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Some KKM type, intersection and minimax

theorems in spaces with abstract convexities

Luis González Espinoza

Abstract. In this paper we obtain KKM type theorems for G-
spaces, M -spaces and L-spaces which are spaces with no linear
structure, these theorems are used to obtain some minimax results
for these spaces. Also an intersection theorem for M -spaces is pre-
sented.

Resumen. En este trabajo obtenemos teoremas de tipo KKM para
G-espacios, M -espacios y L-espacios que son espacios sin una estruc-
tura lineal, estos teoremas se utilizan para obtener unos resultados
minimax para estos espacios. También se presenta un teorema de
intersección para M -espacios.

1 Introduction

In this paper we obtain some KKM type theorems for G-spaces. These are
Theorems 2.3, 2.6 and 2.11. These latter two results generalize Theorems 1 and
Theorem 2 of Bardaro and Cepitelli [1]. We then apply our results to obtain
some minimax theorems, including a generalization to G-spaces of an inequality
of Fan [4]. This is our Corollary 3.3.

Then, using theorem 3.2 and theorem 3.4 of [2], we obtain a collection of
similar results for M-spaces and for L-spaces.

Finally using a theorem of J. Kindler [5] we prove an intersection theorem
for M-spaces.

2 Some KKM type theorems for G-spaces

In this section we present some KKM type theorem for G-spaces. KKM type
theorems are intersection theorems for multifunctions which satisfy a condition
known as the KKM condition. We begin by recalling the definition of a G-space
and the concept of a multifunction of KKM type.
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Definition 2.1 We call a triple (X,D,Γ) a G-space if X is a topological space,
D is a nonempty subset of X and Γ :< D >:→ 2X is a multifunction from the
set < D > of nonempty finite subsets of D into X such that

1. Γ(A) ⊂ Γ(B) whenever A ⊂ B

2. For each A = {a1, ..., an+1} ∈< D >, there is a continuous function
φA : ∆n → Γ(A) such that for any subset B = {ai1, ..., a1m} ⊂ A. we have
φA([ei1, ..., eim]) ⊂ B where ∆n denotes the standard closed n-simplex.

Definition 2.2 Let (X,D,Γ) be a G-space. A multifunction F : D → 2X such
that Γ(A) ⊂ F (A) for every A ∈< D > is called a G-KKM multifunction.

The following theorem was proved in [3]

Theorem 2.3 Let (X,D,Γ) be a compact G-space. Let F : D → 2X be a closed
valued G-KKM multifunction. Then

⋂
{F (x) : x ∈ D} 6= ∅.

Next, we generalize Theorem 2.3 to the case where X is not compact; however,
before doing so some definitions are required.

Definition 2.4 Let (X,D,Γ) be a G-space. A subset S of X is G-convex if
Γ(A) ⊂ S whenever A ∈< D ∩ S >.

Definition 2.5 Let (X,D,Γ) be an G-space, a set K ⊂ X is G-compact if
for every A ∈< X > there is a compact, G-convex set Y such that K ∪A ⊂ Y .

To present the following theorem let us recall that a set H is compactly
closed if H ∩B is closed in B for every compact set B.

Theorem 2.6 Let (X,Γ) be an G-space, and let F : X → 2X be a closed valued
G-KKM multifunction such that:

1. For each x ∈ X F (x) is compactly closed.

2. There is a compact set L ⊂ X and an G-compact set K ⊂ X such that
for each compact G-convex set Y with K ⊂ Y ⊂ X we have that⋂
{(F (x) ∩ Y : x ∈ Y } ⊂ L.

Then
⋂
{F (x) : x ∈ X} 6= ∅.
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Proof:
It will suffice to show that

⋂
{(F (x) ∩ L) : x ∈ X} 6= ∅. From condition (1) it

follows that {F (x) ∩L : x ∈ X} is a family of closed sets in the compact set L.
Thus, it suffices to show that this family has the finite intersection property.

Suppose A ∈< X >. By condition (2) there is a compact, G-convex set Y0
such that K ∪A ⊂ Y0 and

⋂
{F (x) ∩ Y0 : x ∈ Y0} ⊂ L.

But,
⋂
{(F (x) ∩ Y0) : x ∈ Y0} ⊂

⋂
{(F (x) ∩ L) : x ∈ Y0} ⊂

⋂
{(F (x) ∩ L) :

x ∈ A}, so, to show that
⋂
{(F (x) ∩ L) : x ∈ A} 6= ∅, it suffices to prove that⋂

{(F (x) ∩ Y0) : x ∈ Y0} 6= ∅.
Now, because Y0 is G-convex, the pair (Y0,Γ| < Y0 >) is itself a compact

G-space, and the multifunction H : Y0 → 2Y0 given by H(x) = F (x) ∩ Y0, is a
G-KKM multifunction.

Indeed, let B ∈< Y0 >. Then,
Γ(B) = Γ(B) ∩ Y0
⊂ (

⋃
{F (x) : x ∈ B}) ∩ Y0

=
⋃
{F (x) ∩ Y0 : x ∈ B}

=
⋃
{H(x) : x ∈ B} = H(B).

Therefore, H is a G-KKM multifunction for the compact G-space
(Y0,Γ| < Y0 >). Thus by Theorem 2.3, it follows that

⋂
{(F (x) ∩ Y0) : x ∈

Y0} =
⋂
{H(x) : x ∈ Y0} 6= ∅. ♦

Now we will introduce a definition which describe a weaker condition for a
multifunction than that of G-KKM, and we will use it later. Before doing that
we need the following concept.

Definition 2.7 Let (X,D,Γ) be a G-space. Let A be a subset of X. We define
the G-convex hull of A, denoted by coG(A), as

coG(A) =
⋂
{S ⊂ X : S is G-convex, and A ⊂ S}

Definition 2.8 Let (X,D,Γ) be a G-space. A multifunction F : D → 2X such
that coG(A) ⊂ F (A) for every A ∈< D > is called an G*-KKM multifunc-
tion.

The next proposition and its corollary were proved in [3].

Proposition 2.9 Let (X,D,Γ) be an G-space. Suppose F : D → 2X is a
G*-KKM multifunction, then it is a G-KKM multifunction.

Corollary 2.10 Let (X,D,Γ) be a compact G-space. Let F : D → 2X be a
closed valued G*-KKM multifunction. Then

⋂
{F (x) : x ∈ D} 6= ∅.
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Theorem 2.11 Let (X,Γ) be a G-space, and let F,H : X → 2X be two multi-
functions such that:

1. For all x ∈ X, H(x) is compactly closed, and F (x) ⊂ H(x);

2. x ∈ F (x) for every x ∈ X;

3. For all x ∈ X,F ∗(x) is G-convex;

4. H satisfies condition (2) of Theorem 2.6.

Then
⋂
{H(x) : x ∈ X} 6= ∅.

Proof:
By Corollary 2.10 it will suffice to show that the multifunction H is a G*-KKM
multifunction.

Suppose that H is not a G*-KKM multifunction, then there is a subset
A ∈ < D > such that coG(A) 6⊂ H(A).

Thus, there exists y ∈ coG(A) such that y /∈ H(A) , which means that,
y /∈ H(x) for all x ∈ A, that is, x ∈ H∗(y) for all x ∈ A. Thus, A ⊂ H∗(y).

On the other hand, condition (1) implies H∗(y) ⊂ F ∗(y). Thus, F ∗(y)
is a G-convex subset containing A, which implies that, coG(A) ⊂ F ∗(y), but
y ∈ coG(A). Then y ∈ F ∗(y), which is equivalent to y 6∈ F (y), in contradiction
with condition (2).

Hence H is a G*-KKM multifunction and so
⋂
{H(x);x ∈ X} 6= ∅. ♦

Thus, theorems 2.6 and 2.11 generalize to G-spaces, theorems 1 and 2 in [1].

Corollary 2.12 Let (X,Γ) be a compact G-space. Let F : X → 2X be a
multifunction and let H : X → 2X be a closed valued multifunction such that:

1. For all x ∈ X, F (x) ⊂ H(x);

2. x ∈ F (x) for every x ∈ X;

3. For all x ∈ X, F ∗(x) is G-convex.

Then
⋂
{H(x) : x ∈ X} 6= ∅.

3 Some Minimax theorems for G-spaces

In this section we present a minimax inequality which is a generalization to
G-spaces of an inequality previously proved by K. Fan in [4].



KKM Theorems in Abst. Convexities 133

Theorem 3.1 Let (X,Γ) be a compact G-space, let f : X ×X → R and
h : X ×X → R be two functions such that:

1. h(x, y) ≤ f(x, y) for all (x, y) ∈ X ×X.

2. The function hx : X → R given by hx(y) = h(x, y) is lower semicontinu-
ous.

3. Given any λ ∈ R and any y ∈ X the set {x ∈ X : f(x, y) > λ} is
G-convex.

Then for any λ ∈ R either there exists y0 ∈ X such that , h(x, y0) ≤ λ for all
x ∈ X, or there exists y0 ∈ X such that f(y0, y0) > λ.

Proof:
Let us set H(x) = {y ∈ X : h(x, y) ≤ λ} and F (x) = {y ∈ X : f(x, y) ≤ λ}.
Since hx is lower semicontinuous, H(x) is a closed set, so in the terminology
of multifunctions, we have a multifunction F : X → 2X , and a closed valued
multifunction H : X → 2X , such that F (x) ⊂ H(x) for all x ∈ X because of
condition (1).

Now for the multifunction F , we have two possibilities:
Either there is an x0 ∈ X, such that x0 6∈ F (x0), in which case we have that

f(x0, x0) > λ, that is, the second part of the alternative is true.
Or, for all x ∈ X, x ∈ F (x). Now F ∗(y) = {x ∈ X : y 6∈ F (x)} = {x ∈ X :

f(x, y) > λ} which is an M-convex set for all y ∈ X because of condition (3).
Therefore F andH are two multifunctions satisfying the hypotheses of Corol-

lary 2.12, so we have that,
⋂
{H(x) : x ∈ X} 6= ∅.

Thus if x0 ∈
⋂
{H(x) : x ∈ X} we have that h(x0, y) ≤ λ for all y ∈ X, that

is the first part of the alternative is true. ♦

Corollary 3.2 With the hypotheses of Theorem 3.1 we obtain the following
minimax inequality.

miny∈Xsupx∈Xh(x, y) ≤ supx∈Xf(x, x).

Proof:
Let λ = supx∈Xf(x, x), then either λ = ∞, in which case the inequality is
obvious or λ is finite. Then because of definition of λ, the first part of the
alternative in Theorem 3.1 is true. Therefore exists y0 ∈ X such that:

h(x, y0) ≤ supx∈Xf(x, x) forall x ∈ X.

Then

supx∈Xh(x, y) ≤ supx∈Xf(x, x) forall y ∈ X
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that is,
supx∈Xhx(y) ≤ supx∈Xf(x, x) forall y ∈ X.

Thus
infy∈Xsupx∈Xhx(y) ≤ supx∈Xf(x, x);

but supx∈Xhx is lower semicontinuous, and it is well known that in this case
this infimum is a minimun therefore we have that

miny∈Xsupx∈Xh(x, y) ≤ supx∈Xf(x, x). ♦

Based on this, the inequality proved by Fan in [4] can be generalized to G-spaces
by the following corollary.

Corollary 3.3 Let (X,Γ) be a compact G-space and let f : X ×X → R be a
function such that:

1. The function fx : X → R given by fx(y) = f(x, y) is lower semicontinu-
ous.

2. Given any λ ∈ R and any y ∈ X the set {x ∈ X : f(x, y) > λ} is
G-convex.

Then the following inequality is true

miny∈Xsupx∈Xf(x, y) ≤ supx∈Xf(x, x).

Proof:
Take h(x, y) = f(x, y) in Corollary 3.2. ♦

4 Some KKM and Minimax Theorems for M-spaces
and L-spaces

Theorem 3.2 of [2], shows that if (X,M,k) is an M-space, and D ⊂ X is
an admissible subset, then there exists the corresponding M-space (X,D,Γ),
such that the collection of M-convex subsets with respect to D in (X,M,k)
coincides with the collection of G-convex sets in (X,D,Γ). We will use this
result to obtain from the KKM and minimax theorems proved for G-spaces,
similar results for M-spaces.

On the other hand, Theorem 3.4 of [2] states that given an L-space (X,D,P),
there is an M-space (X,M,k) for which D is an admissible subset, and the
collection of L-convex subsets in (X,D,P) coincides with the collection of M-
convex subsets with respect to D in (X,M,k). Based on this theorem some
KKM and minimax theorems for L-spaces will be obtained.
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Let us begin by recalling the concepts of M-space and M-convex subset, to
introduce next the concept of M*-KKM multifunction.

Notation. Given any integer m ≥ 2 and 1 ≤ i ≤ m, let δi : Rn → Rn

denote the function defined by δi(x1, ..., xn) = (x1, ..., xi−1, xi+1, ..., xn).

Definition 4.1 An M-space is a triple (X,M,k), where X is a topological
space, M = Mn : ninteger, n ≤ 1 is a collection of sets where Mn ⊂ Xn for all
n ≥ 1, and k = kn : ninteger, n ≤ 1 is a collection of functions satisfying

1. kn+1 : Mn+1 ×∆n → X.

2. If x ∈ Mn+1(n ≥ 1) and i ≤ n + 1, then δi(x) ∈ Mn and for any t ∈ ∆n

with ti = 0, kn+1(x, t) = kn(δi(x), δi(t)).

3. If x ∈Mn+1, then the map t→ kn+1(x, t), from ∆n to X, is continuous.

Definition 4.2 Let (X,M,k) be an M-space. A nonempty subset D ⊂ X is
said to be admissible if Dn ⊂Mn for all n.

Definition 4.3 Let (X,M,k) be an M-space, let D ⊂ X be an admissible sub-
set. We say that a subset S of X is M-convex with respect to D, if for each
subset A ∈< S ∩D > and any indexing of A = {a1, ..., an+1}, we have that

kn+1((a1, ..., an+1),∆n) ⊂ S.

If D = X we say M-convex.

Definition 4.4 Let (X,M,k) be an M-space, let D ⊂ X be an admissible sub-
set. Let K be subset of X. We define the M-convex hull of K with respect to
D, denoted by coMD as:

coMD =
⋂
{S ⊂ X : S is M-convex with respect to D,K ⊂ S}.

In case D = X, the M-convex hull of K with respect to X will be denoted by
coM .

Definition 4.5 Let (X,M,k) be an M-space and let D ⊂ X be an admissible
subset. A multifunction F : D → 2X is said to be M*-KKM, if for each A ∈<
D >, coMD (A) ⊂ F (A).



136 L. González

Proposition 4.6 Let (X,M,k) be a compact M-space, and let D ⊂ X be an
admissible subset. Let F : D → 2X be a closed valued M*-KKM multifunction.
Then

⋂
{F (x) : x ∈ D} 6= ∅.

Proof:
By Theorem 3.2 of [2], the collection of M-convex subsets with respect to
D in the space (X,M,k), coincide with the collection of G-convex subsets in
the corresponding G-space (X,D,Γ). Therefore F : D → 2X is a G*-KKM
multifunction in the G-space (X,D,Γ). Thus, by Corollary 2.9 we have that⋂
{F (x) : x ∈ D} 6= ∅. ♦

As consequences of our next proposition we obtain minimax results for M-
spaces, all these proofs are omitted because they are similar to those corre-
sponding to G-spaces.

Proposition 4.7 Let (X,M,k) be a compact M-space, such that X is admissi-
ble. Let F : X → 2X be a multifunction and let H : X → 2X be a closed valued
multifunction such that:

1. For all x ∈ X, F (x) ⊂ H(x);

2. x ∈ F (x) for every x ∈ X;

3. For all x ∈ X, F ∗(x) is M-convex.

Then
⋂
{H(x) : x ∈ X} 6= ∅.

Proposition 4.8 Let (X,M,k) be a compact M-space, such that X is admis-
sible. Let f : X ×X → R and h : X ×X → R be two functions such that:

1. h(x, y) ≤ f(x, y) for all (x, y) ∈ X ×X.

2. The function hx : X → R given by hx(y) = h(x, y) is lower semicontinu-
ous.

3. Given any λ ∈ R and any y ∈ X the set {x ∈ X : f(x, y) > λ} is
M-convex.

Then for any λ ∈ R either there exist y0 ∈ X such that for all x ∈ X ,
h(x, y0) ≤ λ, or there exists y0 ∈ X such that f(y0, y0) > λ.

Proposition 4.9 With the hypotheses of Proposition 4.8 we obtain the follow-
ing minimax inequality.

miny∈Xsupx∈Xh(x, y) ≤ supx∈Xf(x, x).
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Proposition 4.10 Let (X,M,k) be a compact M-space, such that X is admis-
sible and let f : X ×X → R be a function such that:

1. The function fx : X → R given by fx(y) = f(x, y) is lower semicontinu-
ous.

2. Given any λ ∈ R and any y ∈ X the set {x ∈ X : f(x, y) > λ} is
M-convex.

Then the following inequality is true

miny∈Xsupx∈Xf(x, y) ≤ supx∈Xf(x, x).

This proposition generalizes to M-spaces an inequality proved by Fan in [4].

Now, we give the definition of an L*-KKM multifunction, and then by employing
of Theorem 3.4 of [2], we state some KKM and minimax theorems for L-spaces.
We begin by recalling the concepts of an L-space, an L-convex subset and the
L-convex hull of a subset.

Definition 4.11 An L-space is a triple (X,D,P), where X is a topological
space, D is a nonempty subspace of X and P = {Pa : a ∈ X} is a collection of
functions Pa : D × [0, 1] → D, such that Pa(x, 0) = x, Pa(x, 1) = a, and Pa is
continuous respect to t ∈ [0, 1]. When D = X, we write (X,P ).

Definition 4.12 Suppose (X,D,P) is an L-space. Given A ∈< D >, let
A = {a0, ..., an} be any indexing of A by {0, ...n}. Define the multifunction
GA : [0, 1]n → D by

GA(t0, ..., tn) = Pa0(Pa1 ...(Pan−1(an, tn−1)..., t1), t0)

. For A = {a}, we define G{a} = {a}. We say that a subset S ⊂ X is L-convex
if for every A ∈< A ∩ D >, and every indexing of A = {a0, ...an}, it follows
that GA([0, 1]n) ⊂ S.

Definition 4.13 Let (X,D,P) be an L-space. Let A be a subset of X. We
define the L-convex hull of A by

coL(A) =
⋂
{S ⊂ X : S is L-convex and A ⊂ S}

.

Definition 4.14 Let (X,D,P) be an L-space. A multifunction F : D → 2X

such that coL(A) ⊂ F (A) for every A ∈< D > is called an L*-KKM multi-
function.
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Proposition 4.15 Let (X,D,P) be a compact L-space. Let F : D → 2X be a
closed valued L*-KKM multifunction. Then

⋂
{F (x) : x ∈ D} 6= ∅.

Proof:
The proof follows from Theorem 3.4 of [2] and Proposition 4.6 in similar way
to the proof of Proposition 4.6.

The followings propositions together with Proposition 3.4 of [2] allow us to
present some minimax results for L-spaces, whose proofs are omitted because
of their similarities with the corresponding for M-spaces.

Proposition 4.16 Let (X,P) be a compact L-space. Let F : X → 2X be a
multifunction and let H : X → 2X be a closed valued multifunction such that:

1. For all x ∈ X, F (x) ⊂ H(x);

2. x ∈ F (x) for every x ∈ X;

3. For all x ∈ X, F ∗(x) is L-convex.

Then
⋂
{H(x) : x ∈ X} 6= ∅.

Proposition 4.17 Let (X,P) be a compact L-space , let f : X ×X → R and
h : X ×X → R be two functions such that:

1. h(x, y) ≤ f(x, y) for all (x, y) ∈ X ×X.

2. The function hx : X → R given by hx(y) = h(x, y) is lower semicontinu-
ous.

3. Given any λ ∈ R and any y ∈ X the set {x ∈ X : f(x, y) > λ} is L-convex.

Then for any λ ∈ R either there exist y0 ∈ X such that for all x ∈ X ,
h(x, y0) ≤ λ, or there exists y0 ∈ X such that f(y0, y0) > λ.

Corollary 4.18 With the hypotheses of Proposition 4.17 we obtain the follow-
ing minimax inequality.

miny∈Xsupx∈Xh(x, y) ≤ supx∈Xf(x, x).

Corollary 4.19 Let (X,P) be a compact L-space and let f : X ×X → R be a
function such that:

1. The function fx : X → R given by fx(y) = f(x, y) is lower semicontinu-
ous.

2. Given any λ ∈ R and any y ∈ X the set {x ∈ X : f(x, y) > λ} is L-convex.

Then the following inequality is true

miny∈Xsupx∈Xf(x, y) ≤ supx∈Xf(x, x).
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5 An intersection Theorem for M-spaces

In this section, by employing an intersection theorem due to J. Kindler [5],
proved without using the Theorem of Knaster-Kuratowski-Mazurkiewicz, we
show another type of intersection theorem for M-spaces.

Theorem 5.1 For a multifunction F : X → 2Y the following are equivalent.

1.
⋂
{F (x) : x ∈ X} 6= ∅.

2. There exist topologies on X and Y such that

(a) Y is compact.

(b) Every value F (x), x ∈ X is closed.

(c) For all A ∈< X > the subset
⋂
{F (x) : x ∈ A} is connected.

(d) For all B ⊂ Y the subset
⋂
{F ∗(y) : y ∈ B} is connected.

Theorem 5.2 Let (X,M,k) be an M-space such that X is admissible, and
such that k1(x, 1) = x for all x ∈ X. Let Y be a compact topological space and
F : X → 2Y an upper semicontinuous multifunction such that

1. F (Γ{x1,x2}) = F (x1) ∪ F (x2) for all x1, x2 ∈ X.

2.
⋂
{F (x) : x ∈ A} is connected for all A ∈< X >.

Then
⋂
{F (x) : x ∈ X} 6= ∅.

Proof:
Due to Theorem 5.1 it suffices to prove that for all B ⊂ Y the subset

⋂
{F ∗(y) :

y ∈ B} is connected, so let B ⊂ Y and let us prove that
⋂
{F ∗(y) : y ∈ B} is

connected.
To this end we will show that given x1, x2 ∈

⋂
{F ∗(y) : y ∈ B} there is a

connected set C such that {x1, x2} ⊂ C ⊂
⋂
{F ∗(y) : y ∈ B}.

Now x1, x2 ∈
⋂
{F ∗(y) : y ∈ B} means that B∩F (x1) = ∅ and B∩F (x2) =

∅, then B ∩ (F (x1) ∪ F (x2)) = B ∩ F (Γ{x1,x2}) = ∅. Therefore x1, x2 ∈
Γ{x1,x2} ⊂

⋂
{F ∗(y) : y ∈ B}. On the other hand Γ{x1,x2} = {

⋃
{k2((x1, x2), t) :

t ∈ ∆̄1}} ∪ {
⋃
{k2((x2, x1), t) : t ∈ ∆̄1}} is path-connected.

In fact, let x, y ∈ Γ{x1,x2}. We will show that there is a path joining x
and y. Assume that x = k2((x1, x2), (t1, t2)) with (t1, t2) ∈ ∆̄1 and consider
the path φ : [0, 1] → X defined by φ(t) = k2((x1, x2), (t1 + t − tt1, t2 − tt2)).
By definition of M-space it follows that φ is continuous function such that
φ(0) = k2((x1, x2), (t1, t2)) and φ(1) = k2((x1, x2), (1, 0)) = k1(x1, 1) = x1.
Therefore φ is a path joining x and x1.
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In a similar way we can construct a path joining y and x1. Thus any pair
x, y ∈ Γ{x1,x2} can be joined by a path, which means that, Γ{x1,x2} is path
connected.

Therefore, given two points {x1, x2} ∈
⋂
{F ∗(y) : y ∈ B} we have found

a connected set C = Γ{x1,x2} containing these two points and contained in⋂
{F ∗(y) : y ∈ B}, this means that

⋂
{F ∗(y) : y ∈ B} is connected. ♦
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