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DIVULGACION MATEMATICA

Another perspective on a famous problem,

IMO 1988: The equation % = n?

Luis Gémez Sdnchez Alfaro

Abstract. In this work we apply a simple property of the function
F below to study an interesting IMO problem proposed in 1988 of
which we give a solution. We analyze with some detail the diophan-
tine equation F'(z,y) = n? in connection with this problem.

Resumen. En este trabajo se aplica una simple propiedad de la
funciéon F', ver abajo, para estudiar un interesante problema pro-
puesto en la OMI de 1988, del cual damos una solucién. Se analiza

con cierto detalle la ecuacién diofantica F(z,y) = n?
este problema.

The symmetrical function F(z,y) = T4

markable property, trivial to verify: F(x,23) = F(z,0) = 22 for all .

f:x)

:i, A2.2%)

x:, x20,z20 Always £,(0) = £.(z3) =22

x+1

flx) =

en relacién con

2+2 . X
% of R, x R, in R, has the re-

Here we use basically this property to determine an infinity of integer so-
lutions of the equation F(z,y) = n? for all n > 2. We give first a solution,
apparently new, to a famous problem [see (9) below| proposed by Stephan Beck,
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Federal Germany, in the 29° International Olympic Games of Mathematics held

at Canberra, Australia, in 1988. The statement of this problem implies that if n

is not a perfect square, the equation F'(x,y) = n does not have integer solutions.
Let us define the function f, from R, to R, by f,(z) = F(n,x), ie.,

2, 2
fn(l') = 7:1;':1 3 T 2 0

For n € N we have the following properties which are elementary results:

1.

> W

fn(m) = fm(n) and fn(o) = fn(n3) =n’.
fnis 1 —1over z > n>.

. .« . — /4
f» has a unique minimum at ng = =E¥YEL < g
0 n

fn decreases over [0,ng] and increases over x > ng

Falng) = 2(—”"":4_1)

=mg<2foralln; 1<my<2;n#1l
n

. For all z # ng in [0, %] there exists a unique

3—1’

y # x such that f,(z) = f.(y); in fact y = n € [0,n?]

nr+ 1

Let h,, be the function defined by hy(z) = ==%; 0 < x < n.

Thus h,(z) = y. Note the function h,, is involutive, i.e., hy(hn(2)) = 2.

If =, f,(x) are nonnegative integers, with 0 < z < n® then h,(z) is a
nonnegative integer.

Moreover, ng < < n® <=0 < h,(z) < ng
Proof:
n?+a%  n?+ [h,(2))?

= =k=
ne+1 nhy(z) + 1

= k therefore

x4 hy(x)
n

hn(x) = kn — z is an integer; it must be positive by definition of h, (z).

DI 0 < a < bthen fo(x) > fo(z) for all x > o where o is the unique

positive root of 2® — abx — (a + b) = 0.
Proof: Consider the difference function
B _ —(b—a)[z® — abz — (a +b)]
g(l’) - fb(x) fa(x) - (CLZ‘ + 1)(b$ ¥ 1) )

It is easily seen, using the derivative, that g(z) is decreasing over z > 0
going from g(0) = b? — a? to —oo so the equation g(z) = 0 has a unique
positive root «; consequently f,(z) > fi(x) if z > a.

x> 0.
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F200 =55, F) =225, g(x) = felx) — folx) = 7—;“ ;:::'

We are deali r;wetﬂx’ Gtm the comasponding part tox < 0 is showed

in orler to s&s what happen with the other two roots. The function g has
the uniqus postive oot o= 3.96686 and the negative roots B= —0.750625,
y =—2. 786235

. If0<a<bthen fy(x) = fu(x) = B at a unique point x = o where « is
the positive root of 2* — abr — (a +b) = 0.

Furthermore a + b = af3.

Proof:
b2 + 22 B a? + 22
bxr+1 ar+1
b2 2 2 2
On the other side ba++a1 = L:za—:al =f=a+b=0ap

=23 —abr—(a+b)=0

. PROBLEM 6 (IMO 1988).- Let a and b positive integers such that

ab + 1 divides a? + b%. Show that & bﬁ_bl is the square of an integer.

SOLUTION: With a < b (a = b would give 1 < k: < 2 where 2% = f)
consider the functions f, and f; so, k = fy(a) = fu(b)
When k = a? there is nothing to prove. Suppose f,(b

as in (1).
) = k: > a?. There
— a®+b® _ o+ :
exists always a real ¢ # b > a such that k = 17 = (Zc+61 from which,

as in the proof of (6), we have b + ¢ = ak hence ¢ is an integer. On the
other hand, when k > a?, it is easily seen that f% < ¢ < 0. This is a
contradiction and therefore we consider only k < a?.

We know, by (3) and (4), that f,(x) is increasing at = b because b > a >
ao where ag is the unique point in which f, takes its minimum. Applying

“This is indeed the proposition (13) given below but stated otherwise.
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(5) and (6) we obtain the integers k = f,(b) = fa(a1) = fa,(a) where
0 < a; = ha(b) < ap < a < b and obviously a? > a2. Now f,, (z) is
increasing at = a which implies 0 < ag = hq, (a) < a1 < ap < a < b and
so on, continuing this way we obtain

k= fan (an+1) = fan+1 (a‘n) = fan+1(an+2)

where ap12 = ha,,,, (an)

and b >a?>a2>ai>a2>a2 > - - >k
A4
! f
L e
Koy b b

Construction of the an

2

Consequently because of we are dealing with integers, we must have k = a;

for a certain index n. The desired result follows.

(*) This indeed the proposition (13) given below but stated otherwise.

NOTE: Paragraph (9) gives a third solution which in addition to the two
previously known to the author, the first given by the Bulgarian partici-
pant in IMO 1988 Emmanuel Atanasiov and the second by the Australian
Professor J. Campbell, University of Canberra (see [1], page 65).

The following figure charts the end of the reasoning used in (9) which
together with (8) and (1) provides a means of finding integer solutions of
24y® n2

zy+1

the equation

The two curves, f,, and f, _, are distorted for practical reasons (the real
graphs very quickly stick to the y-axis as can be seen in the figure above
where two real graphs are shown).

As a2 = fu, (an—1) = fa,(0) = fa,(a3) then, by (5), a,—1 = a3; on the
other hand, (8) gives a, + an_2 = ax a2 = a5 | i. e., an_2 = a) — ay,

Continuing in the same way we get integers (by ascent, and not, as in (9),
by descent) that are solutions of the proposed equation.



IMO 1988: THE EQUATION LAY — ;2 147

zy+1
I}"
k :a,z, /'[c'.-: /.f'z'.-i /,fc,.
‘III an &\‘ﬁlfa..._; .’_."/N:,_
\\. : N e // i
\ i H

Qg = 0 Qy G,1 = &

SOLUTIONS OF Z+¥ — 5?2

10. Thus, given f,, and the trivial point with integer coordinates (n3,n?), we
consider this point as the intersection of f,, with another curve f,, whose

index m > n, according to (8), is given by n +m = n3 n? = nd, i. e.

m = n® —n (which also goes for the rest solving the equation

n® 4 /(n10 —4nS + 4n2 |
5 =n’ —n).

f3(m) = n* which gives m =
The iterated application of the procedure gives the recurrence equation

Tpyo =N Tpy1 — x, (zo,21) = (0,n)

whose solutions satisfy the condition f,, (zx11) = n? for all k& > 1. The
solutions of this equation are given by

n[(n® +a)* — (n® — )*))

«

Qkxk =

where a = v/n? — 4, this is,
2k71xk _ nZ(i_c)nﬂkfi)aifl

where the indexes are the positive odds i < k .
We finally have

(k1]
2]@711,1‘: — HZ(k)nz(k72j71)(n4 - 4)j

i
Jj=0
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11

12

13

14.

where [k1] denotes the integer part of k1 = % and moreover
2 2
T+
F(ag, xpe1) = Sk LTkl :n2; k=1,2,3,.........
TpTry1 + 1
. By construction of the integers x, the sum in its general definition must be
divisible by 2¥~! which is clear if n is odd and easily verified in each of the
summands if n is even. Therefore each xj is a multiple of n and moreover,
a simple induction using the recurrence equation that defines them proves
that n is the greatest common divisor of each pair of consecutive (zj, Zp11)
in that succession.

. EXAMPLES:

n=3-n=27—=>n"-—n=240 >n" - 203 =2133 = n% —3n° +n =
18957 — n!l —4n" +3n3 = 168480 — n'3 —5n24+6n° —n = 1497363 —

32 — 9 — 324272 _ 27%4240% _ 240°42133% _ 21332418957 __
= 7T 3x2741 T 27%240+1  240%2133+1 _ 2133%18957+1

__ 18957%4168480% __ 168400°41497363% __
~ 18957%168480+1  168480%1497363+1

. fn(z) is not an integer for all integer x > n3.
Proof: Suppose x is an integer with x > n3. If f,(x) is an integer, by
(9) it must be the square of an integer clearly greater than n, then for
some integer h > 1 we have f,(z) = (n + h)? which gives the equation
n?+ 2% = (nz +1)(n + h)? whose discriminant, n?(n + h)* + 4(2nh + h?),
should be a perfect square. Then there exists an integer k£ > 1 such that

2n(n + h)%k + k* = 4(2nh + h?)

ie. 2kn® 4+ k% + (kn —2)(4nh +2h%) =0

This is clearly impossible if (kn — 2) > 0 and then kn = 1, but then we
have 2h2 4 4h — 3 = 0 which gives h irrational. This completes the proof.

Let [|n]] denotes the infinite set of solutions, generated by n, of the recu-
rrence equation Tgio = n?Tii1 — Tk, (o, x1) = (0,n) solved in (10).

If fo(z) =0% beN; z €N; 0<x<n? thenn €[], i.e. n is one of the
solutions in (10) generated by b.

Proof: Suppose a € N; 0 < a < n® and f,(a) € N. By (10) we have
fn(a) = m? < n?. By the involutive function of (5) we can choose a such
that f, be decreasing in a which means 0 < a < ng (by (3), (5) and
(6)). Then there exists, by (7) and (8), a function f,, increasing in a such
that f.(a) = fu(a) = k?; k2 < m? < n? and moreover m = ak? —n
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(Note that n, a and m satisfy the recurrence equation of (10) for the
coefficient k?). We repeat the procedure, now with f,, applied to the
point h,,(a) making a descent, as in (9), which should end with f, such
that f,(0) = f,(b®) = k* = b? and then n € [|b|].

15. Theorem.- If p > 0 is a prime number, then the unique integer solutions
(z, 2) of the equation f,(z) = z are the trivial ones (0, p?) and (p*, p?).

Proof: It is a consequence of (11), (13) and (14).

CONCLUSION.- Let us denote A = {m € N; m > n?}. So far we have
obtained the following:

» f(A) NN = ( for all natural n «

» f,(N) NN = {p?} for all prime p > 0 <«

more generally, by (14), we can deduce without difficulty

» f,(N)NN = {n?} for all n which does not belong to [|b|] for any non trivial divisor b of n <«

We know f,,(N) NN trivially contains {n?}. The discussion above leads to
conjecture it contains at most one non trivial element.

» CONJECTURE«

For all n > 0, f,(N)NN = {n?} or {n2,6?}; (b < n and, by (14), n € [|b]]
therefore, by (11), b divides n).

Referencias

[1] Francisco Bellot Rosado, Ascensién Lépez Ch. Cien Problemas de Mate-
madticas. ICE, Valladolid, 1994



Luis G. SANCHEZ ALFARO

150

r2+y2
zy+1

FOUR VIEWS OF THE SURFACE OF EQUATION =z
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