. A seqüência de Pell $\{P_n\}$ é obtida de (4), agora tomando p=2 e q=-1. A soma da série de Pell

$$S_P(x,k) = \sum_{n=1}^{+\infty} n^k P_n x^n \tag{30}$$

é dada a partir da substituição de $\ p=2$ e
 q=-1em (27). O resultado é dado por

$$S_P(x,k) = \frac{1}{1 - 2x - x^2} \sum_{j=1}^k {k \choose j} \left[(-1)^{j+1} + x^2 \right] S_P(x,k-j)$$
 (31)

sempre que $|x| < \frac{1}{\gamma}$; com $\gamma = 1 + \sqrt{2}$.

<u>Soma da Série das Médias</u>. A seqüência das Médias aritméticas $\{M_n\}$ é obtida de (4), agora tomando $p=\frac{1}{2}$ e $q=-\frac{1}{2}$. A soma da série das Médias aritméticas

$$S_M(x,k) = \sum_{n=1}^{+\infty} n^k M_n x^n \tag{32}$$

é dada a partir da substituição de $~p=\frac{1}{2}$ e $q=-\frac{1}{2}$ em (27). O resultado é dado por

$$S_M(x,k) = \frac{2}{2-x-x^2} \sum_{j=1}^k {k \choose j} \left[(-1)^{j+1} + x^2 \right] S_M(x,k-j)$$
 (33)

sempre que |x| < 1. Observa-se que, mesmo que p e q sejam números não inteiros, ainda assim é possívell obter uma fórmula de recorrência para a soma da série (1).

<u>Soma da Série dos Naturais</u>. A seqüência dos Naturais $\{N_n\}$ é obtida de (4), agora tomando p=2 e q=1. A soma da série dos Naturais

$$S_N(x,k) = \sum_{n=1}^{+\infty} n^k N_n x^n \tag{34}$$

é dada a partir da substituição de $\ p=2$ e
 q=1em (27). O resultado é dado por

$$S_N(x,k) = \frac{1}{1 - 2x + x^2} \sum_{j=1}^k {k \choose j} \left[(-1)^{j+1} + x^2 \right] S_N(x,k-j)$$
 (35)

sempre que |x| < 1.

5 Implementação Numérica

Esta seção tem por finalidade introduzir alguns exemplos númericos gerados pelos algoritmos (29), (31), (33) e (35). As Tabelas (I), (II), (III) e (IV), apresentam certos resultados de somas envolvendo esses algoritmos, para alguns valores especiais de k e de x dentro dos seus respectivos intervalos de convergências.

Tabela (I): Somas da Série de Fibonacci

X	k=1	k=5	k=50	k=100
$1/\pi$	1.041	6.288×10^{2}	1.656×10^{73}	4.105×10^{175}
1/3	1.2	9.688×10^{2}	6.526×10^{74}	5.932×10^{178}
1/e	1.692	2.752×10^{3}	4.667×10^{78}	2.549×10^{186}
1/5	0.360	2.598×10	2.893×10^{61}	2.130×10^{152}
-1/3	-0.247	-0.349×10	-1.01×10^{54}	-3.639×10^{137}

Tabela (II): Somas da Série de Pell

X	k=1	k=5	k=50	k=100
$1/\pi$	5.104	1.271×10^{5}	3.835×10^{93}	1.105×10^{216}
1/3	7.5	4.036×10^{5}	7.042×10^{97}	3.074×10^{224}
1/e	25	1.522×10^{7}	1.771×10^{111}	1.062×10^{251}
1/5	0.663	2.848×10^{2}	1.150×10^{71}	2.749×10^{171}
-1/3	-0.153	-0.784	-7.970×10^{48}	-3.594×10^{127}

k=1k=5k = 50k = 100 5.417×10^{64} $5.8\overline{58 \times 10^{158}}$ $0.68\overline{4 \times 10^2}$ $1/\pi$ 0.5611/30.612 0.898×10^{2} 5.236×10^{65} 5.232×10^{160} 9.320×10^{67} 1.495×10^{165} 1/e0.745 1.655×10^{3} 3.561×10^{56} $3.\overline{681 \times 10^{142}}$ 1/50.268 0.741×10 -1.986×10^{56} -1.197×10^{142} -1/3-0.30 -0.678×10

Tabela (III): Somas da Série das Médias Aritméticas

Tabela (IV): Somas da Série dos Naturais

X	k=1	k=5	k=50	k=100
$1/\pi$	1.623	2.914×10^{3}	1.374×10^{79}	2.340×10^{187}
1/3	1.875	4.431×10^{3}	4.596×10^{80}	2.425×10^{190}
1/e	2.616	1.169×10^4	1.559×10^{84}	2.345×10^{197}
1/5	0.507	1.031×10^{2}	9.715×10^{66}	2.138×10^{163}
-1/3	-0.11	-0.003×10^2	-3.34×10^{46}	-8.275×10^{122}

6 Observações Finais

O leitor pode observar que aplicou-se a fórmula de recorrência (27) para obter a soma da série (32), mesmo sabendo-se que p e q não eram inteiros. Na verdade, estamos investigando novas fórmulas de recorrências para seqüências do tipo (4) em que p e q estejam em outros domínios e as condições iniciais sejam as mais gerais possíveis. Além disso, alguns resultados análogos aos obtidos anteriormente, mediante o uso da seqüência com a notação (4), bem como, séries cujos coeficientes sejam as seqüências Tribonacci, Tetrabonacci, dentre outras, deverão ser objetos de futuros trabalhos.

Referencias

- [1] R. C. Bassanezi e W. C. Ferreira, Equações Diferenciais com Aplicações, Editora Harbra Ltda, 1988.
- [2] R. A. Dunlap, The Golden Ration and Fibonacci Numbers, World Scientific, 1997.
- [3] P. Filipponi, Evaluation of Certain Infinite Series Involving Terms of Generalized Sequences. *The Fibonacci Quarterly* **38.4** (2000): 310-316.
- [4] N. Gauthier, Identities for Class of Sums Involving Horadam's Generalized Numbers $\{Z_n\}$. The Fibonacci Quarterly **36.4** (1998): 295-304.

- [5] A.F.Horadam, Basic Properties of a certain generalized sequence of numbers. The Fibonacci Quarterly **3.2** (1965): 161-176.
- [6] K. Knopp, Theory and Application of Infinite Series, Dover Publications Inc, New York, 1990.
- [7] G. Ledin, On a Certain Kind of Fibonacci Sums. The Fibonacci Quarterly **5.1** (1967): 45-58.
- [8] E. L. Lima, Curso de Análise, IMPA (Projeto Euclides), 1976.

João Luiz Martins e Adilson J.V. Brandão Universidade Federal de Ouro Preto Ouro Preto,MG, Brasil JMartins@iceb.ufop.br