Strong Barrelledness Properties in Lebesgue-Bochner Spaces

J.C. Ferrando, J. Ferrer and M. Lopez-Pellicer

Abstract

If (Ω, Σ, μ) is a finite atomless measure space and X is a normed space, we prove that the space $L_p(\mu, X)$, $1 \le p \le \infty$ is a barrelled space of class \aleph_0 , regardless of the barrelledness of X. That enables us to obtain a localization theorem of certain mappings defined in $L_p(\mu, X)$.

By "space" we mean a "real or complex Hausdorff locally convex space". Given a dual pair (E, F), as usual $\sigma(E, F)$ denotes the weak topology on E. If B is a subset of a linear space E, $\langle B \rangle$ will denote its linear hull.

Let s be a positive integer, then a family $W = \{E_{m_1m_2...m_p}, m_r \in \mathbb{N}, 1 \leq r \leq p \leq s\}$ of subspaces of E is said to be an s-net in E if $\{E_{m_1}, m_1 \in \mathbb{N}\}$ is an increasing covering of E and $\{E_{m_1m_2...m_j}, m_j \in \mathbb{N}\}$ is an increasing covering of $E_{m_1m_2...m_{j-1}}$, for $2 \leq j \leq s$.

A space E is suprabarrelled, or barrelled space of class 1, [17], if given an increasing covering of subspaces of E there is one of them which is dense and barrelled. For a given natural number $s \geq 2$, E is said to be barrelled of class s, [11] and [14], if given an increasing covering of subspaces of E there is one of them which is barrelled of class s-1. If E is barrelled of class s for each $s \in \mathbb{N}$ it is said that E is barrelled of class s0. It is shown in [11] that each non-normable Fréchet space has a dense subspace of class s-1 which is not barrelled of class s for all $s \geq 2$. On the other hand, if s1 denotes any s2-algebra of subsets of a set s3, the space s4 denotes any s5-algebra of subsets of a set s6, the space s6 denotes any s6-algebra of subsets of a set s6. Since each barrelled space of class s7 is Baire-like, [15], it

Received by the editors January 1993

Communicated by J. Schmets

Supported in part by DGICYT grant PB91-0407

AMS Mathematics Subjet Classification 46A08.

Key words and phrases: Measurable vector-valued function space.

Bochner integrable function space. Atomless measure. Barrelled space.

follows easily that a space E is barrelled of class s if and only if given an s-net $W = \{E_{m_1m_2...m_p}, m_r \in \mathbb{N}, 1 \leq r \leq p \leq s\}$ in E there is a subspace $E_{q_1q_2...q_s}$ which is barrelled and dense in E. This means that every $\sigma(E', E_{q_1q_2...q_s})$ -bounded subset of E' is equicontinuous. When E is metrizable, the Amemiya-Kōmura theorem (see for instance [13, 8.2.12]) enables us to avoid all preceding density conditions.

Barrelled spaces of class $s, s \in \mathbb{N}$, allow to extend the Nikodym boundedness theorem and are useful domain classes for the closed graph theorem, a fact which has some incidence in vector measure theory [10].

Throughout this paper (Ω, Σ, μ) will denote, unless another thing is explicitely stated, an atomless finite measure space, X will be a normed space and $L_p(\mu, X)$ will stand for the space of all (equivalence classes of) p-Bochner integrable X-valued functions defined in Ω if $1 \leq p < \infty$, or the space of all (equivalence classes of) X-valued μ -measurable functions on Ω which are essentially bounded if $p = \infty$, both provided with its usual norms. We refer the reader to the monographs [3], [13] and [18].

This paper has been motivated by the three following barrelledness theorems (see [5] for a proof of the first result in a more general context, as well as references [7] and [8] for the measure free case).

Theorem A. (L. Drewnowski, M. Florencio and P.J. Paúl, [4]). Let (Ω, Σ, μ) be a finite measure space and X be a normed space. If the measure μ is atomless, then $L_p(\mu, X)$ with $1 \leq p < \infty$ is barrelled.

Theorem B. (J.C. Díaz, M. Florencio and P.J. Paúl, [1]). Let (Ω, Σ, μ) be a finite measure space and X be a normed space. If the measure μ is atomless, then $L_{\infty}(\mu, X)$ is barrelled.

Theorem C. (J.C. Ferrando and L.M. Sánchez Ruiz, [12]). Suppose that (Ω, Σ, μ) is a finite measure space and X be a normed space. If X is barrelled of class n, then the space $L_{\infty}(\mu, X)$ is barrelled of class n, for each $n \in \mathbb{N}$.

The first two results exhibit that the space $L_p(\mu, X)$ may have better barrelledness properties that X has. Indeed, the argument of the proof of Theorems A and B may be easily adapted to show that each $L_p(\mu, X)$ is ultrabornological. This has been noted in [2] and in [6]. In the last reference it has been shown that if p > 1 and X' has the Radon-Nikodym property with respect to μ , then $L_p(\mu, X)$ is the locally convex hull of all its Banach subspaces with a basis.

Our purpose here is to prove that if μ is atomless, each space $L_p(\mu, X)$, $1 \le p \le \infty$, is barrelled of class n for every $n \in \mathbb{N}$. In the following two theorems we use the well-known fact that if μ is atomless there is a set $A \in \Sigma$ such that $\mu(A) = \mu(\Omega)/2$, and in both cases the basis of the proof is the construction of a certain Banach disk. In Theorem 1 we open up an induction process in order to show that $L_p(\mu, X)$ is suprabarrelled (barrelled of class 1) and then, in Theorem 2, we give a proof of the fact that $L_p(\mu, X)$ being barrelled of class s implies that it is also barrelled of class s + 1. Therefore, our main theorem is the following.

Main theorem. Let (Ω, Σ, μ) be an atomless finite measure space, X a normed space and $1 \le p \le \infty$. Then $L_p(\mu, X)$ is barrelled of class \aleph_0 .

This result enables us to obtain a localization theorem for certain mappings defined on $L_p(\mu, X)$ that have closed graphs.

Theorem 1. $L_p(\mu, X)$ is suprabarrelled.

Proof. Assume that $L_p(\mu, X)$ is not suprabarrelled. Then, can find an increasing sequence of non-barrelled subspaces $\{E_n, n \in \mathbb{N}\}$ which covers $L_p(\mu, X)$.

For each n, there is a barrel T_n in E_n such that it is not a neighborhood of the origin in E_n . Let B_n denote the closure of T_n in $L_p(\mu, X)$, and $H_n = \bigcap \{\langle B_m \rangle, m \geq n\}$.

In what follows a sequence $(\Omega_k, \Sigma_k, \mu_k)$ of atomless measure spaces is to be constructed satisfying the following properties:

- (a) $\Omega_k \in \Sigma_{k-1}$, $\mu(\Omega_k) = \mu(\Omega_{k-1})/2$, $\Sigma_k = \Sigma_{k-1|\Omega_k}$, $\mu_k = \mu_{k-1|\Sigma_k}$.
- (b) The closed unit ball V_k of $L_p(\mu_k, X)$ is not contained in H_n , for all k and n in \mathbb{N} .

The only non-trivial step of the inductive process is the first one, which we reproduce here.

Since μ has no atoms, we split $L_p(\mu, X)$ in two halves, namely $L_p(\lambda, X)$ and $L_p(\lambda', X)$, corresponding to the atomless measure spaces $(A, \mathcal{A}, \lambda)$ and $(\Omega \setminus A, \mathcal{A}', \lambda')$, where $A \in \Sigma$ and $\mu(A) = \mu(\Omega)/2$. If W and W' denote the closed unit balls of $L_p(\lambda, X)$ and $L_p(\lambda', X)$ respectively, we have that either W is not contained in H_n for all n, or W' is not contained in H_n for all n. Otherwise, $L_p(\mu, X) \subset H_{n_0}$, for some $n_0 \in \mathbb{N}$, and thus $L_p(\mu, X) \subset \langle B_{n_0} \rangle$. Hence, making use of Theorems A and B depending on if $1 \leq p < \infty$ or if $p = \infty$, respectively, it is clear that B_{n_0} is a neighborhood of the origin in $L_p(\mu, X)$ and $T_{n_0} = B_{n_0} \cap E_{n_0}$ is a neighborhood of the origin in E_{n_0} , a contradiction. Now, we know how $(\Omega_1, \Sigma_1, \mu_1)$ has to be choosen.

For each $k \in \mathbb{N}$ select an element $g_k \in V_k$, $g_k \notin H_k$. As the sequence (g_k) is contained in the unit ball of $L_p(\mu, X)$ and the support of g_k is a subset of Ω_k , for each $\xi \in \ell_1$ the function $\Sigma_k \xi_k g_k$ takes its values in X outside the zero measure set $\bigcap_k \Omega_k$. Thus $\Sigma_k \xi_k g_k$ is really an element of $L_p(\mu, X)$, and the continuity of the

mapping $(\xi_k) \to \Sigma_k \xi_k g_k$ turns the set $D = \{\Sigma_k \xi_k g_k : (\xi_k) \in B_{\ell_1}\}$, where B_{ℓ_1} is the closed unit ball of ℓ_1 , into a Banach disk contained in $L_p(\mu, X)$.

Since the subspaces H_n cover $L_p(\mu, X)$, there is an index n_0 such that for each $n \geq n_0$ the subspace $H_n \cap \langle D \rangle$ is barrelled and dense in $\langle D \rangle$, this later provided with the Banach disk norm. Hence, since $H_n \subset \langle B_n \rangle$, we have that $\langle B_n \rangle \cap \langle D \rangle$ is barrelled and dense in $\langle D \rangle$, for each $n \geq n_0$. Since B_n is closed in the L_p -topology, we have that $D \subset \langle B_n \rangle$ for $n \geq n_0$ and $D \subset H_{n_0}$. This is a contradiction, since $g_{n_0} \in D \backslash H_{n_0}$. \square

Theorem 2. $L_p(\mu, X)$ is barrelled of class s, for each positive integer s.

Proof. We have just seen that $L_p(\mu, X)$ is barrelled of class 1 (suprabarrelled). Given an integer $s \geq 2$, assume that $L_p(\mu, X)$ is barrelled of class s - 1. We are going to show that it is barrelled of class s.

If this were not the case, we would have an increasing sequence $\{E_{n_1}, n_1 \geq 1\}$ of dense subspaces, each one of them barrelled of class s-2 but not of class s-1, covering $L_p(\mu, X)$.

For each positive integer n_1 , there is an increasing sequence $\{E_{n_1n_2}, n_2 \geq 1\}$ of dense subspaces, each one being barrelled of class s-3 but not of class s-2, which cover E_{n_1} . Repeating this argument an appropriate number of times we have that for each integer (s-1)-tuple $(n_1, n_2, \ldots, n_{s-1})$ of positive integers there is an increasing sequence $\{E_{n_1,n_2,\ldots,n_s}, n_s \geq 1\}$ of dense subspaces, none of them barrelled, covering $E_{n_1,n_2,\ldots,n_{s-1}}$. Thus for each $(n_1,n_2,\ldots,n_s) \in \mathbb{N}^s$ we can find a barrel T_{n_1,n_2,\ldots,n_s} in E_{n_1,n_2,\ldots,n_s} which is not a neighborhood of the origin in E_{n_1,n_2,\ldots,n_s} . Let B_{n_1,n_2,\ldots,n_s} denote the closure of T_{n_1,n_2,\ldots,n_s} in $L_p(\mu,X)$ and $Z_{n_1,n_2,\ldots,n_s} = \langle B_{n_1,n_2,\ldots,n_s} \rangle$. Going backwards, we define the following subspaces

$$H_{n_1,n_2,\ldots,n_{s-1},n_s} = \bigcap \{Z_{n_1,n_2,\ldots,n_{s-1},m}, m \ge n_s\}$$

and, for $j = s - 1, s - 2, \dots, 1$,

$$Z_{n_1,n_2,...,n_j} = \cup \{H_{n_1,n_2,...,n_j,m}, m \ge 1\}$$

and

$$H_{n_1,n_2,\dots,n_j} = \cap \{Z_{n_1,n_2,\dots,n_{j-1},m}, m \ge 1\}.$$

It is plain that for $j=1,2,\ldots,s, E_{n_1,n_2,\ldots,n_j}\subset H_{n_1,n_2,\ldots,n_j}$ and the increasing sequence $\{H_{n_1,n_2,\ldots,n_j}, n_j \geq 1\}$ covers $E_{n_1,n_2,\ldots,n_{j-1}}$, taking $L_p(\mu,X)$ as E_{n_0} .

As before, our main point is to achieve a sequence $(\Omega_k, \Sigma_k, \mu_k)$ of atomless measure spaces with the same requirements as in the previous theorem, the last one still being that V_k is not contained in H_n , for all $k, n \in \mathbb{N}$. Again, we only give the first step of the induction process. With identical notation to the one used in Theorem 1, we want to show that either W is not contained in H_n for all $n \in \mathbb{N}$, or W' is not contained in H_n for all n. Otherwise, there is n_1 such that $L_p(\mu, X) \subset H_{n_1} \subset Z_{n_1} = \bigcup \{H_{n_1,m}, m \geq 1\}$. The induction hypothesis then guarantees the existence of n_2 for which $H_{n_1n_2}$ is dense and barrelled of class s-2, and because $H_{n_1n_2} \subset Z_{n_1n_2}$, the same can be said of $Z_{n_1n_2} = \bigcup \{H_{n_1,n_2,m}, m \geq 1\}$. By continuing this selection argument we can assert there is an s-tuple (n_1, n_2, \ldots, n_s) of positive integers for which H_{n_1,n_2,\ldots,n_s} is dense and barrelled, hence Z_{n_1,n_2,\ldots,n_s} is also dense and barrelled, and B_{n_1,n_2,\ldots,n_s} is a neighborhood of the origin in Z_{n_1,n_2,\ldots,n_s} . But then $T_{n_1,n_2,\ldots,n_s} = B_{n_1,n_2,\ldots,n_s} \cap E_{n_1,n_2,\ldots,n_s}$ would be a neighborhood of the origin in E_{n_1,n_2,\ldots,n_s} , which is a contradiction.

For each $k \in \mathbb{N}$ we choose an element $g_k \in V_k \backslash H_k$. Using again our old notation, the set $D = \{\Sigma_k \xi_k g_k : (\xi_k) \in B_{\ell_1}\}$ is a Banach disk contained in $L_p(\mu, X)$.

There is a j_0 such that, for each $n_1 \geq j_0$, $H_{n_1} \cap \langle D \rangle$ is barrelled of class s-1 and dense in $\langle D \rangle$, with its associated norm. Since $\{H_{n_1,n_2}, n_2 \geq 1\}$ is an increasing covering of H_{n_1} , there is j_{n_1} such that, for each $n_2 \geq j_{n_1}$, $H_{n_1,n_2} \cap \langle D \rangle$ is barrelled of class s-2 and dense in $\langle D \rangle$. An appropriate number of repetitions tells us that, whenever $n_1 \geq j_0$, $n_2 \geq j_{n_1}$, $n_3 \geq j_{n_1n_2}$, ..., $n_{s-1} \geq j_{n_1n_2...n_{s-2}}$ there is $j_{n_1n_2...n_{s-2}n_{s-1}}$ such that, for $n_s \geq j_{n_1n_2...n_{s-2}n_{s-1}}$, $H_{n_1n_2...n_{s-2}n_{s-1}n_s} \cap \langle D \rangle$ is barrelled and dense in $\langle D \rangle$. Then, $Z_{n_1n_2...n_{s-2}n_{s-1}n_s} \cap \langle D \rangle$ is also barrelled and dense in $\langle D \rangle$ for $n_1 \geq j_0$,

 $n_2 \geq j_{n_1}, n_3 \geq j_{n_1 n_2}, ..., n_s \geq j_{n_1 n_2 ... n_{s-2} n_{s-1}}, \text{ and } D \subset \langle B_{n_1 n_2 ... n_{s-1} n_s} \rangle = Z_{n_1 n_2 ... n_{s-1} n_s}.$ Hence we have that D is contained in the intersection

$$\cap \{Z_{n_1 n_2 \dots n_s} : n_1 \ge j_0, n_2 \ge j_{n_1}, \dots, n_s \ge j_{n_1 n_2 \dots n_{s-1}}\}$$

which is a subset of H_{j_0} . This contradicts the selection of g_{j_0} . \square

In [16] Valdivia has given the following definition: A space E is said to be a Γ_r -space if every quasicomplete subspace of $E^*(\sigma(E^*, E))$ intersecting $E'(\sigma(E', E))$ in a dense subspace contains E'.

In the next theorem, if $W = \{E_{n_1,n_2,\dots,n_k}, n_r \in \mathbb{N}, 1 \leq r \leq k \leq s\}$ is an s-net in E, we will denote by W_s the family $\{E_{m_1,m_2,\dots,m_s}, m_r \in \mathbb{N}, 1 \leq r \leq s\}$.

Theorem 3. Let f be a mapping with closed graph from $L_p(\mu, X)$ in a space E. Let W be an s-net in E and suppose that every $L \in W_s$ has a finer topology \mathfrak{I}_L "finer than the induced by E" such that $L(\mathfrak{I}_L)$ is a Γ_r -space. Then there is some $L \in W_s$ such that f is a continuous mapping from $L_p(\mu, X)$ in $L(\mathfrak{I}_L)$.

Proof. We have that $f^{-1}(W)$ is an s-net in $L_p(\mu, X)$ and therefore, by Theorem 2, there is some $L \in W_s$ such that $f^{-1}(L)$ is barrelled and dense in $L_p(\mu, X)$. Then by [16], Theorems 1 and 14, we have that $f/f^{-1}(L)$ has a continuous extension h from $L_p(\mu, X)$ into $L(\mathfrak{I}_L)$ and, since f has closed graph, we have that f = h. \square

ACKNOWLEDGMENT. The authors are very grateful to the referee for his valuable comments and suggestions.

References

- [1] Díaz, J.C., Florencio, M. and Paúl, P.J.: A uniform boundedness theorem for $L^{\infty}(\mu, E)$. Arch. Math. (Basel), **60**, 73-78 (1993).
- [2] Díaz, S., Fernández, A., Florencio, M. and Paúl, P.: A wide class of ultrabornological spaces of measurable functions. Preprint.
- [3] Diestel, J. and Uhl, J.J. Jr.: Vector Measures. Math. Surveys No. 15. Amer. Math. Soc., Providence, Rhode Island, 1977.
- [4] Drewnowski, L., Florencio, M. and Paúl, P.J.: The space of Pettis integrable functions is barrelled. Proc. Amer. Math. Soc. **114**, 687-694 (1992).
- [5] Drewnowski, L., Florencio, M. and Paúl, P.J.: Barrelled function spaces. (Progress in Functional Analysis. K.D. Bierstedt, J. Bonet, J. Horváth and M. Maestre Eds). Elsevier Science Publishers / North Holland. Amsterdam, 191-199 (1992).
- [6] Ferrando, J.C.: Ultrabornological Bochner integrable function spaces. Bull. Austral. Math. Soc., 47, 119-126 (1993).
- [7] Ferrando, J.C.: On the ultrabornological property of the vector valued bounded function space. Math. Scand., to appear.

- [8] Ferrando, J.C.: On the barrelledness of the vector-valued bounded function space. J. Math. Anal. Appl., to appear.
- [9] Ferrando, J.C. and López-Pellicer, M.: Strong barrelledness properties in $\ell_0^{\infty}(X, \mathcal{A})$ and bounded finite additive measures. Math. Ann. **287**, 727-736 (1990).
- [10] Ferrando, J.C. and López-Pellicer, M.: A note on a theorem of J. Diestel and B. Faires. Proc. Amer. Math. Soc. **115** No. 4, 1077-1081 (1992).
- [11] Ferrando, J.C. and López-Pellicer, M.: Barrelled spaces of class n and of class \aleph_0 . Disert. Sem. Mat. Fund. UNED 4, 1-17 (1992).
- [12] Ferrando, J.C. and Sánchez Ruiz, L.M.: Strong barrelledness properties in $L_{\infty}(\mu, X)$. Math. Scand., to appear.
- [13] Pérez-Carreras P. and Bonet, J.: Barrelled Locally Convex Spaces. Mathematics Studies 131. Amsterdam: North-Holland 1987.
- [14] Rodríguez-Salinas, B: Sobre la clase del espacio tonelado $l_0^{\infty}(\Sigma)$. Rev. Real Acad. Cienc. Exact. Fís. Natur. Madrid **74**, 827-829 (1980).
- [15] Saxon, S.A.: Nuclear and product spaces, Baire-like spaces and the strongest locally convex topology. Math. Ann. **197**, 87-106 (1972).
- [16] Valdivia, M.: Sobre el teorema de la gráfica cerrada. Collect. Math. **XXII**, 52-72 (1971).
- [17] Valdivia, M.: On suprabarrelled spaces. Lect. Notes in Math., Vol. **843**. Functional Anal., Holomorphy and Approximation Theory. Rio de Janeiro 1978, 572-580. Springer, Berlin Heidelberg New York, 1981.
- [18] Valdivia, M.: Topics in Locally Convex Spaces. Mathematics Studies 67. Amsterdam: North Holland 1982.

Juan Carlos Ferrando and Manuel López-Pellicer: Departamento de Matemática Aplicada. Universidad Politécnica. Apartado 22012. E-46071 Valencia. SPAIN.

Jesús Ferrer:

Departamento de Análisis Matemático. Facultad de Matemáticas. Dr. Moliner 50. E-46100 Burjasot (Valencia). SPAIN.