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A note on the lower bounds for the Hausdorff

Dimension of the Geometric Lorenz Attractor

Leonardo Mora∗

Abstract. We present a lower bound for the Hausdorff Dimension
of the Geometric Lorenz Attractor in the monotone homoclinic case.
These lower bound only involves the eigenvalues of the singular point
of the flow and the number of turns around of the homoclinic orbit.

Resumen. Se presenta un ĺımite inferior para la dimensión de Haus-
dorff del Atractor Geométrico de Lorenz en el caso monótono ho-
mocĺınico. Estos ĺımites inferiores involucra sólo los auto–valores
del punto singular del flujo y el número de vueltas alrededor de la
órbita homocĺınica.

1 Introduction

One hard problem in dynamics is getting lower bounds on the Hausdorff di-
mension for attractors in terms of dynamical features of the system. In [LM],
this problem was addressed for the Geometric Model of The Lorenz Attractor Λ
when the system presented a double-homoclinic loop. Let L be the flow used to
describe the Geometric Model of the Lorenz Attractor, one of the main feature
of this flow is that it has a unique singularity O such that the DL(O) has three
eigenvalues λ1, λ2 and λ3 which satisfy λ2 < λ3 < 0 < λ1. When both branches
of the unstable manifold of O meet the stable manifold of O we will be speaking
about the homoclinic case.

In [LM] it was proved the following theorem.

Theorem 1 For the homoclinic case, there exists a constant γ > 0 such that
the Geometric Lorenz attractor of the flow L has

dimH(Λ) ≥ 2 + ln ρ(A)/ ln

(
1

γ

)
> 2,
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where ρ(A) is the spectral radius of the matrix A, a (0, 1)-matrix which de-
scribes the geometric distribution of Λ in the direction given by the eigenvector
associated with λ3.

The constant γ is given in terms of the eigenvalues λi and the number of
turns of the homoclinic loop Γ, see [LM] for details. In this note we want to show
a lower bound for ρ(A) for the matrices A which appear in what we called the
homoclinic monotone case. For us an orbit Γ should be a monotone homoclinic
orbit for the system L if it is a homoclinic orbit associated with the singular
point O such that the sequence obtained intersecting Γ with the Poincar section
when is projected onto the direction given by the eigenvector associated to λ2
turn out a finite monotone sequence. For a precise description see [LM]. Such
a matrices A we will call monotone homoclinic matrices and we will denote the
set of these matrices byMH. It turns out that the lower bound for the spectral
radius is given in terms of Littelwood Pisot numbers. A Pisot number is a real
algebraic integer, all of whose conjugates lie strictly inside the open unit disk.
A Littlewood polynomial is a polynomial all of whose coefficients are +1 or -1.
A Littelwood Pisot number is a Pisot number whose minimal polynomial is a
Littelwood polynomial.

Theorem 2 minA∈MH ρ(A) > (1 +
√

5)/2.

As a corollary we get the following uniform estimative for the Geometric
Lorenz attractor in the monotone homoclinic case.

Theorem 3 In the monotone homoclinic case, the Geometric Lorenz attractor
of the flow L has

dimH(Λ) ≥ 2 + ln
(

(1 +
√

5)/2
)
/ ln

(
1

γ

)
> 2.

2 Monotone homoclinic matrices

Let the shift space Xn ⊂ {0, 1}N given by the restriction

Fn = {
n−times︷ ︸︸ ︷
000...0 ,

n−times︷ ︸︸ ︷
111...1 },

i.e., the set of sequences i = i0i1i2..., such that the above blocks never appear
as a building block of this sequence. This set is invariant under the shift trans-
formation σ given by σ(i) = j, where js = is+1. The following proposition in
proved in [LM].
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Proposition 1 Let X ⊂ {0, 1}N be a shift of finite type, then there exists Φ :
X → Y a conjugation (Φ ◦ σ = σ ◦ Φ and Φ a homeomorphism), where Y is a
subshift of finite type over the alphabet built with the words not in F .

The space shift Xn is one of finite type. With this shift space we associate an
alphabet given by

Bn = {
n−times︷ ︸︸ ︷
000...1 ,

n−times︷ ︸︸ ︷
00...01 ,

n−times︷ ︸︸ ︷
0...011 , . . . ,

n−times︷ ︸︸ ︷
1...110 }.

We arrange this set accordingly to the lexicographical order relation. Its tran-
sition matrix An = (ai j) is given by

ai j =



0 if i ≤ (2n − 2)/2− 1 and j 6= 2 i, 2 i+ 1

1 if i ≤ (2n − 2)/2 and j = 2 i, 2 i+ 1

0 if i = (2n − 2)/2 and j 6= (2n − 2)

1 if i = (2n − 2)/2 and j = (2n − 2)

0 if i = (2n − 2)/2 + 1 and j 6= 1

1 if i = (2n − 2)/2 + 1 and j = 1

As j with s = i− (2n − 2)/2 + 1 if i ≥ (2n − 2)/2 + 2

Example 1 For n = 3, the size of the transition matrix is 6. A3 is given by

A3 =


0 1 1 0 0 0
0 0 0 1 1 0
0 0 0 0 0 1
1 0 0 0 0 0
0 1 1 0 0 0
0 0 0 1 1 0

 .

Example 2 For n = 4, the size of the transition matrix is 14. A4 is given by

A4 =



0 1 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1
1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 1 0



.
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The matrices A that we want to consider are the An above. We want to
get a lower bound for the spectral radius of matrices A. In [LM] it is shown
that matrices A are the corresponding matrices in Theorem 1 for the monotone
homoclinic case.

In order to do that we recall some elementary facts from linear algebra.

Lemma 1 If a polynomial q is a factor of the minimal polynomial of A, then

ρ(A) ≥ max
λ|q(λ)=0

{|λ|}.

Proof 1 It is immediate.

Lemma 2 The polynomial qn(λ) = −1−λ−λ2−· · ·−λn−2+λn−1 is irreducible
in Z[x], the ring of polynomial with integers coefficients.

Proof 2 See [B].

Lemma 3 Let An and qn(λ) be as above. Then q is a factor of the minimal
polynomial of An. Then there is a vector v such that qn(An)v = 0.

Proof 3 The matrix An has order 2n − 2. We denote the quantity 2(n−1) − 1
by l. We observe that q(An) has as first and last row

(

l times︷ ︸︸ ︷
−1, . . . ,−1,

l times︷ ︸︸ ︷
1 . . . , 1) and (

l times︷ ︸︸ ︷
1, . . . , 1,

l times︷ ︸︸ ︷
−1 . . . ,−1),

respectively. This is seen easily for n = 3, and for n ≥ 3 is obtained by observing
that in the case of the first row, the first row of Asn is obtained multiplying the
first row of As−1n by the columns of An. By induction we get the following
pattern:

first row of An : (0, 1, 1, . . .),

first row of A2
n : (0, 0, 0, 1, 1, 1, 1, . . .),

...
...

first row of An−2n : (0, . . . , 0,

2(n−2)︷ ︸︸ ︷
1, . . . , 1,

l︷ ︸︸ ︷
0, . . . , 0),

first row of An−1n :(0, . . . , 0,
︷ ︸︸ ︷
1, . . . , 1).

For the last row, the argument is similar but now the pattern above begin
from the right to left with the signs swapped.

Lemma 4 The minimal polynomial of An has the polynomial qn as a factor.
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Proof 4 Since the characteristic polynomial of An and B = Atn are the same
it is enough to do the proof for matrix B. It is easy to see from the form of
the first and last column of B that the vector w = (1, 0, . . . , 0, 1) belongs to the
kernel of qn(B). This implies that q belongs to the proper ideal

Iw = {p ∈ Z[x] : p(An)w = 0}.

By Lemma 2 we know that qn is the generator of this ideal so it is a factor of
the minimal polynomial of B and so of An.

From Lemma 1 we get

Corollary 1 The spectral radius of An is bounded bellow by the Littelwood Pisot
number whose minimal polynomial is qn.

Proof 5 (Proof of Theorem 2) The polynomial qn(λ) in Lemma 2 are the
minimal polynomial of the Littelwood Pisot numbers which form a strictly in-
creasing sequence {γi}∞2 with γi converging to 2. The least Littelwood Pisot
number is the golden ratio (1+

√
5)/2, see [M, Theorem 1]. So Theorem follows

from the previous Corollary.
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