
            

Non-Archimedian GP-Spaces

N. De Grande-De Kimpe C. Perez-Garcia∗

Abstract

We study non-archimedean locally convex spaces in which every limited
set is compactoid. In particular, we are interested in spaces of continuous
functions.

1 Preliminaries

Throughout this paper K is a non-archimedean valued field that is complete for
the metric induced by the non-trivial valuation | . |. Also, E,F are Hausdorff locally
convex spaces over K.

A subset B of E is called compactoid if for every zero-neighbourhood U in E
there exists a finite set S ⊂ E such that B ⊂ coS + U , where coS is the absolutely
convex hull of S.

Obviously every compactoid set is bounded, and spaces in which all the bounded
subsets are compactoid have been studied in [5] and [6].

An other interesting subclass of the class of the bounded subsets of E consists of
the limited sets (Definition 2.1). It turns out that every compactoid subset is limited
and therefore it is quite natural to study the spaces E in which every limited set is
compactoid. We call them Gelfand-Philips spaces (GP-spaces) following Lindström
and Schlumprecht who studied such spaces in the complex case (see [10]).

The non-archimedean situation is however completely different from the classical
one (Remark 2.5). In fact, in our case there are ”much more” GP-spaces (Theorem
2.8). In particular - and this is the main objective of this paper- we show that most
of the interesting non-archimedean functions spaces are GP-spaces.
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For unexplained terms, notations and background we refer to [15] (locally convex
spaces), [16] (normed spaces) and [4] (tensor products and nuclearity).

2 Limited sets and GP-spaces

Definition 2.1 (Compare [10])

A bounded subset B of E is called limited in E, if every equicontinuous σ(E ′, E)-
null sequence in E ′ converges to zero uniformly on B.

Using the natural identification of the σ(E ′, E)-null sequences in E ′ with the
continuous linear maps from E to c0 ( [2], Lemma 2.2) along with the form of the
compactoid subsets of c0 ( [11], Proposition 2.1), we obtain:

Lemma 2.2 A bounded subset B of E is limited in E if and only if for each contin-
uous linear map T from E to c0, T(B) is compactoid in c0.

From this Lemma we easily derive,

Proposition 2.3 .

i) Every compactoid subset of E is limited in E.

ii) If B is limited in E and T ∈ L(E, F ), then T(B) is limited in F (where L(E,F)
denotes the vector space of all continuous linear maps from E to F).

iii) If B is limited in E and D ⊂ B, then D is limited in E.

iv) Let M be a subspace of E and B ⊂M . If B is limited in M then B is limited
in E . The converse is also true when M is complemented or dense in E (For an
example showing that the converse is not true in general, see Remark 2.9) .

It follows from Lemma 2.2 that if every continuous linear map from E to c0 is
compact, then every bounded subset of E is limited. In particular, if the valuation
on K is dense, we have

Corollary 2.4 If the valuation on K is dense then the unit ball of l∞ is limited
(non-compactoid) in l∞.

Remark 2.5 Corollary 2.4 shows that, for densely valued fields, the behaviour of
limited sets in non-archimedean analysis is in sharp contrast with the one in locally
convex spaces over the real or complex field. For this difference compare e.g. [1],
Proposition, property 6, [8], Theorem 1 and [9], Proposition 1) with our results.

We’ll see in Theorem 2.8.iii) that this difference is even more striking when the
valuation on K is discrete.

Definition 2.6 Compare [10])

A locally convex space E is called a Gelfand-Philips space (GP-space in short) if
every limited set in E is compactoid.

The following is easily seen:
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Proposition 2.7 .
i) A subspace of a GP-space is a GP-space.
ii) The product of a family of GP-spaces is a GP-space.

Theorem 2.8 .
i) Every locally convex space E of countable type is a GP-space.
ii) Every Banach space E with a base is a GP-space.
iii) If the valuation on K is discrete then every locally convex space over K is a

GP-space.

PROOF
i) From Lemma 2.2 it follows that c0 (and hence every normed space of countable

type) is a GP-space. Then use the fact that E can be considered as a subspace of∏
p∈P Ep , where P is a family of seminorms determining the topology of E and for

each p ∈ P, Ep is the normed space E/kerp. Now all the Ep are of countable type.
Then apply Proposition 2.7

ii) Let A ⊂ E be limited. We can assume that A is absolutely convex. It suffices
to prove that every countable subset B of A is compactoid. Let [B] stand for the
closed linear hull of B. Then ([16] Corollary 3.18) [B] is complemented in E and so,
by Proposition 2.3.iv) we have that B is limited in [B]. By i) B is compactoid in
[B] and hence in E.

iii) Again use the fact that E ⊂ ∏
p∈P Ep where now each of the spaces Ep has a

base ([16], Theorem 5.16). Then apply ii) and Proposition 2.7

Remark 2.9 Property iv) of Proposition 2.3 is not true in general. For example,
let the valuation on K be dense, take E = l∞, M = c0 and B the unit ball in c0.
Then, apply 2.4, 2.3.i) and 2.8.i).

3 Spaces of continuous functions

Let X be a Hausdorff zero-dimensional topological space. We consider the fol-
lowing K-valued function spaces:

PC(X): The space of all continuous functions f : X −→ K for which f(X) is
precompact, endowed with the toplogy τu of uniform convergence.

C(X): The space of all continuous functions X −→ K endowed with the compact
open topology τc.

BC(X): The space of all bounded continuous functions X −→ K, endowed with
the uniform topology τu or with the strict topology τβ. This last one is the topology
generated by the seminorms pφ(f) = supx∈X | φ(x).(f(x) |, where φ : X −→ K is a
bounded function vanishing at infinity.

Since PC(X) is a Banach space with a base ( [16] Theorem 3.4) we obtain
inmediately from 2.8.ii),

Theorem 3.1 PC(X) is a GP-space.

We now tackle the GP-property for C(X) and BC(X).
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Lemma 3.2 Let K be a compact subset of X. Then, for every clopen set G in K
there exists a clopen set UG in X such that G = UG ∩ K.

PROOF
Let τX be the original topology on X and τK the trace of τX on K.
Let G ⊂ K be τK-clopen. Clearly, there exists U ⊂ X, τX-open, such that

G = K ∩ U . Also, for each a ∈ G ⊂ U , there exists a τX-clopen set Wa in X with
a ∈ Wa ⊂ U . Then use a compactness argument.

Theorem 3.3 (Compare [12], Theorem 3.3) For a set F ⊂ C(X), the following
properties are equivalent:

i) F is compactoid in C(X).
ii) For every compact set K ⊂ X the set F | K is compactoid in C(K) (where

F | K is the set of the restrictions f | K of f to K with f ∈ F).

PROOF
i) ⇒ ii): This follows directly from the fact that, for each compact set K ⊂ X,

the restriction map
C(X) −→ C(K) : f −→ f | K

is linear and continuous.
ii) ⇒ i): Let U be a zero-neighbourhood in C(X). We can assume that U has

the form

U = {f ∈ C(X) : supx∈X | f(x) |≤ ε}, ε > 0, K compact subset of X.

We have to find f1, . . . , fr ∈ C(X) such that

F ⊂ co{f1, . . . , fr}+ U. (1)

Put UK = {g ∈ C(K) : supx∈K | g(x) |≤ ε}. Then, since F | K is compactoid in
C(K), there exist g1, . . . , gr ∈ C(K) such that

F | K ⊂ co(g1, . . . , gr) + UK. (2)

Fix m ∈ {1, . . . , r} and put V = {e ∈ K :| e |≤ ε}. Since gm(K) is compact
in K, there are e1

m, . . . , es
m ∈ K such that the sets e1

m + V, . . . , es
m + V are

disjoint and
gm(K) ⊂ (e1

m + V ) ∪ . . . ∪ (es
m + V ).

Then {K1
m, . . . ,Ks

m}, where Ki
m = {x ∈ K : gm(x) ∈ ei

m + V } (i = 1, . . . , s),
constitutes a partition of K consisting of τK-clopen subsets of K. Hence, for each
m ∈ {1, . . . , r} the locally constant function g′m : K −→ K defined by g′m(x) = ei

m

for x ∈ Ki
m is continuous and it has the property supx∈K | gm(x) − g′m(x) |≤ ε. So

( 2) can be changed into

F | K ⊂ co(g′1, . . . , g
′
r) + UK.

By lemma 3.2, each of the functions g′m has a locally constant continuous ex-
tension fm : X −→ K (m = 1, . . . , r). Then, f1, . . . , fr satisfy ( 1) and we are
done.
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Corollary 3.4 C(X) is a GP-space.

PROOF
Let F ⊂ C(X) be a limited set. Then (Proposition 2.3.ii)) for each compact set

K ⊂ X, F | K is limited in C(K) and hence compactoid in C(K) (Theorem 3.1).
Now apply Theorem 3.3.

Corollary 3.5 BC(X), τβ is a GP-space .

PROOF
Let F ⊂ BC(X) be a τβ-limited set. Since τβ is finer than τc ( [7], Proposition

2.10) we obtain from Proposition 2.3.ii) that F is τc-limited in BC(X). By Prop-
sition 2.7.i) and Corollary 3.4 we have that F is compactoid in BC(X), τc. Now
apply Corollary 2.9.a) and Proposition 2.11 of [7].

The picture changes completely when we endow BC(X) with the uniform topol-
ogy τu. We have:

Theorem 3.6 If the valuation on K is dense (Compare 2.8.iii)), then BC(X), τu

is a GP-space if and only if X is pseudocompact.

PROOF
If X is pseudocompact one verifies that BC(X) = PC(X). Then apply Theorem

3.1.
If X is not pseudocompact, then BC(X), τu contains a subspace which is linearly

homeomorphic to l∞ (see [14], proof of Corollary 2.7). Then apply Proposition 2.7.i)
and Corollary 2.4.

In [4] (resp. [3]) the nuclearity of the locally convex space C(X), τc (resp.
BC(X), τβ) is characterized. Combining those results with Corollaries 3.4 and
3.5 we obtain:

Theorem 3.7 The following are equivalent:
i) C(X), τc is nuclear.
ii) BC(X), τβ is nuclear.
iii) Every τc-bounded subset of C(X) is limited.
iv) Every τβ-bounded subset of BC(X) is limited.

We now consider tha case where the continuous functions have their values in
a polar complete locally convex Hausdorff space E. We define the function spaces
PC(X, E), τu; C(X, E), τc; BC(X; E), τu and BC(X, E), τβ in the canonical way
and we then have:

Theorem 3.8 .
i) PC(X,E) is a GP-space if and only if E is a GP-space.
ii) C(X,E) is a GP-space if and only if E is a GP-space.
iii) BC(X,E),τβ is a GP-space if and only if E is a GP-space.
iv) If the valuation on K is dense, then BC(X, E), τu is a GP-space if and only

if X is pseudocompact and E is a GP-space.
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PROOF

The proof of ii), iii), iv) is essentially the same as in the K-valued case.

For the proof of i) one needs [13] Theorem 1.3 and the following result.

Theorem 3.9 Let E and F be complete, polar, locally convex Hausdorff spaces.
Then E⊗̂F , the completion of the tensor product for its canonical topology, is a
GP-space if and only if E and F are GP-spaces.

PROOF

The consecutive steps are:

i) If E is quasicomplete, then (E ′c)
′ = E, where E ′c is the dual E ′ of E endowed

with the topology τcp of uniform convergence on the compactoid subsets of E.

ii) If E is quasicomplete. Let H ⊂ L(E ′c, F ) be such that H(U o) is compactoid
in F for all zero-neighbourhoods U in E and H∗(V o) is compactoid in E for all
zero-neighbourhoods V in F . Then, H is compactoid in Lε(E

′
c, F ), where the ε

means that we consider on L(E ′c, F ) the topology of uniform convergence on the
equicontinuous subsets of E ′.

iii) If E and F are GP-spaces, E quasicomplete, then Lε(E
′
c, F ) is also a GP-space.

(As a consequence, E ⊗ F is a GP-space if and only if E and F are GP-spaces).

iv) If E and F are complete, then so is Lε(E
′
c, F ). The Theorem is then a direct

consequence of this result.

The proofs of ii) and iii) are similar to the archimedean case (see [10]) and are
therefore omitted. The proof of iv) is standard. So let us prove i):

Since E is quasicomplete and by [15], Theorem 5.12, it follows that τcp is the
topology of uniform convergence on the sets A ⊂ E which are absolutely convex,
compactoid, edged and σ(E, E ′)-complete. Since the family of these sets form a
special covering of E (see [15], Definition 7.3), the conclusion follows from [15],
Proposition 7.4.

Note that i) is not true in general.

Indeed, take E = coo and let x1, x2 . . . be a non-convergent Cauchy sequence in
E. Then, the map T : E ′−→K : f −→ limnf(xn) is an element of (E ′c)

′. But T
cannot be represented by an element of E.
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