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Some KKM type, intersection and minimax
theorems in spaces with abstract convexities

Luis Gonzélez Espinoza

Abstract. In this paper we obtain KKM type theorems for G-
spaces, M-spaces and L-spaces which are spaces with no linear
structure, these theorems are used to obtain some minimax results
for these spaces. Also an intersection theorem for M-spaces is pre-
sented.

Resumen. En este trabajo obtenemos teoremas de tipo KKM para
G-espacios, M-espacios y L-espacios que son espacios sin una estruc-
tura lineal, estos teoremas se utilizan para obtener unos resultados
minimax para estos espacios. También se presenta un teorema de
interseccién para M-espacios.

1 Introduction

In this paper we obtain some KKM type theorems for G-spaces. These are
Theorems 2.3, 2.6 and 2.11. These latter two results generalize Theorems 1 and
Theorem 2 of Bardaro and Cepitelli [1]. We then apply our results to obtain
some minimax theorems, including a generalization to G-spaces of an inequality
of Fan [4]. This is our Corollary 3.3.

Then, using theorem 3.2 and theorem 3.4 of [2], we obtain a collection of
similar results for M-spaces and for L-spaces.

Finally using a theorem of J. Kindler [5] we prove an intersection theorem
for M-spaces.

2 Some KKM type theorems for G-spaces

In this section we present some KKM type theorem for G-spaces. KKM type
theorems are intersection theorems for multifunctions which satisfy a condition
known as the KKM condition. We begin by recalling the definition of a G-space
and the concept of a multifunction of KKM type.
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Definition 2.1 We call a triple (X, D,T') a G-space if X is a topological space,
D is a nonempty subset of X and T :< D >:— 2% is a multifunction from the
set < D > of nonempty finite subsets of D into X such that

1. T(A) Cc I'(B) whenever A C B

2. For each A = {ay,...,any1} €< D >, there is a continuous function
da: A, — T(A) such that for any subset B = {a;1,...,a1m} C A. we have
da([eir, ..., eim]) C B where A, denotes the standard closed n-simplex.

Definition 2.2 Let (X, D,T) be a G-space. A multifunction F : D — 2% such
that T'(A) C F(A) for every A €< D > is called a G-KKM multifunction.

The following theorem was proved in [3]

Theorem 2.3 Let (X, D,T") be a compact G-space. Let F : D — 2% be a closed
valued G-KKM multifunction. Then (\{F(z): 2z € D} # 0.

Next, we generalize Theorem 2.3 to the case where X is not compact; however,
before doing so some definitions are required.

Definition 2.4 Let (X,D,T") be a G-space. A subset S of X is G-convez if
I'(A) C S whenever Ac< DNS >.

Definition 2.5 Let (X, D,T) be an G-space, a set K C X is G-compact if
for every A €< X > there is a compact, G-convex set Y such that K UA CY.

To present the following theorem let us recall that a set H is compactly
closed if H N B is closed in B for every compact set B.

Theorem 2.6 Let (X,T') be an G-space, and let F : X — 2% be a closed valued
G-KKM multifunction such that:

1. For each x € X F(x) is compactly closed.

2. There is a compact set L C X and an G-compact set K C X such that
for each compact G-convex set’ Y with K C'Y C X we have that

N{(F(z)NY :2 €Y} C L.

Then ({F(z):x € X} #0.
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Proof:

It will suffice to show that {(F(z) N L) : x € X} # (). From condition (1) it
follows that {F(z) N L:x € X} is a family of closed sets in the compact set L.
Thus, it suffices to show that this family has the finite intersection property.

Suppose A €< X >. By condition (2) there is a compact, G-convex set Yj
such that K UA C Yy and {F(x)NYy: 2z €Yy} C L.

But, {(F(z)NYy):z e Yo} C(W{(F(z)NL):z e Yo} Cc{(F(z)NL):
x € A}, so, to show that N{(F(x)NL):z € A} # 0, it suffices to prove that
((F(z)NYy):z €Yy} #0.

Now, because Yy is G-convex, the pair (Yp,I'| < Yy >) is itself a compact
G-space, and the multifunction H : Yy — 2Y0 given by H(z) = F(z) N Yy, is a
G-KKM multifunction.

Indeed, let B €< Yy >. Then,

I'(B)=T(B)NYy

C(UH{F(z):ze B})NY,

=U{F(x)NYy:2z € B}

={H(z) :x € B} = H(B).

Therefore, H is a G-KKM multifunction for the compact G-space
(Yo,T| < Yy >). Thus by Theorem 2.3, it follows that {(F(z) NYy) : = €
Yol = N{H(z) -z € Yol 0. 6

Now we will introduce a definition which describe a weaker condition for a
multifunction than that of G-KKM, and we will use it later. Before doing that
we need the following concept.

Definition 2.7 Let (X, D,T") be a G-space. Let A be a subset of X. We define
the G-convex hull of A, denoted by co®(A), as

co%(A) = ﬂ{S C X : S is G-convex, and A C S}

Definition 2.8 Let (X, D,T') be a G-space. A multifunction F : D — 2% such
that co%(A) C F(A) for every A €< D > is called an G*-KKM multifunc-

tion.

The next proposition and its corollary were proved in [3].

Proposition 2.9 Let (X, D,T) be an G-space. Suppose F : D — 2% is a
G*-KKM multifunction, then it is a G-KKM multifunction.

Corollary 2.10 Let (X,D,T) be a compact G-space. Let F : D — 2% be a
closed valued G*-KKM multifunction. Then (\{F(x):x € D} # 0.
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Theorem 2.11 Let (X,T) be a G-space, and let F, H : X — 2% be two multi-
functions such that:

1. For allx € X, H(x) is compactly closed, and F(x) C H(z);
2. x € F(x) for every x € X;
3. For all x € X, F*(x) is G-conve;
4. H satisfies condition (2) of Theorem 2.6.
Then ({H(z) :x € X} #0.

Proof:
By Corollary 2.10 it will suffice to show that the multifunction H is a G*-KKM
multifunction.

Suppose that H is not a G*-KKM multifunction, then there is a subset
A€ < D> such that co%(A) ¢ H(A).

Thus, there exists y € co®(A) such that y ¢ H(A) , which means that,
y ¢ H(z) for all © € A, that is, x € H*(y) for all x € A. Thus, A C H*(y).

On the other hand, condition (1) implies H*(y) € F*(y). Thus, F*(y)
is a G-convex subset containing A, which implies that, co®(A4) C F*(y), but
y € co%(A). Then y € F*(y), which is equivalent to y ¢ F(y), in contradiction
with condition (2).

Hence H is a G*-KKM multifunction and so ([{H(z);z € X} #0. &

Thus, theorems 2.6 and 2.11 generalize to G-spaces, theorems 1 and 2 in [1].

Corollary 2.12 Let (X,T) be a compact G-space. Let F : X — 2% be a
multifunction and let H : X — 2% be a closed valued multifunction such that:

1. Forallx € X, F(x) C H(z);
2. x € F(x) for every x € X;
3. For allx € X, F*(x) is G-convex.

Then {H(z):z € X} #0.

3 Some Minimax theorems for G-spaces

In this section we present a minimax inequality which is a generalization to
G-spaces of an inequality previously proved by K. Fan in [4].
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Theorem 3.1 Let (X,I") be a compact G-space, let f: X x X — R and
h:X x X — R be two functions such that:

1. h(z,y) < f(x,y) for all (x,y) € X x X.

2. The function h, : X — R given by h,(y) = h(x,y) is lower semicontinu-
ous.

3. Giwen any X\ € R and any y € X the set {x € X : f(x,y) > A} is
G-convet.

Then for any X\ € R either there exists yo € X such that , h(z,y0) < A for all
x € X, or there exists yo € X such that f(yo,y0) > A.

Proof:
Let us set H(z) = {y € X : h(z,y) < A} and F(z) = {y € X : f(z,y) < A}
Since h, is lower semicontinuous, H(z) is a closed set, so in the terminology
of multifunctions, we have a multifunction F : X — 2%, and a closed valued
multifunction H : X — 2%, such that F(z) C H(x) for all z € X because of
condition (1).

Now for the multifunction F, we have two possibilities:

Either there is an xg € X, such that z¢ & F(x¢), in which case we have that
f(zo, o) > A, that is, the second part of the alternative is true.

Or,forallz € X, 2 € F(z). Now F*(y) ={z e X :y € F(x)} = {z € X :
f(z,y) > A} which is an M-convex set for all y € X because of condition (3).

Therefore F' and H are two multifunctions satisfying the hypotheses of Corol-
lary 2.12, so we have that, {H(z) :x € X} # 0.

Thus if g € {H(z) : x € X} we have that h(xg,y) < X for all y € X, that
is the first part of the alternative is true. <

Corollary 3.2 With the hypotheses of Theorem 3.1 we obtain the following
mintmaz inequality.

Minyex supzex h(z,y) < supzex f(x, x).

Proof:

Let A = supgex f(z,x), then either A = oo, in which case the inequality is
obvious or A is finite. Then because of definition of A, the first part of the
alternative in Theorem 3.1 is true. Therefore exists yy € X such that:

Mz, yo) < supzexf(x,x) forall z € X.

Then
supzexh(z,y) < supgex f(xz,x) forall y e X
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that is,
suprexhz(y) < supgex f(x,z) forall y e X.

Thus
infyex supzexhe(y) < supgex f(x,x);

but suprecxhs is lower semicontinuous, and it is well known that in this case
this infimum is a minimun therefore we have that

minge x supzexh(z,y) < supzex f(z,z). &

Based on this, the inequality proved by Fan in [4] can be generalized to G-spaces
by the following corollary.

Corollary 3.3 Let (X,T) be a compact G-space and let f: X x X — R be a
function such that:

1. The function f, : X — R given by f.(y) = f(x,y) is lower semicontinu-
ous.

2. Given any X € R and any y € X the set {x € X : f(x,y) > A} is
G-convez.

Then the following inequality is true

minyex supzex f(x,y) < supgex f(x, x).

Proof:
Take h(z,y) = f(x,y) in Corollary 3.2. <

4 Some KKM and Minimax Theorems for M-spaces
and L-spaces

Theorem 3.2 of [2], shows that if (X,M,k) is an M-space, and D C X is
an admissible subset, then there exists the corresponding M-space (X, D,T"),
such that the collection of M-convex subsets with respect to D in (X, M, k)
coincides with the collection of G-convex sets in (X, D,T"). We will use this
result to obtain from the KKM and minimax theorems proved for G-spaces,
similar results for M-spaces.

On the other hand, Theorem 3.4 of [2] states that given an L-space (X, D, P),
there is an M-space (X, M, k) for which D is an admissible subset, and the
collection of L-convex subsets in (X, D,P) coincides with the collection of M-
convex subsets with respect to D in (X, M, k). Based on this theorem some
KKM and minimax theorems for L-spaces will be obtained.
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Let us begin by recalling the concepts of M-space and M-convex subset, to
introduce next the concept of M*-KKM multifunction.

Notation. Given any integer m > 2 and 1 < ¢ < m, let §; : R — R"
denote the function defined by 6;(21, ..., Zn) = (X1, ooy Tim1, Tig 1y ooey Tn)-

Definition 4.1 An M-space is a triple (X,M,k), where X is a topological
space, M = Mn : ninteger,n < 1 is a collection of sets where Mn C X™ for all
n > 1, and k = kn : ninteger,n <1 is a collection of functions satisfying

1. kn+1 : Mn+1 X An — X.

2. Ifv € Myy1(n>1) and i < n+ 1, then §;(z) € M, and for any t € A,
with ti = 0, kn+1(l‘7 t) = k;n(éz(x), 51(t))

3. If x € M1, then the map t — kpy1(x,t), from A, to X, is continuous.

Definition 4.2 Let (X,M,k) be an M-space. A nonempty subset D C X is
said to be admissible if D™ C M, for all n.

Definition 4.3 Let (X, M, k) be an M-space, let D C X be an admissible sub-
set. We say that a subset S of X is M-convex with respect to D, if for each
subset A €< SN D > and any indexing of A ={ay,...,ant1}, we have that

kn-‘rl((ala teey an-‘rl)) An) C S

If D = X we say M-convex.

Definition 4.4 Let (X, M, k) be an M-space, let D C X be an admissible sub-
set. Let K be subset of X. We define the M-convex hull of K with respect to
D, denoted by co¥ as:

coY = ﬂ{S C X : S is M-convex with respect to D, K C S}.
In case D = X, the M-convez hull of K with respect to X will be denoted by

coM.

Definition 4.5 Let (X, M, k) be an M-space and let D C X be an admissible
subset. A multifunction F : D — 2% is said to be M*-KKM, if for each A €<
D >, coM(A) Cc F(A).
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Proposition 4.6 Let (X,M,k) be a compact M-space, and let D C X be an
admissible subset. Let F': D — 2% be a closed valued M*-KKM multifunction.
Then (\{F(z):x € D} # 0.

Proof:

By Theorem 3.2 of [2], the collection of M-convex subsets with respect to
D in the space (X, M, k), coincide with the collection of G-convex subsets in
the corresponding G-space (X, D,T). Therefore F : D — 2% is a G*KKM
multifunction in the G-space (X, D,T"). Thus, by Corollary 2.9 we have that

(WF(z):z € D}#0. &

As consequences of our next proposition we obtain minimax results for M-
spaces, all these proofs are omitted because they are similar to those corre-
sponding to G-spaces.

Proposition 4.7 Let (X, M, k) be a compact M-space, such that X is admissi-
ble. Let F : X — 2% be a multifunction and let H : X — 2% be a closed valued
multifunction such that:

1. Forallz € X, F(z) C H(x);

2. x € F(x) for every x € X;

3. Forallx € X, F*(x) is M-convex.
Then {H(z):z € X} #0.

Proposition 4.8 Let (X, M, k) be a compact M-space, such that X is admis-
sible. Let f : X x X — R and h : X x X — R be two functions such that:

1. h(z,y) < f(z,y) for all (z,y) € X x X.

2. The function hy : X — R given by hy(y) = h(z,y) is lower semicontinu-
ous.

3. Given any X € R and any y € X the set {x € X : f(x,y) > A} is
M-convez.

Then for any A € R either there exist yo € X such that for all x € X |
h(z,yo) < A, or there exists yo € X such that f(yo,yo) > A

Proposition 4.9 With the hypotheses of Proposition 4.8 we obtain the follow-
ing minimax inequality.

minye x supzexh(z,y) < supzex f(z,x).
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Proposition 4.10 Let (X, M, k) be a compact M-space, such that X is admis-
sible and let f : X x X — R be a function such that:

1. The function f, : X — R given by f.(y) = f(z,y) is lower semicontinu-
ous.

2. Given any A\ € R and any y € X the set {x € X : f(x,y) > A} is
M-conver.

Then the following inequality is true

minye x supzex f(z,y) < supzex f(x, ).

This proposition generalizes to M-spaces an inequality proved by Fan in [4].

Now, we give the definition of an L*-KKM multifunction, and then by employing
of Theorem 3.4 of [2], we state some KKM and minimax theorems for L-spaces.
We begin by recalling the concepts of an L-space, an L-convex subset and the
L-convex hull of a subset.

Definition 4.11 An L-space is a triple (X, D,P), where X is a topological
space, D is a nonempty subspace of X and P ={P, : a € X} is a collection of
functions P, : D x [0,1] — D, such that P,(z,0) =z, Py(z,1) = a, and P, s
continuous respect to t € [0,1]. When D = X, we write (X, P).

Definition 4.12 Suppose (X, D,P) is an L-space. Given A €< D >, let
A = {ag,...,an} be any indexing of A by {0,..n}. Define the multifunction
G4 :10,1]" — D by

GA(to, ,tn) = Pao (Pal...(Pan_l(an,tn,l)...7t1),t0)

. For A = {a}, we define G,y = {a}. We say that a subset S C X is L-convex
if for every A €< AN D >, and every indexing of A = {ag,...an}, it follows
that G4([0,1]") C S.

Definition 4.13 Let (X, D,P) be an L-space. Let A be a subset of X. We
define the L-convex hull of A by

cot(A) = ﬂ{S C X : S is L-conver and A C S}

Definition 4.14 Let (X, D,P) be an L-space. A multifunction F : D — 2%
such that co(A) C F(A) for every A €< D > is called an L*-KKM multi-
function.
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Proposition 4.15 Let (X, D,P) be a compact L-space. Let F : D — 2% be a
closed valued L*-KKM multifunction. Then (\{F(z):x € D} # 0.

Proof:
The proof follows from Theorem 3.4 of [2] and Proposition 4.6 in similar way
to the proof of Proposition 4.6.

The followings propositions together with Proposition 3.4 of [2] allow us to
present some minimax results for L-spaces, whose proofs are omitted because
of their similarities with the corresponding for M-spaces.

Proposition 4.16 Let (X,P) be a compact L-space. Let F : X — 2% be a
multifunction and let H : X — 2% be a closed valued multifunction such that:

1. Forallx € X, F(x) C H(x);

2. x € F(x) for every x € X;

3. For allx € X, F*(x) is L-conver.
Then {H(x):xz € X} #0.
Proposition 4.17 Let (X,P) be a compact L-space , let f: X x X — R and
h: X x X — R be two functions such that:

1. h(z,y) < f(z,y) for all (z,y) € X x X.

2. The function hy : X — R given by h,(y) = h(z,y) is lower semicontinu-
ous.

3. Given any X\ € R and anyy € X the set {x € X : f(x,y) > A} is L-convez.
Then for any A € R either there exist yo € X such that for all x € X |
h(z,yo) < A, or there exists yo € X such that f(yo,yo) > A
Corollary 4.18 With the hypotheses of Proposition 4.17 we obtain the follow-
ing minimax inequality.

minyex supzex h(z,y) < supzex f(z, ).
Corollary 4.19 Let (X,P) be a compact L-space and let f: X Xx X — R be a
function such that:

1. The function f, : X — R given by f.(y) = f(x,y) is lower semicontinu-
ous.

2. Givenany A € R and anyy € X the set {x € X : f(x,y) > A} is L-convex.
Then the following inequality is true

minye x supzex f(,y) < supsex f(z, ).
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5 An intersection Theorem for M-spaces

In this section, by employing an intersection theorem due to J. Kindler [5],
proved without using the Theorem of Knaster-Kuratowski-Mazurkiewicz, we
show another type of intersection theorem for M-spaces.

Theorem 5.1 For a multifunction F : X — 2Y the following are equivalent.

1. {F(z):z € X} #0.
2. There exist topologies on X and 'Y such that

(a) Y is compact.

(b) Every value F(x),z € X is closed.

(¢) For all A €< X > the subset (\{F(x):x € A} is connected.
(d) For all BCY the subset {F*(y) : y € B} is connected.

Theorem 5.2 Let (X, M, k) be an M-space such that X is admissible, and
such that ky(z,1) = x for allx € X. Let' Y be a compact topological space and
F: X —2Y an upper semicontinuous multifunction such that

1. F(Tiz, 2,y) = F(21) U F(22) for all 1,72 € X.
2. ({F(z):x € A} is connected for all A €< X >.
Then ({F(z):z € X} # 0.

Proof:

Due to Theorem 5.1 it suffices to prove that for all B C Y the subset ({F*(y) :
y € B} is connected, so let B C Y and let us prove that ({F*(y) : y € B} is
connected.

To this end we will show that given x1,z2 € ({F*(y) : y € B} there is a
connected set C' such that {z1,22} C C C {F*(y) : y € B}.

Now z1,z2 € ({{F*(y) : y € B} means that BN F(z1) =0 and BNF(z2) =
0, then BN (F(x1) U F(x2)) = BN F(T(y,2,) = 0. Therefore 1,20 €
Cia oy CIHF*(y) s y € B}. On the other hand Ty, 4,y = {U{k2((z1, 72),1) :
t € AU {U{k2((2,21),t) : t € A1}} is path-connected.

In fact, let x,y € I'(z, 4,3. We will show that there is a path joining x
and y. Assume that @ = ka((x1,22), (t1,t2)) with (£1,t2) € Ay and consider
the path ¢ : [0,1] — X defined by ¢(¢) = ko((z1,x2), (t1 + ¢ — tt1,t2 — tt2)).
By definition of M-space it follows that ¢ is continuous function such that
$(0) = ka((z1,22), (t1,t2)) and ¢(1) = ka((z1,22),(1,0)) = ki(21,1) = 1.
Therefore ¢ is a path joining z and x;.
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T,y

In a similar way we can construct a path joining y and ;. Thus any pair

€ I'(z, 2.} can be joined by a path, which means that, I';;, .,} is path

connected.

Therefore, given two points {z1,x2} € ({F*(y) : y € B} we have found

a connected set C' = T'(,, ,,) containing these two points and contained in
N{F*(y) : y € B}, this means that ({F*(y) : y € B} is connected. <
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