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Common fixed point result for weakly compatible

mappings

Rakesh Tiwari, S. K. Shrivastava,
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Abstract. In this note a common fixed point theorem for weakly
compatible mappings in a metric space is proved which, improves
the results of Ciric [3], Fisher [4], Pant [8],[9] and Popa et al.[10].

Resumen. En esta nota se prueba un teorema de punto fijo común
para las funciones débilmente compatibles en un espacio métrico que
mejora los resultados de Ciric [3], Fisher [4], Pant [8],[9] y Popa et
al.[10].

1.Introduction

The concept of commuting mappings has proven useful for generalizing fixed
point theorems in the context of metric spaces. Sessa [11] defined two self-
maps S and T of a metric space (X, d) to be weakly commuting if and only if
d(STx, TSx) ≤ d(Sx, Tx) for each x in X. Jungck [5] further weakened this
property by introducing the concept of compatibility of mappings, which asserts
that S and T are said to be compatible if limn→∞ d(STxn, TSxn) = 0, when-
ever {xn} is a sequence in X such that limn→∞ Txn = limn→∞ Sxn = t for
some t ∈ X. Jungk et al. [7] have defined S and T to be compatible of type (A)
if limn→∞ d(TSxn, SSxn) = 0 and limn→∞ d(STxn, TTxn) = 0 whenever {xn}
is a sequence in X such that limn→∞ Txn = limn→∞ Sxn = t for some t ∈ X.
Clearly weakly commuting mappings are compatible of type (A). By [7], Ex.2.2,
it follows that this implication is not reversible and it also follows by Ex.2.1 and
Ex.2.2 that the notion of compatible mappings and compatible mappings of
type (A) are independent. Recently, Jungck and Rhoades [6] introduced the
concept of weakly compatible mappings as, two selfmaps S and T of a metric
space (X, d) are said to be weakly compatible if they commute at their coinci-
dence points; i.e. if Su = Tu for some u ∈ X, then STu = TSu. Notice that
every commuting pair of maps are weakly commuting, weakly commuting pair
of maps are compatible and compatible pair of maps are weakly compatible,
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but the converse of each need not be true. [see for instance, [1] and [10]].

The main object of the paper is to prove a common fixed point theorem for
weakly compatible mappings in a complete metric space which improves several
known results.

2. Preliminaries

Recently, Popa et al. [10] proved the following theorem :

Let F be the set of all functions f : R+ → R+ such that
(i) f is isotone, i.e. if t1 ≤ t2, then f(t1) ≤ f(t2) for all t1, t2 ∈ R+;
(ii) f is upper semi-continuous;
(iii) f(t) < t for all t > 0.

Theorem 2.1 Let A, B, S, and T be self mappings of a complete metric space
(X, d) such that

(2.1) A(X) ⊂ T (X) and B(X) ⊂ S(X),

(2.2) the inequality

[1+p d(Sx, Ty)]d(Ax,By) ≤ p max{d(By, Ty)d(Ax, Sx), d(Ax, Ty)d(Sx,By)}

+ f
(

max{d(Sx, Ty), d(By, Ty), d(Ax, Sx),
1

2
[d(Ax, Ty) +d(Sx,By)]}

)
holds for all x, y ∈ X, where p ≥ 0 and f ∈ F .
(2.3) one of A, B, S, and T is continuous;
(2.4) A and B weakly commutes with S and T respectively;
then A, B, S and T have a unique common fixed point q in X. Further q is the
common fixed point of A and S and of B and T .

Now we can define a sequence {yn} with the help of (2.1), by choosing an
arbitrary x0 ∈ X as follows :

(2.5) y2n = Tx2n+1 = Ax2n and y2n+1 = Sx2n+2 = Bx2n+1

for n = 1, 2, 3, . . . (see, for instance, [12]).

The following lemmas help us to establish our results :

Lemma 2.2[2] Let f ∈ F and {ξn} be a sequence of non-negative real num-
bers. If ξn+1 ≤ f(ξn} for n ∈ N , then the sequence {ξn} converges to 0.
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Lemma 2.3 If we denote dn = d(yn, yn+1) then limn→∞dn = 0.
Proof. The inequality (2.2) with x = x2n and y = x2n+1 implies

[1+pd(y2n−1, y2n)]d(y2n, y2n+1) ≤ p d(y2n+1, y2n)d(y2n, y2n−1)

+f
(
max{d(y2n−1, y2n), d(y2n+1, y2n), d(y2n−1, y2n),

1

2
[d(y2n, y2n)+d(y2n−1, y2n+1)]}

)
,

which implies

d2n ≤ f
(

max{d2n−1, d2n,
1

2
d2n−1,

1

2
d2n}

)
,

If d2n > d2n−1, then we have

d2n ≤ f
(
d2n)

)
< d2n,

a contradiction. Thus, we must have d2n ≤ d2n−1.
Then using this inequality the condition (2.2) yields

(2.6) d2n ≤ f(d2n−1).

for n = 0, 1, 2 . . . Similarly taking x = x2n+2 and y = x2n+1 in (2.2), we get

[1+pd(y2n+1, y2n)]d(y2n+2, y2n+1) ≤ p d(y2n+1, y2n)d(y2n+2, y2n+1)

+ f
(

max{d(y2n+1, y2n), d(y2n+1, y2n)), d(y2n+1, y2n+2),

1

2
[d(y2n+2, y2n) + d(y2n+1, y2n+1)]}

)
,

which implies

d2n+1 ≤ f
(

max{d2n, d2n+1,
1

2
[d2n + d2n+1]}

)
.

If d2n+1 > d2n, then we have

d2n+1 ≤ f
(
d2n+1)

)
< d2n+1,

a contradiction. Thus, we must have d2n+1 ≤ d2n.
Then using this inequality the condition (2.2) yields

(2.7) d2n+1 ≤ f(d2n).

for n = 1, 2, 3, . . . From equations (2.6) and (2.7), we obtain

dn+1 ≤ f(dn),

for n = 1, 2, 3, . . .. And so, by Lemma 2.2, we get limn→∞dn = 0.
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Lemma 2.4 The sequence {yn} defined by (2.5) is a Cauchy sequence.
Proof. Suppose subsequence {y2n} is not a Cauchy sequence. Then there exists
an ε > 0 such that for each even integer 2k, there exist even integers 2m(k) and
2n(k) with 2m(k) > 2n(k) such that

(2.8) d(y2m(k), y2n(k)) > ε

For each even integer 2k, let 2m(k) be the least even integer exceeding 2n(k)
satisfying (2.8), that is

(2.9) d(y2n(k), y2m(k)−2) ≤ ε and d(y2n(k), y2m(k)) > ε.

Then for each even integer 2k, we have

ε <d(y2n(k), y2m(k))

≤d(y2n(k), y2m(k)−2) + d(y2m(k)−2, y2m(k)−1) + d(y2m(k)−1, y2m(k))

≤ε+ d2m(k)−2 + d2m(k)−1.

Hence from Lemma 2.3 and (2.9), it follows that

(2.10) limk→∞d(y2n(k), y2m(k)) = ε.

By the triangular inequality, we have

|d(y2n(k), y2m(k)−1)− d(y2n(k), y2m(k))| ≤ d(y2m(k)−1, y2m(k)),

and

|d(y2n(k)+1, y2m(k)−1)− d(y2n(k), y2m(k))| ≤ d(y2m(k), y2m(k)−1) + d(y2n(k), y2n(k)+1).

By Lemma 2.2 and equation (2.9), we obtain

(2.11) limk→∞d(y2n(k), y2m(k)−1) = ε and limk→∞d(y2m(k)+1, y2m(k)−1) = ε.

Now using (2.2) with x = x2n(k) and y = x2m(k)−1, we have

[1+p d(Sx2n(k), Tx2m(k)−1)]d(Ax2n(k), Bx2m(k)−1) ≤ p max{d(Bx2m(k)−1, Tx2m(k)−1)

d(Ax2n(k), Sx2n(k)), d(Ax2n(k), Tx2m(k)−1)d(Sx2n(k), Bx2m(k)−1)}
+f

(
max{d(Sx2n(k), Tx2m(k)−1), d(Bx2m(k)−1, Tx2m(k)−1)), d(Ax2n(k), Sx2n(k)),

1

2
[d(Ax2n(k), Tx2m(k)−1) + d(Sx2n(k), Bx2m(k)−1)]}

)
,

or

[1 + p d(y2n(k)−1, y2m(k)−1)]d(y2n(k), Bx2m(k)−1) ≤ p max{d(y2n(k)−1, Tx2n(k))

d(y2m(k)−2, y2m(k)−1), d(y2n(k)−1, y2m(k)−1)d(y2m(k)−1, y2n(k))}
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+ f
(

max{d(y2n(k)−1, y2m(k)−1), d(y2n(k)−1, y2n(k))),

d(y2n(k), y2n(k−1)),
1

2
[d(y2n(k)−1, y2m(k)−1) + d(y2m(k)−2, y2n(k))]}

)
.

Letting k →∞ and using Lemma 2.2, equations (2.10) and (2.11), we have

[1 + p ε]ε ≤ p ε2 + f
(

max{ε, 0, 0, ε}
)
,

or

ε ≤ f
(
ε
)
< ε,

a contradiction. Hence {y2n} is a Cauchy sequence.

3. Main Results

Now we present our main results. Throughout this section, suppose (X, d) de-
notes a complete metric space.

Theorem 3.1 Let A, B, S and T be self maps of a complete metric space
(X, d) satisfying (2.1) and (2.2) and suppose one of the mappings A, B, S and
T is continuous. If the pairs (A,S) and (B, T ) are weakly compatible, then A,
B, S and T have a unique common fixed point q in X.

Proof. Since X is complete, it follows from Lemma 2.4 that the sequence {yn}
converges to a point q in X. On the other hand, the sub sequences {Ax2n},
{Bx2n+1}, {Sx2n} and {Tx2n+1} of {yn} also converges to the point q. Now
suppose that A is continuous. Then the sequences {ASx2n} and {A2x2n} con-
verges to Aq. Since the pair {A,S} is weakly compatible, it follows from propo-
sition 2.8[9] that limn→∞SSx2n = Aq.
Now using (2.2) we have,

[1+p d(SSx2n, Tx2n+1)]d(ASx2n, Bx2n+1) ≤ p max{d(Bx2n+1, Tx2n+1)

d(ASx2n, SSx2n), d(ASx2n, Tx2n+1)d(SSx2n, Bx2n+1)}

+ f
(

max{d(SSx2n, Tx2n+1), d(Bx2n+1, Tx2n+1),

d(ASx2n, SSx2n),
1

2
[d(ASx2n, Tx2n+1) + d(SSx2n, Bx2n+1)]}

)
.

Letting n→∞, we have

[1+p d(Aq, q)]d(Aq, q) ≤ p max{d(q, q)d(Aq,Aq), d(Aq, q)d(Aq, q)}

+f
(

max{d(Aq, q), d(q, q)), d(Aq,Aq),
1

2
[d(Aq, q) + d(Aq, q)]}

)
,
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or
d(Aq, q) ≤ f

(
d(Aq, q)

)
< d(Aq, q),

which implies Aq = q.
Since A(X) ⊂ T (X), there exists a point u ∈ X such that Tu = q. Using the
inequality (2.2), we have

[1+p d(SSx2n, Tu)]d(ASx2n, Bu) ≤ p max{d(Bu, Tu)d(ASx2n, SSx2n),

d(ASx2n, Tu)d(SSx2n, Bu)}+ f
(

max{d(SSx2n, Tu), d(Bu, Tu),

d(ASx2n, SSx2n),
1

2
[d(ASx2n, Tu) + d(SSx2n, Bu)]}

)
.

Letting n→∞, we have

[1+p d(q, q)]d(q,Bu) ≤ p max{d(Bu, q)d(q, q), d(q, q)d(q,Bu)}

+ f
(

max{d(q, q), d(Bu, q)), d(q, q),
1

2
[d(q, q) + d(q,Bu)]}

)
,

or
d(Bq, q) ≤ f

(
d(Bq, q)

)
< d(Bq, q),

which implies Bq = q.
Since the pair (B, T ) is weakly compatible and Bu = Tu = q, we have
d(BTu, TBu) = 0 whenever Tu = Bu, and so Bq = BTu = TBu = Tq.
From inequality (2.2), we have

[1+p d(Sx2n, T q)]d(Ax2n, Bq) ≤ p max{d(Bq, Tq)d(Ax2n, Sx2n),

d(Ax2n, T q)d(Sx2n, Bq)}+ f
(

max{d(Sx2n, T q), d(Bq, Tq)),

d(Ax2n, Sx2n),
1

2
[d(Ax2n, T q) + d(Sx2n, Bq)]}

)
.

Letting n→∞, we have

[1+p d(q, T q)]d(q, T q) ≤ p max{d(Bq, Tq)d(q, q), d(q, T q)d(q, T q)}

+f
(

max{d(q, T q), d(Tq, Tq)), d(q, q),
1

2
[d(q, T q) + d(q, T q)]}

)
,

which implies,
d(q, T q) ≤ f

(
d(q, T q)

)
< d(q, T q),

and so, Tq = q = Bq.
Similarly, since B(X) ⊂ S(X), there exists a point u′ ∈ X such that Su′ = q,
and from (2.2), we have

d(Au′, q) ≤ f
(
d(q, Au′)

)
< d(q, Au′)
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which implies that, Su′ = Au′ = q.
Since the pair (A,S) is weakly compatible, we have d(ASu, SAu) = 0 whenever
Au = Su. So q = Aq = ASu′ = SAu′ = Sq. Thus q is a common fixed point
of A, B, S and T . The same conclusion holds if we suppose the mapping B is
continuous.

For uniqueness of common fixed point. Let A and S have another fixed point
z. Then from (2.2), we have

[1+p d(Sz, Tq)]d(Az,Bq) ≤ p max{d(Bq, Tq)d(Az, Sz), d(Az, Tq)d(Sz,Bq)}

+f
(

max{d(Sz, Tq), d(Bq, Tq)), d(Az, Sz),
1

2
[d(Az, Tq)+d(Sz,Bq)]}

)
,

or

[1+p d(z, q)]d(z, q) ≤ p d(z, q)d(z, q)}+f
(

max{d(z, q), 0, 0,
1

2
[d(z, q)+d(z, q)]}

)
,

or
d(z, q) ≤ f

(
d(z, q)

)
< d(z, q)

It follows from the above that, z = q. Similarly q is the unique common fixed
point of B and T .

By setting p = 0 in Theorem 3.1, we obtain the following corollary:

Corollary 3.2 Let A, B, S and T be self maps of a complete metric space (X,
d) satisfying (2.1) and

(3.1) d(Ax,By) ≤ f
(

max{d(Sx, Ty), d(By, Ty)),
1

2
[d(Ax, Ty)+d(Sx,By)]}

)
holds for all x, y ∈ X, where f ∈ F . Suppose one of the mappings A, B, S and
T is continuous. If the pairs (A,S) and (B, T ) are weakly compatible, then A,
B, S and T have a unique common fixed point in X.

Remark 3.3 If we take A = B and S = T = IX (the identity mapping on X),
then the above Corollary improves the result of Pant [8] and [9].

Again by setting p = 0 and f(t) = λt; 0 < λ < 1 in Theorem 3.1, we obtain the
following corollary:

Corollary 3.4 Let A, B, S and T be self maps of a complete metric space (X,
d) satisfying (2.1) and

(3.2) d(Ax,By) ≤ λmax{d(Sx, Ty), d(By, Ty)),
1

2
[d(Ax, Ty) + d(Sx,By)]}



54 R. Tiwari, S. K. Shrivastava, V. K. Pathak and N. Sharma

holds for all x, y ∈ X. Suppose one of the mappings A, B, S and T is continu-
ous. If the pairs (A,S) and (B, T ) are weakly compatible, then A, B, S and T
have a unique common fixed point in X.
Remark 3.5 If we take A = B and S = T = IX (the identity mapping on X),
the above Corollary improves the result of Ciric [3] and Fisher [4].
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