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Abstract

Let C be a q-clan, q = 2e, and let GQ(C) be the associated generalized
quadrangle. Using a result from S. E. Payne and L. A. Rogers [14], we prove
that there are exactly q+1 flocks of the quadratic cone associated with GQ(C),
and that two of these flocks are projectively equivalent if and only if a special
collineation of GQ(C) exists.

Moreover, the collineation group of the generalized quadrangle associated
with any generalized Subiaco q-clan is investigated, and it is completely de-
termined for a special class of these q-clans.

1 Introduction and review

For q any power of 2, W. Cherowitzo, T. Penttila, I. Pinneri and G. Royle [2]
have given a most interesting construction of new infinite families of q-clans. These

provide many new examples of each of the following: generalized quadrangles (GQ)
with order (q2, q) having subquadrangles of order (q, q); ovals in PG(2, q); flocks
of a quadratic cone in PG(3, q); line spreads of PG(3, q); translation planes with
dimension 2 over their kernel. In [2] the name Subiaco was given to all these objects.

Apart from the Lunelli–Sce oval in PG(2, 16) (cf. [7]), the Subiaco ovals are the first
nontranslation ovals ever found with q a square, and the Lunelli–Sce oval is obtained
as a special case (cf. [2]). The Subiaco translation planes are especially interesting
in that they have no Baer involutions and their elation groups have order 2q.

∗The third author was a CNR visiting research professor at the Second University of Rome and
at the University of Naples while this article was written.
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Throughout this article q = 2e and F = GF (q). As this work is both a continua-
tion and a generalization of [12], we repeat only those definitions and results needed

to clarify the exact context in which we work. And since all our constructions are
based on fields of characteristic 2, the definitions, notations, etc., that we use are
for the most part valid as given only in this case.

Recall that a q-clan C is a set C=

{
At =

(
xt yt
0 zt

)
: t ∈ F

}
of 2×2 matrices

over F such that As−At is anisotropic whenever s, t ∈ F with s 6= t. Given a q-clan
C, there is a standard (cf. [6], [9]) construction of a generalized quadrangle GQ(C),
associated with C. This construction is reviewed below.

We begin with a Fundamental Theorem for GQ(C), so-called because of its ob-

vious analogy with the Fundamental Theorem of projective geometry. As a conse-
quence of the Fundamental Theorem we are able to assign to each line through the
special point (∞) of GQ(C), a projective equivalence class of flocks of a quadratic
cone in PG(3, q) in such a way that two such lines belong to the same orbit of the

collineation group of GQ(C) if and only if these two lines are assigned the same class
of flocks. This general theory is then applied to a study of the full collineation group
of the Subiaco GQ of order (q2, q) and, when possible, to determine the orbits of
this group on the subquadrangles of order q and their associated ovals. In [12] this

project was completed for a special family with q = 2e, e odd. Here we succeed for a
special case with q = 22r, r odd, 5 does not divide r. And we provide a great deal of
information in the general case. The results obtained so far suggest that probably

there is always just one orbit on the lines through the point (∞), and hence only
one class of flocks associated with GQ(C). For the case studied here with q = 22r, r
odd, at least when 5 does not divide r we can say that there are exactly two orbits
on the associated ovals, one of size (q + 1)/5 and one of size 4(q + 1)/5.

This article is organized as follows. After concluding section 1 with a review of
the construction of GQ(C) and its associated subquadrangles, ovals and translation
planes, we devote section 2 to the Fundamental Theorem and a description of the
collineation group of GQ(C). This section gives for characteristic 2 an analogue of

“derivation” of flocks given in [1] for q odd. Section 3 gives the Subiaco q-clans as a
specialization of a formally more general version of the type whose study was begun
in [12]. In sections 4, 5 and 6 the collineation group of GQ(C) for this generalized
Subiaco C is studied in great detail. In section 7 a special Subiaco construction with

q = 4r, r odd, is studied. Finally, in section 8 we prove that the Subiaco translation
planes have no Baer involutions and have elation groups of order 2q.

Let C= {At =

(
xt yt
0 zt

)
: t ∈ F} be a q-clan. Let K be the cone K =

{(x0, x1, x2, x3) ∈ PG(3, q) : x2
1 = x0x2} with vertex P = (0, 0, 0, 1). Then the flock

associated with C (cf. [18]) is the partition of K\{P} by the set of q disjoint conics

that are the intersections of K with the planes in

F(C) = {πt = [xt, yt, zt, 1]
T : t ∈ F} (1)

For convenience, we also refer to F(C) as the “flock of C”. To construct the gen-
eralized quadrangle GQ(C) associated with C we use the group G = F 2 × F × F 2
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with binary operation (cf. [9], [13])

(α, c, β) · (α′, c′, β ′) = (α + α′, c + c′ + β ◦ α′, β + β ′). (2)

where

α ◦ β =
√

αPβT (3)

for P =

(
0 1
1 0

)
and α, β ∈ F 2. Note that α ◦ β = 0 if and only if {α, β} is

F –dependent.
Let F̃ = F ∪ {∞}. The associated 4–gonal family Q = Q(C) = {A(t) : t ∈ F̃}

is given by

A(∞) = {(0, 0, β) ∈ G : β ∈ F 2} (4)

A(t) = {(α,
√

αAtαT ,ytα) : α ∈ F 2} , t ∈ F.

The center of G is Z = {(0, c, 0) ∈ G : c ∈ F}. And for t ∈ F̃ , the tangent space of
C at A(t) is A∗(t) = A(t)Z. Then the standard construction of GQ(C) is as follows:

Points of GQ(C) are of three types:
(i) Elements g = (α, c, β) of G.
(ii) Cosets A∗(t)g, t ∈ F̃ , g ∈ G.

(iii) The symbol (∞).
Lines of GQ(C) are of two types:

(a) Cosets A(t)g, t ∈ F̃ , g ∈ G.
(b) Symbols [A(t)], t ∈ F̃ .

Incidence is defined by: the point (∞) is on the q + 1 lines [A(t)] of type (b).
The point A∗(t)g is on the line [A(t)] and on the q lines of type (a) contained in
A∗(t)g. The point g of type (i) is on the q + 1 lines A∗(t)g of type (a) that contain
it. There are no other incidences.

The resulting point–line geometry GQ(C) is a GQ of order (q2, q) precisely be-
cause C is a q-clan (cf. [6], [8], [9]). Since all the GQ considered in this work are
nonclassical and derived from a q-clan, the point (∞) is the unique point fixed by
all collineations (cf. [14], [16]). Moreover, right multiplication by elements of G in-

duces a group of collineations of GQ(C) acting regularly on those points of GQ(C)
not collinear with (∞), and fixing each line through (∞). Hence to determine the
full collineation group G of GQ(C) it suffices to determine the subgroup G0 fixing

(0, 0, 0) (and of course fixing (∞)).
Recall that for 0 6= α ∈ F 2, Gα = {aα, c, bα) : a, b, c ∈ F} is a subgroup of

G associated with a subquadrangle GQ(α) of order q (cf. [12]), and hence with an
oval Oα. If α = (a1, a2) 6= (0, 0), then Oα is given by

Oα =
{
(1,
√

a2
1xt + a1a2yt + a2

2zt, yt) : t ∈ F
}
∪ {(0, 0, 1)} (5)

as a set of points of PG(2, q).
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Clearly each element of G0 must permute the Gα (and hence the GQ(α), Oα,
respectively) among themselves, and no multiplication by a nonidentity element of

G can do so. Hence G0 is the full group of collineations of GQ(C) that act on the
set of Gα. Note: Gα = Gβ iff {α, β} is F–dependent.

We wish to thank Tim Penttila for helpful conversations that led to the elimi-
nation of a significant error in section 7.

2 The Fundamental Theorem for GQ(C)

The theorem referred to by the title of this section consists of proposition 2.1 and 2.2
taken together. Moreover, the proof of IV.1 of [14], with only the most trivial changes

in notation, just enough to reflect the change in point of view, yields a proof of the
correct version for all prime powers q. However, we state it here only for q = 2e since
we want to use the specific group binary operation given by equation (2). Moreover,

without loss of generality, we may assume that each q-clan C= {At =

(
xt yt
0 zt

)
:

t ∈ F} has been normalized and indexed so that yt = t
1
2 and A0 =

(
0 0
0 0

)
.

If C′ = {A′t =

(
x′t y′t
0 z′t

)
: t ∈ F} is a second (normalized!) q-clan, the same

group G is used to construct both GQ(C) and GQ(C′). So points of type (i) and
(iii) are denoted by (α, c, β) ∈ G and (∞) for both GQ. But lines of GQ(C′) are
denoted [A′(t)] and A′(t) in the obvious manner, and points of type (ii) of GQ(C′)
are denoted by (A′)∗(t)g.

Proposition 2.1 Let θ : GQ(C) → GQ(C′) be an isomorphism with θ : (∞) 7→
(∞), θ : [A(∞)] 7→ [A′(∞)], θ : (0, 0, 0) 7→ (0, 0, 0). Then the following exist:

(i) σ ∈ Aut(F )

(ii) D =

(
a c
b d

)
∈ GL(2, q)

(iii) 0 6= λ ∈ F
(iv) a permutation π : F → F : t 7→ t̄ satisfying A′t̄ ≡ λDTAσ

t D + A′0̄, for all
t ∈ F 1.

Then θ : GQ(C) → GQ(C′) is induced by an automorphism (also denoted by θ)
of G of the following form:

θ = θ(σ, D, λ, π) : (α, c, β) 7→ (6)

(λ−1ασD−T , λ−
1
2 cσ + λ−1

√
ασD−TA

′
0̄D
−1(ασ)T , βσPDP + 0̄

1
2 λ−1ασD−T ).

Conversely, given σ, D, λ, π as described above, the map θ = θ(σ, D, λ, π) of equa-
tion (6) induces an isomorphism from GQ(C) to GQ(C′) mapping (∞), [A(∞)],

(0, 0, 0), respectively, to (∞), [A′(∞)], (0, 0, 0).

1Recall that
(
x y
z w

)
≡
(
r s
t u

)
means x = r, w = u and y + z = s+ t
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Proof. Similar to that of IV.1 of [14]. 2

Proposition 2.2 If C, C′ are two normalized q-clans, then the flocks F(C) and
F(C′) are projectively equivalent if and only if there is an isomorphism θ : GQ(C)→
GQ(C′) mapping (∞), [A(∞)], (0, 0, 0), respectively, to (∞), [A′(∞)], (0, 0, 0). And
any such isomorphism must be of the form given in equation (6).

Proof. According to [5], the general semilinear transformation of PG(3, q) (defined
as a map on planes!) which leaves invariant the cone K : x2

1 = x0x2 is given (for
planes not containing the vertex P ) by

Tθ :


x
y
z

1

 7→


x′

y′

z′

1

 =


λa2 λab λb2 x0

0 λ(ad + bc) 0 y0

λc2 λcd λd2 z0

0 0 0 1




xσ

yσ

zσ

1

 , (7)

for arbitrary D =

(
a c

b d

)
∈ GL(2, q), σ ∈ Aut(F ), 0 6= λ ∈ F , x0, y0, z0 ∈ F .

Suppose C and C′ are two (normalized!) q-clans with associated flocks F(C)

and F(C′) respectively. Then equation (7) may be interpreted to say that F(C) and
F(C′) are projectively equivalent iff there are σ, D, λ, π as described above satisfying

[
x′t̄ y′t̄
0 z′t̄

]
≡ λDT

[
xσt yσt
0 zσt

]
D +

[
x′0̄ y′0̄
0 z′0̄

]
∀t ∈ F. (8)

2

Note that a consequence of equation (8) is that y′t̄ = λ det(D)(yt)
σ + y′0̄, so that

for C, C′ both normalized,

t̄ = [λ det(D)]2tσ + 0̄. (9)

Remark. The parameters used in equations (6) and (9) are carried over from [12],
where they were used because the condition (iv) of proposition 2.1 or equation (8)
appears in [5]. But we might prefer to change parameters by putting λ = µ−1, D =

µB−T , ∆ = det(B). Then the important revised relationships become:

(i) A′t̄ ≡ µB−1Aσ
t B
−T + A′0̄ (10)

(ii) (α, c, β)θ = (ασB, µ
1
2 cσ +

√
ασBA′0̄B

T (ασ)T , (µ∆−1βσ + 0̄
1
2 ασ)B)

(iii) t̄ = (µ∆−1)2tσ + 0̄.

The description in equation (10) seems a little simpler to use than the traditional
form in equation (6), so we use it in section 3 to give a description of all collineations
of GQ(C). Unfortunately all the previously published work on collineations of GQ(C)

(for both even and odd q), as well as the myriad computations we have done for
C of generalized Subiaco type, have been based on the form given in equation (6).
Hence in section 4 we revert to it.
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In fact any automorphism θ of G replaces the 4–gonal family Q = Q(C) with
some 4–gonal familyQθ. But we are especially interested in certain types of automor-

phisms of G that produce new 4–gonal families that can easily be seen to have asso-

ciated q-clans. For the first type we revert to the general notation At =

(
xt yt
0 zt

)
.

Shift by s, s ∈ F . Let

τs : (α, c, β) 7→ (α, c +
√

αAsαT , β + ysα). (11)

The important thing is that shifting by s produces a projectively equivalent flock.
The new q-clan C′ has A′t̄ = A′t+s = At + As, i.e, A′x = Ax+s + As. And if C is

normalized so that yt = t
1
2 , then also C′ has y′x = x

1
2 . Here we write C′ =Cτs and

A′t = Aτs
t . In equation (10) put t̄ = t + s, µ = 1, B = I, A′0̄ = As to see that F(C)

and F(Cτs) are projectively equivalent.

For the next two types we really do want to assume that C is normalized.

Scale by a, 0 6= a ∈ F . Let

σa : (α, c, β) 7→ (α, a
1
4 c, a

1
2 c). (12)

Here σa leaves A(∞) and A(0) invariant, and for t ∈ F maps

(α,
√

αAtαT ,t
1
2 α) 7→ (α,

√
α(a

1
2 At)αT , (at)

1
2 α),

so that At is replaced with A′t̄ =

(
a

1
2 xt (at)

1
2

0 a
1
2 zt

)
= A′at. In equation (10) put

µ = a
1
2 , B = I, σ = id, A′0̄ =

(
0 0
0 0

)
, t̄ = at to see that F(C) and F(Cσa) are

projectively equivalent.

The flip. Let

ϕ : (α, c, β) 7→ (β, c + α ◦ β, α). (13)

Here ϕ : A(∞)↔ A(0), and for 0 6= t ∈ F ,

ϕ : (α,
√

αAtαT , t
1
2 α) 7→ (γ,

√
γ(t−1At)γT , (t−1)

1
2 γ),

where γ = t
1
2 α. So At =

(
xt t

1
2

0 zt

)
is replaced with A′t̄ =

(
t−1xt (t−1)

1
2

0 t−1zt

)
,

where t̄ = t−1. And the new q-clan C′ =Cϕ is clearly normalized.

Flipping is the first type of automorphism of G we have considered that moves
A(∞). It is clear that flipping replaces a q-clan C with a new q-clan Cϕ, but it is
not clear in general whether or not F(C) and F(Cϕ) are equivalent. By III.3 of [11]
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they are equivalent for the previously known q-clans (with q = 2e), and we show
later that they are equivalent for all the Subiaco q-clans (cf. section 3).

Shifting, flipping and scaling provide recoordinatizations of a given generalized
quadrangle GQ(C). As permutations of the indices of the lines through (∞), these
recoordinatizations have the following description as linear fractional maps on F̃ :

τs : t 7→ t + s; ϕ : t 7→ t−1; σa : t 7→ at. This is for all t ∈ F̃ with the usual
conventions for arithmetics with ∞. Shifting, flipping (or not), shifting and scaling
provide all of these Möbius transformations. Hence we recognize PGL(2, q) acting
on F̃ ' PG(1, q). And PGL(2, q) is sharply triply transitive on PG(1, q). Suppose

θ1 and θ2 are two different sequences of shifts, flips and scales that effect the same
permutation on F̃ and replaceQ(C) withQ(Cθ1) and Q(Cθ2), respectively. It would
be nice to know that F(Cθ1) and F(Cθ2 ) are projectively equivalent. That this is
so is an immediate corollary of the next theorem.

Theorem 2.3 Let θ : G 7→ G be an automorphism of G obtained as a finite sequence
of shifts, flips and scales. Moreover, suppose C and C′ are two (normalized) q−clans
for which θ maps the 4−gonal family Q(C) to the 4−gonal family Q(C′) in such

a way that it effects the identity permutation on F̃ . Then θ must have the form
θ : (α, c, β) 7→ (aα, ac, aβ) for some non zero a in F , and hence Q(C) = Q(C′).

Proof. It is clear that any finite sequence θ of shifts, flips and scales leads to an

automorphism of G of the form

θ : (α, c, β) 7→ (aα + bβ, u
1
2 c +

√
αAαT + αDβT + βCβT , vα + wβ).

Suppose also that θ fixes each element of F̃ . Then θ : GQ(C) 7→ GQ(C′); [A(∞)] 7→
[A′(∞)], (∞) 7→ (∞) and (0, 0, 0) 7→ (0, 0, 0), so must have the form prescribed
by the Fundamental Theorem, as given for example by equation (10). Then in

equation (10) σ = id, 0̄ = 0, so clearly b = 0 = v, A ≡ D ≡ C ≡
(

0 0
0 0

)
,

and B = aI . So θ must have the form θ : (α, c, β) 7→ (aα, u
1
2 c, a−1uβ). Then

θ : (α,
√

αAtαT , t
1
2 α) 7→ (aα, u

1
2

√
αAtαT , a−1ut

1
2 α). Put γ = aα to see that this

image, which must be in A′(t̄) = A′(t), is (γ,
√

a−2uγAtγT , a−2ut
1
2 γ). And this is in

A′(t) if and only if u = a2. 2

Put N = {θa : G→ G : (α, c, β) 7→ (aα, ac, aβ) | 0 6= a ∈ F}. We define N to be
the kernel of GQ(C).

Note. In the notation of equations (6) and (7) there is a homomorphism T :
θ 7→ Tθ from the group H of collineations of GQ(C) fixing (∞), [A(∞)] and (0, 0, 0)
to the subgroup of PΓL(4, q) leaving invariant the cone K and the flock F(C). The
kernel of T is also N . Moreover, for nonlinear flocks, i.e., nonclassical q−clans C,

there is a result related to the preceding theorem which shows that the kernel of
GQ(C) plays a role similar to one played by the kernel of a translation GQ (cf.8.5
of [15]).
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Theorem 2.4 The kernel N for a nonlinear normalized q−clan C, is the group of
collineations of GQ(C) fixing (∞) and (0, 0, 0) linewise.

Proof. Clearly each element of N fixes (∞) and (0, 0, 0) linewise. So let θ be any
collineation of GQ(C) that does so. Then for the Fundamental Theorem given in
equation (10), σ = id, 0̄ = 0, u∆−1 = 1, and At ≡ uB−1AtB

−T for all t ∈ F .

Suppose B−1 =

(
a b
c d

)
. Then ∆−1 = ad + bc and this last relation is equivalent

to I − u

 a2 ab b2

0 ∆−1 0
c2 cd d2



 xt

yt
zt

 =

 0

0
0

 .

We claim that this implies that

I = u

 a2 ab b2

0 ∆−1 0
c2 cd d2

 .

For if not, then there are elements u, v, w ∈ F , not all zero, for which the point

(u, v, w, 0) ∈ PG(3, q) lies in each plane πt = [xt, yt, zt, 1]
T of the flock F(C). In

this case by a result of J. A. Thas [18], the flock F(C) must be linear. So we have
B−1 = aI , with u∆−1 = 1, u = a−2 and θ : (α, c, β) 7→ (a−1α, a−1c, a−1β). So θ ∈ N .

2

We are now able to assign to each line through (∞) in GQ(C) its own class of

projectively equivalent flocks. For each s ∈ F , let is = τs ◦ ϕ, a shift by s followed
by a flip. And put i∞ = id. Start with a normalized q-clan C. For each s ∈ F̃ ,
applying is to G yields a normalized q-clan Cis . We assign to the line [A(s)] the

class of flocks projectively equivalent to F(Cis). One obvious goal of this section is
the following basic result.

Theorem 2.5 Let C be a normalized q-clan. Then there is an automorphism of
GQ(C) mapping [A(s1)] to [A(s2)], s1, s2 ∈ F̃ , if and only if the flocks F(Cis1 ) and
F(Cis2 ) are projectively equivalent.

Proof. If θ is an automorphism of GQ(C) mapping [A(s1)] to [A(s2)], without
loss of generality we may assume θ fixes (0, 0, 0) (we recall that we only discuss
collineations fixing (∞) ). Then apply proposition 2.2 to i−1

s1
◦ θ ◦ is2 : GQ(Cis1 )→

GQ(Cis2 ) to see that F(Cis1 ) and F(Cis2 ) are projectively equivalent. Conversely,

if F(Cis1 ) and F(Cis2 ) are projectively equivalent, there is an isomorphism θ̄ :
GQ(Cis1 )→ GQ(Cis2 ) of the type described in proposition 2.2. Then

θ = is1 ◦ θ̄ ◦ i−1
s2

: GQ(Cis1 )→ GQ(Cis2 ) : [A(s1)] 7→ [A(s2)].

2
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Throughout the remainder of this section C denotes a fixed, normalized q-clan.
To fix the notation, G0 denotes the group of all collineations of GQ(C) fixing the

point (0, 0, 0) (and of course the point (∞)). H is the subgroup of G0 fixing [A(∞)],
andM the subgroup of H fixing [A(0)]. From proposition 2.1 and equation (10) we
have

H = {θ̄ = θ̄(µ, B, σ, π) : At̄ ≡ µB−1Aσ
t B
−T + A0̄, t ∈ F}, (14)

where

θ̄(µ, B, σ, π) : (α, c, β) 7→ (ασB, µ
1
2 cσ +

√
ασBA0̄BT (ασ)T , (µ∆−1βσ + 0̄

1
2 ασ)B)

and π : t 7→ t̄ = (µ∆−1)2tσ + 0̄, ∆ = det(B).

So it is easy to write down M.

M = {θ̄ = θ̄(µ, B, σ, π) : At̄ ≡ µB−1Aσ
t B
−T , t ∈ F}, (15)

where

θ̄(µ, B, σ, π) : (α, c, β) 7→ (ασB, µ
1
2 cσ, µ∆−1βσB)

and π : t 7→ t̄ = (µ∆−1)2tσ.

Fix s ∈ F . We now determine the most general collineation θ of GQ(C) mapping

[A(∞)] to [A(s)]. Given such a θ, then

θ̄ = i−1
∞ ◦ θ ◦ is = θ̄(µ, B, σ, π) : GQ(C) 7→ GQ(Cis)

for some θ̄(µ, B, σ, π) of the type given in equation (10).

So θ = θ̄ ◦ i−1
s . Here

(i) is : (α, c, β) 7→ (β + s
1
2 α, c +

√
αAsαT + α ◦ β, α) (16)

(ii) i−1
s : (α, c, β) 7→ (β, c +

√
βAsβT + α ◦ β, α + s

1
2 β).

We have

θ̄ = θ̄(µ, B, σ, π) : (α, c, β) 7→ (17)

(ασB, µ
1
2 cσ +

√
ασBAis

0̄ BT (ασ)T , (µ∆−1βσ + 0̄
1
2 ασ)B).

where the following hold:

(i) Ais
t ≡ µB−1Aσ

t B
−T + Ais

0̄ , ∀t ∈ F.

(ii) π : t 7→ t̄ = (µ∆−1)2tσ + 0̄, ∀t ∈ F.

(iii) Ais
x = x[Ax−1+s + As], for 0 6= x ∈ F.

Write gs(α) =
√

αAsαT , so gs(cα) = cgs(α) and gs(α+β) = gs(α)+ gs(β)+ s
1
4 α ◦β.

Then using equations (16) and (17) and massaging a bit, we obtain
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Theorem 2.6 There is a collineation θ : GQ(C) → GQ(C) : [A(∞)] 7→ [A(s)],
for a given s ∈ F , precisely when there is a θ̄ = θ̄(µ, B, σ, π) : GQ(C) 7→ GQ(Cis)

as in equation (17), in which case θ = θ̄ ◦ i−1
s acts on G as

θ = (α, c, β) 7→ (α′, c′, β ′) (18)

where

α′ = 0̄
1
2 ασB + µ∆−1βσB,

c′ = µ
1
2 cσ +

√
ασBAis

0̄ BT (ασ)T + (µ∆−1gs(β
σB) + 0̄

1
2 gs(α

σB) +

+(1 + s0̄)
1
4 (µ/∆)

1
2 (ασ ◦ βσ),

β ′ = µ∆−1s
1
2 βσB + (1 + s0̄)

1
2 ασB.

3 Generalized Subiaco form

Each Subiaco q-clan C consists of matrices At that have the following special form.

At =

(
F (t) t

1
2

0 G(t)

)
(t ∈ F ), (19)

where

F (t) = f(t)/k(t) + Ht
1
2 , 0 6= H ∈ F,

G(t) = g(t)/k(t) + Kt
1
2 , 0 6= K ∈ F,

f(t) =
4∑
i=1

ait
i; g(t) =

4∑
i=1

bit
i;

k(t) = t4 + c2t
2 + c0.

Note that C is normalized. And t2 +
√

c2t +
√

c0 must be irreducible over F so that
k(t) 6= 0 for all t ∈ F . Hence tr(c0/c

2
2) = 1, where tr(x) denotes the absolute trace

of x for x ∈ F .

Using this notation we can now give in our notation the Subiaco GQ presented
in [2]:

Construction I. Let q = 2e with e odd (so t2 + t + 1 6= 0 for all t ∈ F ) and

e ≥ 5 (to obtain new GQ). Put f(t) = t2 + t, g(t) = t4 + t3, k(t) = t4 + t2 + 1,
H = K = 1.

Construction II. Let e = 2r ≥ 6, r odd. Then F contains an element w
for which ω2 + ω + 1 = 0. Put f(t) = t4 + ωt3 + ωt2, g(t) = ω2t3 + ω2t2 + ωt,
k(t) = t4 + ω2t2 + 1, H = ω2, K = 1.
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Construction III. Let e ≥ 4 and choose δ ∈ F for which both δ2 + δ + 1 6= 0
and tr(1/δ) = 1 (so that t2 + δt + 1 6= 0 for all t ∈ F ). Then put

f(t) = δ2t4 + (δ2 + δ3 + δ4)t3 + (δ2 + δ3 + δ4)t2 + δ2t , H = 1

g(t) = δ3

δ2+δ+1
t4 + (δ2 + δ3 + δ4)t3 + ( δ2+δ4

δ2+δ+1
)t,

K = (δ
1
2 + δ

3
2 + δ

5
2 )−1

k(t) = t4 + δ2t2 + 1.

(20)

A q-clan C will be called a GS q-clan (for Generalized Subiaco) provided it has the
form given in equation (19), and a Subiaco q-clan if it has the form given by any of

constructions I, II and III. According to the authors of [2], constructions I and II may
be transformed into special cases of construction III. Nevertheless we have found it
quite helpful to consider all three, especially as we have yet to complete our study
of construction III. In [12] construction I was investigated and G0 was determined

to be transitive on the lines through (∞) as well as on the subquadrangles GQ(α).
Here we determine G0 for construction II. As a first step we establish the claim made
in section 2 that flipping preserves flocks for Subiaco GQ.

Theorem 3.1 For each of the Subiaco GQ, the flip produces a new flock projectively
equivalent to the original. The corresponding involutory collineation of GQ(C) that
interchanges [A(t)] and [A(t−1)] for t ∈ F̃ , for each of the constructions I, II and

III, resp., is as follows :

(i) (α, c, β) 7→ (βP, c + α ◦ β, αP )

(ii) (α, c, β) 7→ (β

(
0 ω
ω2 0

)
, c + α ◦ β, α

(
0 ω
ω2 0

)
)

(iii) (α, c, β) 7→ (β

(
1 0
1 1

)
, c + α ◦ β, α

(
1 0
1 1

)
)

Proof. For construction I an easy computation shows that t−1F (t) = G(t−1) and

t−1G(t) = F (t−1). Hence A′t̄ = A′t−1 =

(
G(t−1) (t−1)

1
2

0 F (t−1)

)
. In equation (10) put

u = 1, B = P, σ = id, A′0̄ =

(
0 0
0 0

)
to see that the flocks are equivalent.

In construction II we have t−1F (t) = ω2G(t−1) and t−1G(t) = ωF (t−1). Use(
0 ω

ω2 0

)(
ω2G(t−1) (t−1)

1
2

0 ωF (t−1)

)(
0 ω2

ω 0

)
=

(
F (t−1) (t−1)

1
2

0 G(t−1)

)
to complete

the proof.

In construction III, (just for this proof), we adopt the notation F (t) = f(t) +
t

1
2 , G(t) = g(t) + Kt

1
2 . Then for 0 6= t ∈ F it is a straightforward exercise to show

that t−1f(t) = g(t−1) + t−1g(t).

Then t−1F (t) = t−1(f(t)+t
1
2 ) = g(t−1)+t−1g(t)+(t−1)

1
2 = f(t−1)+t−

1
2 = F (t−1).

Similarly, t−1G(t) = t−1(g(t)+Kt
1
2 ) = f(t−1)+ g(t−1)+ g(t−1)+Kt

1
2 = F (t−1)t

1
2 +



312 L. Bader, G. Lunardon, S. E. Payne

G(t−1). Now put u = 1, B =

(
1 0
1 1

)
, σ = id, A′0̄ =

(
0 0
0 0

)
to complete the

proof. 2

4 Collineations of GS q-clans.

Throughout sections 4, 5 and 6 we assume that C is a GS q-clan with the notation

of equation (19). Then by proposition 2.1 with C = C′,

H = {θ(σ, D, λ, π) : Atπ = λDTAσ
t D + A0π , t ∈ F}. (21)

With D =

(
a c
b d

)
, 3.4 of [12] says that θ(σ, D, λ, π) is a collineation of GQ(C) iff

the following hold for all t ∈ F

(i) (a2Hσ + ab + b2Kσ)/H = ad + bc = (c2Hσ + cd + d2Kσ)/K. (22)

(ii) π : t 7→ t̄ = λ2(ad + bc)2tσ + 0̄.

(iii) f(t̄)k(t)σk(0̄) + λ[a2f(t)σ + b2g(t)σ]k(t̄)k(0̄) = k(t̄)k(t)σf(0̄).

(iv) g(t̄)k(t)σk(0̄) + λ[c2f(t)σ + d2g(t)σ]k(t̄)k(0̄) = k(t̄)k(t)σg(0̄).

By substituting the expression for t̄ of equation (22) (ii) into equation (22) (iii)
and (iv) we obtain two polynominal equations in tσ having degree at most 8. Since
these equations must hold for all t ∈ F , by assuming that e ≥ 5 (the necessity of
equation (22) (i) as proved in [12] required e ≥ 5) we may compute the coefficients

on (tσ)i, 0 ≤ i ≤ 8, and know that equation (22) holds iff each such coefficient is
zero.

Certain expressions occur repeatedly in the coefficients of (tσ)i, so we adopt the

following notation:

(i) ∆ = det(D) = ad + bc 6= 0. (23)

(ii) T = λ2∆2 6= 0.

(iii) Ai = a2aσi + b2bσi , 1 ≤ i ≤ 4.

(iv) Bi = c2aσi + d2bσi , 1 ≤ i ≤ 4.

Then we compute the coefficients on (tσ)i in equation (23) (iii) and (iv), respectively.

Coefficients on (tσ)8:

(i) T 4(f(0̄) + (a4 + λA4)k(0̄)) (24)

(ii) T 4(g(0̄) + (b4 + λB4)k(0̄)).

Coefficients on (tσ)7:

(i) T 3k(0̄)(a3 + λA3T ) (25)

(ii) T 3k(0̄)(b3 + λB3T ).
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Coefficients on (tσ)6:

(i) T 2{k(0̄)[T 2(a4c
σ
2 + λA2) + a2 + 0̄a3 + λc2A4] + f(0̄)(T 2cσ2 + c2)} (26)

(ii) T 2{k(0̄)[T 2(b4c
σ
2 + λB2) + b2 + 0̄b3 + λc2B4] + g(0̄)(T 2cσ2 + c2)}.

Coefficients on (tσ)5:

(i) Tk(0̄)[λA1T
3 + a3c

σ
2T

2 + λc2A3T + a1 + a30̄
2] (27)

(ii) Tk(0̄)[λB1T
3 + b3c

σ
2T 2 + λc2B3T + b1 + b30̄

2].

Coefficients on (tσ)4:

(i) k(0̄)[a4c
σ
0T

4 + (λc2A2 + cσ2(a2 + a30̄))T
2 + λA4k(0̄)] + (28)

+f(0̄)(T 4cσ0 + cσ+1
2 T 2)

(ii) k(0̄)[b4c
σ
0T

4 + (λc2B2 + cσ2 (b2 + b30̄))T
2 + λB4k(0̄)] +

+g(0̄)(T 4cσ0 + cσ+1
2 T 2).

Coefficients on (tσ)3:

(i) k(0̄)[a3c
σ
0T 3 + λA1c2T

2 + cσ2 (a1 + a30̄
2)T + λA3k(0̄)] (29)

(ii) k(0̄)[b3c
σ
0T 3 + λB1c2T

2 + cσ2 (b1 + b30̄
2)T + λA3k(0̄)].

Coefficients on (tσ)2:

(i) k(0̄)[cσ0(a2 + a30̄)T
2 + λA2k(0̄)] + f(0̄)c2c

σ
0T

2 (30)

(ii) k(0̄)[cσ0(b2 + b30̄)T 2 + λB2k(0̄)] + g(0̄)c2c
σ
0T 2.

Coefficients on (tσ):

(i) k(0̄)[cσ0(a1 + a30̄
2)T 2 + λA1k(0̄)] (31)

(ii) k(0̄)[cσ0(b1 + b30̄
2)T 2 + λB1k(0̄)].

Finally, the constant term is identically zero.

First we concentrate on the coefficients of the odd powers of tσ. From equa-
tion (25) we have

(i) a3 = λA3T (32)

(ii) b3 = λB3T

(iii) a1b3 + b1a3 = λT (a1B3 + b1A3).

In equation (27) cancel Tk(0̄), compute b3(i) + a3(ii), and use equation (32) to
obtain

a1b3 + b1a3 = λT 3(a3B1 + b3A1). (33)

In equation (29) cancel k(0̄), compute b3(i)+a3(ii), and use equations (32) and (33)

to obtain

(a1b3 + a3b1)(c
σ
2T 2 + c2) = 0. (34)
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In equation (31) cancel k(0̄) and compute b3(i) + a3(ii), multiply by T 3 and use
equation (33) to obtain

(a1b3 + a3b1)(c
σ
0T

4 + k(0̄)) = 0. (35)

From equations (34) and (35) it is clear that it would be convenient to know that
∆13 = a1b3+a3b1 6= 0. Moreover, this condition does hold for all the Subiaco q-clans.

So we pause to consider this condition a little more closely.

5 Ordinary GS q-clans

Let C be a GS q-clan and continue to use notation adopted in section 4. For
1 ≤ i < j ≤ 4, put ∆ij = aibj + ajbi. We say C is nonsingular provided ∆13 6= 0,
and singular otherwise. Recall that any finite sequence of shifts, flips and scales that
leaves invariant A(t) for three values of t ∈ F̃ , must leave them all invariant and

must give back the original q-clan. This means that two sequences of shifts, flips
and scales that give the same Möbius transformation on F̃ yield the same q-clan.
Hence in order to see what happens to the ∆ij under such a sequence, it suffices to
consider the shift τs, the shift–flip is, and the scale σa.

Theorem 5.1 If C is nonsingular, then shifting and scaling each return a nonsin-
gular q-clan.

Proof. The scale σa fixes A(∞) and A(0), and replaces the matrix

At =

(
F (t) t1/2

0 G(t)

)
with A′at =

(
a

1
2 F (t) (at)1/2

0 a
1
2 G(t)

)
,

where

a
1
2 F (t) = F ′(at) =

[
4∑
1

aia
9
2
−i(at)i

]
/
[
(at)4 + a2c2(at)2 + a4c0

]
+ H(at)

1
2 .

So with F ′(x) = f ′(x)/k′(x) + Hx
1
2 , f ′(x) =

∑4
1 a′ix

i, k′(x) = x4 + a2c2x
2 + a4c0

= x4 + c′2x
2 + c′0, and similarly for g′(x) =

∑4
1 b′ix

i, we have a′i = aia
9
2
−i, b′i =

bia
9
2
−i, c′2 = a2c2, c

′
0 = a4c0, and

∆′ij = ∆σa
ij = a′ib

′
j + a′jb

′
i = a9−i−j∆ij. (36)

Then ∆′ij 6= 0 iff ∆ij 6= 0, as a 6= 0.
Now compute the q-clan Cτs obtained from the shift τs, which replaces At with

A′t+s = At + As. Substitute t = x + s in F (t) + F (s) and G(t) + G(s), respectively,
to obtain

(i) (f(t)/k(t) + Ht
1
2 ) + (f(s)/k(s) + Hs

1
2 ) = f τs(x)/kτs(x) + Hx

1
2 (37)

(ii) (g(t)/k(t) + Kt
1
2 ) + (g(s)/k(s) + Ks

1
2 ) = gτs(x)/kτs(x) + Kx

1
2

(iii) kτs(x) = x4 + cτs2 x2 + cτs0 with cτs2 = c2 , cτs0 = k(s),
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where

f τs(x) = x4(a4 + f(s)/k(s)) + a3x
3 + x2(a2 + a3s + c2f(s)/k(s)) + x(a1 + a3s

2)

gτs(x) = x4(b4 + g(s)/k(s)) + b3x
3 + x2(b2 + b3s + c2g(s)/k(s)) + x(b1 + b3s

2)

kτs(x) = x4 + c2x
2 + k(s).

So with a now obvious choice of notation we have

(i) ∆τs
13 = ∆13, (38)

(ii) ∆τs
24 = ∆24 + s∆34 +

f(s)

k(s)
(b2 + b3s + c2b4) +

g(s)

k(s)
(a2 + a3s + c2a4),

which with a little effort can be rewritten as

(iii) k(s)∆τs
24 = c0∆24 + s(∆12 + c0∆34 + c2∆14) + s2∆13.

2

Next, compute the q-clan Cis obtained from the shift–flip is, which replaces At

with Ais
(t+s)−1 = (t + s)−1(At + As). After making the substitution t = x−1 + s and

clearing terms, we find

(i) ais4 =
a1 + a3s

2

k(s)
, bis4 =

b1 + b3s
2

k(s)

(ii) ais3 =
k(s)(a2 + a3s) + c2f(s)

k(s)2
, bis3 =

k(s)(b2 + b3s) + c2g(s)

k(s)2

(iii) ais2 =
a3

k(s)
, bis2 =

b3

k(s)

(iv) ais1 =
k(s)a4 + f(s)

k(s)2
, bis1 =

k(s)b4 + g(s)

k(s)2

(v) cis0 = k(s)−1, cis2 = c2k(s)−1

(vi) k(s)3∆is
13 = c0∆24 + s(∆12 + c0∆34 + c2∆14) + s2∆13

(vii) ∆is
24 = ∆13

k(s)2 .

(39)

From equation (39) (vi) it is not clear whether the shift–flip, applied to a nonsingular
q-clan, returns a nonsingular q-clan. Define two q-clans to be equivalent provided
their associated flocks are equivalent. So when we assigned to a line [A(s)] the class

of flocks equivalent to F(Cis), we could also have assigned to it the class of q-clans
equivalent to Cis . Since each Möbius transformation on F̃ is obtained by a unique
sequence either of the form a shift, a flip, a shift and scale, or just a shift and scale,
and since shifting and scaling return equivalent q-clans, and return nonsingular q-

clans if the original is nonsingular, the following definition makes sense. A line
[A(s)], s ∈ F̃ , is nonsingular iff the q-clan Cis is nonsingular, in which case all
equivalent q-clans are nonsingular. And we say that C is ordinary provided all lines
through (∞) are nonsingular.

It will turn out that all Subiaco q-clans are ordinary.
For the present, however, it suffices to assume that the GS q-clan C has both

[A(∞)] and [A(0)] nonsingular. From now on we make the following
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Basic assumption: ∆13 6= 0 6= ∆24.
It is clear from equation (39)(vi) with s = 0 that this is equivalent to assuming

that both [A(∞)] and [A(0)] are nonsingular.
Then from equations (34) and (35) we conclude

(i) cσ2T 2 = c2 (or T = c
1−σ

2
2 ) (40)

(ii) k(0̄) = cσ0T 4 = c2
2 (c0/c

2
2)
σ.

Equation (40) (ii) is equivalent to

(0̄2/c2)
2 + (0̄2/c2) = (c0/c

2
2)
σ + (c0/c

2
2), (41)

from which it follows that either

(c0/c
2
2)
σ = c0/c

2
2, and 0̄ = 0 or 0̄ =

√
c2, (42)

or

(c0/c
2
2)
σ 6= c0/c

2
2, and 0̄2/c2 = (

c0

c2
2

)20

+ (
c0

c2
2

)21

+ ... + (
c0

c2
2

)σ/2 + ε (43)

where ε = 0 or ε = 1.
From equations (25), (27) and (40) we have

(i) λT 3A1 = a1 + a30̄
2 (44)

(ii) λT 3B1 = b1 + b30̄
2

(iii) λTA3 = a3

(iv) λTB3 = b3.

Write these out in detail and put A =

(
T 2aσ1 T 2bσ1
aσ3 bσ3

)
. Then equations (25) and

(27) (with equation (40) valid) are equivalent to

λTA

(
a2 c2

b2 d2

)
=

(
a1 + a30̄

2 b1 + b30̄
2

a3 b3

)
, (45)

which is solved by

λ

(
a2 c2

b2 d2

)
=

1

T 3∆σ
13

(
bσ3(a1 + a30̄

2) + T 2bσ1a3 bσ3(b1 + b30̄
2) + T 2bσ1b3

aσ3(a1 + a30̄
2) + T 2aσ1a3 aσ3(b1 + b30̄

2) + T 2aσ1b3

)
. (46)

And it is now straightforward to verify that equations (40) and (44) imply all of

equations (25), (27), (29) and (31). But we must still deal with equations (24), (26),
(28) and (30). Equation (24) says

(i) f(0̄) = (a4 + λA4)k(0̄) (47)

(ii) g(0̄) = (b4 + λB4)k(0̄).
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And equation (26), in the presence of equation (40), is equivalent to

(i) λT 2A2 = a2 + a30̄ + c2(a4 + λA4) (48)

(ii) λT 2B2 = b2 + b30̄ + c2(b4 + λB4).

And it is now straightforward to check that equations (28) and (30) follow from

equations (40), (47) and (48). Now write out equations (47) and (48) to see that
they are equivalent to

λ

(
T 2aσ2 + c2a

σ
4 T 2bσ2 + c2b

σ
4

cσ0T 4aσ4 cσ0T 4bσ4

)(
a2 c2

b2 d2

)
(49)

=

(
a2 + a30̄ + c2a4 b2 + b30̄ + c2b4

a4c
σ
0T

4 + f(0̄) b4c
σ
0T

4 + g(0̄)

)
.

This can be solved to yield a form that we give as part of the following theorem,
whose proof is thereby complete.

Theorem 5.2 Let C be a GS q-clan (q = 2e, e ≥ 5) given by equation (19) with

∆13 6= 0 6= ∆24. Let σ ∈ Aut(F ), D =

(
a c

b d

)
∈ GL(2, q), 0 6= λ ∈ F . Let

π : F → F be a permutation satisfying π : t 7→ t̄ = T tσ + 0̄, where T = λ2(ad + bc)2.

Then the map

θ = θ(σ, D, λ, π) : G→ G : (α, c, β) 7→ (λ−1ασD−T , (50)

λ−
1
2 cσ + λ−1

√
ασD−TA0̄D−1(ασ)T , βσPDP + 0̄

1
2 λ−1ασD−T )

induces a collineation of GQ(C) fixing (0, 0, 0), fixing [A(∞)], and mapping [A(t)]
to [A(t̄)], for t ∈ F , iff the following conditions are satisfied:

(i) (a2Hσ + ab + b2Kσ)/H = ad + bc = (c2Hσ + cd + d2Kσ)/K.
(ii) cσ2T 2 = c2

(iii) k(0̄) = cσ0T
4

(iv) λ

(
a2 c2

b2 d2

)
1

T 3∆σ
13

(
bσ3(a1 + a30̄

2) + T 2bσ1a3 bσ3(b1 + b30̄
2) + T 2bσ1b3

aσ3(a1 + a30̄
2) + T 2aσ1a3 aσ3(b1 + b30̄

2) + T 2aσ1b3

)

= 1
T 6cσ0 ∆σ

24

(
X Y
W Z

)
where

X = f(0̄)(T 2bσ2 + c2b
σ
4 ) + cσ0T

4(T 2a4b
σ
2 + (a2 + a30̄)bσ4),

Y = g(0̄)(T 2bσ2 + c2b
σ
4) + cσ0T 4(T 2b4b

σ
2 + (b2 + b30̄)b

σ
4),

W = f(0̄)(T 2aσ2 + c2a
σ
4) + cσ0T 4(T 2a4a

σ
2 + (a2 + a30̄)a

σ
4),

Z = g(0̄)(T 2aσ2 + c2a
σ
4) + cσ0T

4(T 2b4a
σ
2 + (b2 + b30̄)aσ4).

Conversely, each collineation of GQ(C) fixing (0, 0, 0) and [A(∞)] (and neces-
sarily (∞)) must be of this form.



318 L. Bader, G. Lunardon, S. E. Payne

It is convenient to have at hand computational information about H.

Let θi = θ(σi, Di, λi, πi), i = 1, 2, be two elements of H (as described in equa-
tion (50). It is an easy exercise to compute the following, where ∆i = det(Di), so
tπi = λ2

i∆
2
i t
σi + 0πi , i = 1, 2.

(i) θ1 ◦ θ2 = θ(σ1 ◦ σ2, D
σ2
1 D2, λ

σ2
1 λ2, π3), where (51)

tπ3 = (λσ2
1 λ2)

2(∆σ2
1 ∆2)

2tσ1◦σ2 + λ2
2∆

2
20
π1◦σ2 + 0π2

(ii) θ(σ, D, λ, π)−1 = θ(σ−1, D−σ
−1

, λ−σ
−1

, π̄), where

tπ̄ = (λ∆)−2σ−1

(tσ
−1

+ 0πσ
−1

).

In previously published work (cf. [11], [12], [17]) the notation θ(σ, D, λ) was used
to denote a collineation of the type given in equation (50). The permutation π was

clearly always understood to be present. But this notation that ignores π, is really
satisfactory only when π is uniquely determined by σ, D, λ. The only examples
we have studied where this is not the case have t 7→ At an additive map, i.e., the
point-line dual GQ is a TGQ (cf. [10]). In this case there are collineations fixing

[A(∞)] and mapping [A(t)] 7→ [A(t + x)], for each fixed x ∈ F and for all t ∈ F̃ .
And it turned out that in the work cited above it was always sufficient to determine
these θ(σ, D, λ) with 0π = 0, i.e., π was always uniquely determined by σ, D and λ.
We now show that for nonsingular q-clans it is always the case that π is uniquely

determined by σ, D and λ whenever θ(σ, D, λ, π) exists.

Theorem 5.3 For the nonsingular GS q-clan C,if θ(σ, D, λ, π) ∈ H, then π is
uniquely determined by σ, D and λ.

Proof. Suppose there are two collineations θ(σ, D, λ, πi), i = 1, 2, with π1 6= π2.
Since tπi = λ2∆2tσ + 0πi , clearly 0π1 6= 0π2 . Then

θ(σ, D, λ, π1) ◦ θ(σ, D, λ, π2)
−1 = θ(σ, D, λ, π1) ◦ θ(σ−1, D−σ

−1

, λ−σ
−1

, π̄2)

= θ(id, I, 1, π3),

where tπ̄2 = λ−2σ−1
∆−2σ−1

(tσ
−1

+0π2σ−1
), so that tπ3 = t+λ−2σ−1

∆−2σ−1
(0π1+0π2)σ

−1
.

Hence it suffices to show that if θ(id, I, 1, π) is a collineation, then π = id. Here we
have π : t 7→ t̄ = t + 0π = t + 0̄, and At̄ = At+0̄ ≡ At + A0̄.

Since all these matrices are upper triangular, this means that At+0̄ = At + A0̄,

which must hold for all t ∈ F . Writing out what this means for the (1,1) entries
and clearing denominators, we obtain f(t + 0̄)k(t)k(0̄) = k(t + 0̄)f(t)k(0̄) + k(t +
0̄)k(t)f(0̄). In this last equation the coefficient on t8 is f(0̄), forcing f(0̄) = 0,
this implies f(t + 0̄)k(t) = k(t + 0̄)f(t), i.e. [f(t) + f(0̄) + a3(t

20̄ + t0̄2)]k(t) =

[k(t) + k(0̄) + c0]f(t), or a3(t
20̄ + t0̄2)k(t) = (k(0̄) + c0)f(t). Here the coefficient on

t6 is a30̄. So if 0̄ 6= 0, then a3 = 0. Similarly, if 0̄ 6= 0 then b3 = 0, this contradicts
the assumption that ∆13 6= 0. Hence 0̄ = 0 and π = id. 2
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6 Collineations of special interest

Still assuming that C is a GS q-clan with ∆13 6= 0 6= ∆24, suppose that θ(σ, D, λ) is
a collineation defined by equation (50), so the conditions of theorem 5.2 are satisfied
for some uniquely determined 0̄.

Lemma 6.1 Suppose that 0̄ = 0. From equation (41) we have (c0/c
2
2)
σ = c2/c

2
2, so

cσ−1
0 = c

σ−1
2

2 . Then c0 = k(0) = k(0̄) = cσ0T 4, so c
1−σ

4
0 = T = c

1−σ
2

2 (by equation (50)

(ii)), and f(0̄) = g(0̄) = 0. In this case the remaining conditions of theorem 5.2
become

(i) (a2Hσ + ab + b2Kσ)/H = ad + bc = (c2Hσ + cd + d2Kσ)/K.

(ii) λ

(
a2 c2

b2 d2

)
=

c
σ−1

2
2

∆σ
13

(
cσ−1

2 a1b
σ
3 + a3b

σ
1 cσ−1

2 b1b
σ
3 + b3b

σ
1

cσ−1
2 a1a

σ
3 + a3a

σ
1 cσ−1

2 b1a
σ
3 + b3a

σ
1

)

= 1
∆σ

24

(
cσ−1

2 a2b
σ
4 + a4b

σ
2 cσ−1

2 b2b
σ
4 + b4b

σ
2

cσ−1
2 a2a

σ
4 + a4a

σ
2 cσ−1

2 b2a
σ
4 + b4a

σ
2

)
.

Lemma 6.2 Suppose σ fixes all coefficients of f, g, k, as well as H and K. Then
the following hold.

(i) T = 1

(ii) If 0̄ = 0, then all the conditions of theorem 5.2 are satisfied iff b = c =
0, a = d, and λa2 = 1.

(iii) If 0̄ 6= 0, then 0̄ =
√

c2, a = d, and a = bK + cH.

Proof. From condition (ii) in theorem 5.2 we have T = 1. Condition (iv) in that

theorem becomes

λ

(
a2 c2

b2 d2

)
=


1 +

a3b30̄
2

∆13

b2
30̄

2

∆13
a2

30̄
2

∆13

1 +
a3b30̄

2

∆13

 (52)

=


1 +

f(0̄)(b2 + c2b4) + c0
√

c2a3b4

c0∆24

g(0̄)(b2 + c2b4) + c0
√

c2b3b4

c0∆24
f(0̄)(a2 + c2a4) + c0

√
c2a3a4

c0∆24
1 +

g(0̄)(a2 + c2a4) + c0
√

c2b3a4

c0∆24

 .

Hence in any case a = d. Then condition (i) in theorem 5.2 is equivalent to
b(a + bK + cH) = 0 = c(a + bK + cH). If both b = 0 and c = 0, from the first
equality of equation (52), then 0̄ = 0, since ∆13 6= 0. If not, then a = bK + cH.

And from equation (42) 0̄ = 0 or 0̄ =
√

c2. 2

Theorem 6.3 If θ = θ(σ, D, λ) is a nonidentity involution, then λ = T = 1, 0̄ =√
c2 and σ = id. So lemma 6.2 applies and θ = θ(id, D, 1) is uniquely determined,

if it exists.
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Proof. Suppose that θ = θ(σ, D, λ, π) is a nonidentity involution. Since id =
θ2 = θ(σ2, DσD, λσ+1), σ2 = id. So either σ = id or σ : x 7→ x̄ is conjugation

with respect to a subfield L of index 2 in F . First suppose σ 6= id and put L =
GF(2r) ⊆ F = GF(22r). Put x = (0π)2/c2 and y = c0/c

2
2. By equation (43) we have

x = y20
+ y21

+ · · · + y2r+1
+ ε, where ε = 0 or ε = 1. So x + x̄ = (y20

+ y21
+

· · · + y2r−1
) + (y2r + y2r+1

+ · · · + y22r−1
) = tr(y), since ε + ε̄ = 0. By hypothesis

tr(y) = 1, so x + x̄ = 1. From θ2 = id we also have DσD = I , so ∆σ+1 = 1 and
λσ+1 = 1. Hence T σ+1 = 1. Then tπ = T tσ+0π and t = (tπ)π = T (T tσ+0π)σ+0π =
T σ+1tσ

2
+ T (0π)σ + 0π, so that 0π = T (0π)σ, or T = (0π)1−σ. By equation (40)(i),

(0π)1−σ = c
1−σ

2
2 , or ((0π)2/c2)

1−σ = 1, i.e., x = xσ = x̄, contradicting x + x̄ = 1.
Hence σ = id, implying ∆ = 1 = λ and also lemma 6.2 applies. If 0π = 0, by 6.2

(ii) D = I , forcing θ = id. Hence 0π =
√

c2. 2

The preceding two results have interesting consequences for the Subiaco GQ.

Theorem 6.4 Let C be a Subiaco q-clan as given by construction I, II or III. Let
L be the smallest subfield of F containing c2, and put r = [F : L] so r is odd. Then
the subgroup M of G0 fixing [A(∞)] and [A(0)] is given by

M = {θ(σ, aI, a−2) : (α, c, β) 7→ (aασ, acσ, aβσ) : (53)

0 6= a ∈ F, σ ∈ Gal(F/L)}.

So the order ofM is (q− 1)r. In construction I, q = 2r; in construction II, q = 4r;

in construction III the most we can say is that q = 2ir with r odd.

Proof. Let θ ∈ G0 fix [A(∞)] and [A(0)], so θ is of the type covered by lemma 6.1.
Since c0 = 1 for all Subiaco GQ, 0̄ = 0 implies T = 1 and cσ2 = c2. But for all Subiaco
q-clans, cσ2 = c2 implies that σ fixes all coefficients of f, g, k as well as H and K, so

that lemma 6.2 also applies. And lemma 6.2 (ii) explicitly gives the form of θ ∈M.
Since tr(c0/c

2
2) = tr(1/c2) = 1, r = [F : L] must be odd. 2

At this point we have nothing to add to the results presented in [12] for con-
struction I, however, using the results of this section they are now rather easy to
obtain.

7 Construction II

Here q = 2e, e = 2r, r odd, r ≥ 3. And w ∈ F satisfies w2 + w + 1 = 0.


a4 = 1 b4 = 0 c0 = 1 ∆13 = ∆24 = w2

a3 = w b3 = w2 c2 = w2 ∆12 = ∆34 = w2

a2 = w b2 = w2 H = w2 ∆14 = w
a1 = 0 b1 = w K = 1

(54)

Lemma 7.1 The group H consists of four cosets ofM, whereM is given by equa-
tion (53). So |H| = 4(q − 1)r = 2e(q − 1).
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Proof. Suppose θ(σ, D, λ) ∈ H. There are two cases.

Case 1. wσ = w, i.e., σ ∈ Gal(F/L). Here T = c
1−σ

2
2 = 1, k(0̄) = cσ0T

4 = 1. So
0̄ = 0 or 0̄ =

√
c2 = w, by lemma 6.2. The case 0̄ = 0 was finished by theorem 6.4,

giving exactly the groupM. And if 0̄ = w, then f(0) = 1, g(0) = w, and we can use

equation (52) to finish off Case 1. The unique nonidentity involution fixing [A(∞)]

is I∞ = θ(id,

(
0 w2

w 0

)
, 1), and the coset MI∞ consists of all collineations in H

mapping [A(0)] to [A(w)].

Case 2. wσ = w2, so tσ = t2 for all t ∈ L. Here T = c
1−σ

2
2 = w2, ∆σ

13 = w, ∆σ
24 = w.

Then k(0̄) = cσ0T
4 = w2 implies 0̄ = w2+wε for ε ∈ {0, 1}. And also f(0̄) = w+w2ε,

g(0) = w2 + ε. According to both matrices in condition (iv) in theorem 5.2 we have

λ

(
a2 c2

b2 d2

)
=

(
w + ε 1 + wε
1 + wε 1 + w2ε

)
. (55)

Hence b = c and λa2 = wλd2, implying a = w2d. The equalities of condition (i)
in lemma 6.2 imply that a2w + ab + b2 = w2(ad + bc) = w2(c2w + cd + d2). These

equalities with b = c and a = w2d are equivalent to d2 + w2db + wb2 = 0, or
(wd/b)2 +(wd/b)+1 = 0. So wd/b = w or wd/b = w2. Since T = λ2(ad+ bc)2 = w2,

we can determine two coset representatives as follows: θ(2,

(
w w2

w2 w2

)
, w2) maps

[A(t)] to [A(t̄)] where t̄ = w2t2 + w2, and θ(2,

(
1 1
1 w

)
, w2) maps [A(t)] to [A(t̄)]

where t̄ = w2t2 + 1.

Put ψ = θ(2,

(
w2 1

1 1

)
, 1) ∈ Mθ(2,

(
w w2

w2 w2

)
, w2). Then I∞ψ = ψI∞ ∈

Mθ(2,

(
1 1
1 w

)
, w2), and we have the following coset decomposition of H.

H =M∪MI∞ ∪Mψ ∪MI∞ψ. (56)

2

Corollary 7.2 The stabilizer H of [A(∞)] in G0 has an orbit of length 4 consisting
of [A(t)] with t ∈ GF(4).

We now want to determine the unique involution (if there is one) fixing the line
[A(s)] for each s ∈ F . Note that the unique (nonidentity) involution fixing [A(∞)]

is obtained by putting σ = id and b = w in equation (56). After shifting by s and
flipping we obtain the following new parameters for Cis using equation (39) (write
xis = x′ for simplicity).
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a′4 =
ws2

k(s)
, b′4 =

(w2s2 + w)

k(s)
, H ′ = w2

a′3 =
(ws5 + s4 + ws + w)

k(s)2
, b′3 =

(w2s5 + w2s4 + ws + w2)

k(s)2
, K ′ = 1

a′2 =
w

k(s)
, b′2 =

w2

k(s)
, c′2 =

w2

k(s)

a′1 =
(ws3 + s2 + 1)

k(s)2
, b′1 =

(w2s3 + w2s2 + ws)

k(s)2
, c′0 =

1

k(s)

∆′13 =
w2

k(s)5/2
, ∆′24 =

w2

k(s)2

(57)

Put v =
√

k(s) = s2+ws+1. Then the unique (nonidentity) involution θs of GQ(Cis)

fixing [Ais(w)] and (0, 0, 0) can be determined and shown to exist by a routine
application of lemma 6.2 and theorem 6.3, and we get:

Lemma 7.3 θs = θ(id, D, 1), with 0̄ =
√

c′2 = w/v, and

D = Ds =
1

v5/2

(
w2s4 + w2s w2s5 + w2s4 + ws + w2

ws5 + s4 + ws + w w2s4 + w2s

)
. (58)

Since a = d, D = D−1, det(D) = 1 and PDP = D−T , it follows that

θs : (α, c, β) 7→ (αDT , c +
√

αDTAa′DαT , (β +
√

0̄α)DT ) , 0̄ = w/v. (59)

Now using equations (16) and (59) we may compute the involution Is in G0 that
fixes [A(s)]:

Is = is ◦ θs ◦ i−1
s : (α, c, β) 7→ (60)

([(1 + 0̄
√

s)α + 0̄β]DT ,−, [s
√

0̄α + (1 +
√

s0̄)β]DT ) , 0̄ = w/v.

where we could compute the middle coordinate if we wanted to.
Described as a Möbius transformation on the elements of F̃ as indices of the

lines through ∞, we have

Is : t 7→ ((t + s)−1 + w/v)−1 + s =
(s2 + 1)t + ws2

wt + s2 + 1
. (61)

In particular,

Is :∞ 7→ (s2 + 1)w2. (62)

This completes a proof of the following:

Theorem 7.4 The group G0 of collineations of the GQ(C) of construction II that

fix (0, 0, 0) is transitive on the lines through (∞) and has order 2e(q2 − 1) (q =
2e, e = 2r, r odd). This implies that only one class of flocks arises from the q-clan
C.
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However, we shall now show that G0 (and hence G) is not transitive on the
subquadrangles GQ(α) of order q. (Recall the description of GQ(α) given near the

end of section 1.) To indicate the action of G0 on the subgroups Gα it suffices to
indicate the action of G0 on the α considered as points in PG(1, q). If σ ∈ Aut(F ),
and if xσ = x2 for all x ∈ F , we write α(2) to indicate ασ. And since G0 =

⋃{HIt |
t ∈ F̃}, in light of equation (56) it suffices to consider the action on α ∈ PG(1, q) of

M along with the action on α of each coset representative.

(i) M3 θ(σ, aI, a−2) : α 7→ ασ (0 6= a ∈ F ; σ ∈ Gal(F/L)) (63)

(ii) I∞ : α 7→ α

(
0 w
w2 0

)
≡ α

(
0 w2

1 0

)

(iii) ψ : α 7→ α(2)

(
w2 w2

w2 w

)

(iv) I∞ψ : α 7→ [α

(
0 w2

1 0

)
](2)

(
w2 w2

w2 w

)
= α(2)

(
1 w2

w2 w2

)

(v) Is : α 7→ α

(
a(s) b(s)
c(s) a(s)

)
, s ∈ F

(vi) I∞Is : α 7→ α

(
w2c(s) w2a(s)

a(s) b(s)

)
, s ∈ F

(vii) ψIs : α 7→ α(2)

(
w2(a(s) + c(s)) w2(a(s) + b(s))
w2a(s) + wc(s) w2b(s) + wa(s)

)
, s ∈ F

(viii) I∞ψIs : α 7→ α(2)

(
a(s) + w2c(s) w2a(s) + b(s)

w2(a(s) + c(s)) w2(a(s) + b(s))

)
, s ∈ F

To determine the orbits of G0 on PG(1, q) we need more information about the

matrices DT
s =

(
a(s) b(s)
c(s) a(s)

)
, where v(s) = s2 + ws + 1 and

(i) a(s) = (w2s4 + w2s)/v(s)5/2 (64)

(ii) b(s) = (ws5 + s4 + ws + w)/v(s)5/2

(iii) c(s) = (w2s5 + w2s4 + ws + w2)/v(s)5/2.

From condition (i) in theorem 5.2 there are two basic relationships for a = a(s),
b = b(s), c = c(s):

(i) a2 + 1 = bc (65)

(ii) a + b + w2c = 0

In the computations that follow, there are several times when we need to know
that some 5th degree polynominal with no root in GF(4) is actually irreducible over
GF(4). To do this we show that the remainder after division by a general irreducible
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quadratic polynominal over GF(4) cannot be zero. The general (monic) irreducible
quadratic polynominal over GF(4) has the form

d(x) = x2 + px + p2q, where p = 1, w or w2 and q = w or w2. (66)

So p3 = 1 = q3 and q2 +q+1 = 0. In what follows d(x) is always such a polynominal
and the dividend always has no root in GF (4).

(i) a(s) = 0 ⇐⇒ w2s4 + ws = 0 ⇐⇒ s ∈ GF(4) (67)

(ii) b(s) = 0 ⇐⇒ s5 + w2s4 + s + 1 = d(s)[s3 + (p + w2)s2 +

(p2q2 + pw2)s + 1 + p2q2w2] + ws + p2q + pw2 = 0

(iii) c(s) = 0 ⇐⇒ a(s) = b(s) ⇐⇒ 0 = s5 + s4 + w2s + 1 =

d(s)[s3 + (1 + p)s2 + (p + p2q2)s + 1 + p2q2] + ws + 1 + p + p2q

(iv) a(s) = c(s) ⇐⇒ 0 = s5 + ws + 1 =

d(s)[s3 + ps2 + p2q2s + 1] + ws + 1 + p2q.

It is a curious fact that in each division the coefficient on s in the remainder is w,
which of course is not zero.

Immediately from equations (65) and (67) we have

(i) a(s) = 0 ⇐⇒ s ∈ GF(4), (68)

giving 4 values of s for which (a(s), b(s), c(s)) = (0, w, w2)

(ii) b(s) = 0 has no solution if 5 6 | r.
If 5|r, there are 5 values of s for which (a(s), b(s), c(s)) = (1, 0, w)

(iii) c(s) = 0 has no solution if 5 6 | r.
If 5|r, there are 5 values of s for which (a(s), b(s), c(s)) = (1, 1, 0).

From equation (65) we note that a = c iff b = wa and b = c iff a = wc. It is also
easy to check that:

(i) a(s + w) = a(s) (69)

(ii) b(s + w) = b(s) + a(s)

(iii) c(s + w) = c(s) + wa(s).

Then using equations (65), (67) and (69) it is easy to verify that

a(s) = c(s) ⇐⇒ b(s + w) = c(s + w). (70)

And this pair of equations has no solution if 5 6 | r. If 5|r, there are five values of s
for which both equations hold.

Theorem 7.5 The stabilizer of α = (1, w) is H∪ (∪{HIs : s ∈ GF(4)}), with order
20r(q − 1). So the G0-orbit of (1, w) has size 4r(q2− 1)/20r(q − 1) = (q + 1)/5, and
it consists of all α of the form (a(s) + wc(s), b(s) + wa(s)), s ∈ F .
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Proof. Using equation (63) (i),(ii),(iii) and (iv) it is easy to check that the sta-
bilizer of α = (1, w) includes H. Then Is : (1, w) 7→ (a(s) + wc(s), b(s) + wa(s)) ≡
(1, w) iff b(s)+wa(s) = w(a(s)+wc(s)) iff b(s) = w2c(s). But a(s)+b(s)+w2c(s) = 0
by equation 67(ii), so HIs fixes (1, w) iff a(s) = 0 iff s ∈ GF(4) by equation (69)(i).

2

Theorem 7.6 If 5 6 | e, α = (0, 1) belongs to an orbit of length 4(q + 1)/5. Hence
G0 has exactly two orbits on PG(1, q), and therefore on ovals.

Proof. Using equation (63) we see that M stabilizes α = (0, 1), but I∞, ψ and
I∞ψ do not. Is stabilizes (0, 1) iff c(s) = 0. I∞Is stabilizes (0, 1) iff a(s) = 0 iff
s ∈ GF(4). ψIs stabilizes (0, 1) iff c(s) = wa(s) iff b(s) = 0. And I∞ψIs stabilizes

(0, 1) iff a(s) = c(s). So using equation (69) we have the following: if 5 6 | e, the
stabilizer of (0, 1) consists of M∪ {MI∞Is : s ∈ GF(4)} and has order 5r(q − 1).
So its orbit has length 4r(q2 − 1)/5r(q − 1) = 4(q + 1)/5. 2

We conjecture that for e ≡ 2 (mod 4) even when 5|r there will be a long orbit
of length 4(q + 1)/5.

8 The Subiaco translation planes

Let PG(3, q) be the projective space associated with the 4−dimensional vector space

F 2×F 2. Define lt,u = {(α, α

(
xt yt + u
u −zt

)
) | α ∈ F 2} (t, u ∈ F ) and l∞ = {(0, α) |

α ∈ F 2}. Let

S(C) = {lt,u | t, u ∈ F} ∪ {l∞}. (71)

As C is a q-clan, we can prove with a direct calculation that S(C) is a spread
of PG(3, q). If Rt = {lt,u | u ∈ F} ∪ {l∞}(t ∈ F ), then Rt is a regulus and
S(C)= ∪t∈FRt is the union of q reguli, each two meeting in the line l∞.

We point out that S(C) is not the spread S associated with the flock F(C)
using the Klein correspondence, whose lines are l∞ = {(0, α) | α ∈ F 2} and mt,u =

{(α, α

(
yt + u −zt

xt u

)
) | α ∈ F 2} (t, u ∈ F ) (see [3] for more details). But the

collineation τ : (α, (b1, b2)) 7→ (α, (b2, b1)) transforms S(C) into S. We will say that
S(C) is the spread associated with C.

Proposition 8.1 If C1 and C2 are two q-clans, then S(C1) and S(C2) are isomor-
phic if and only if F(C1) and F(C2) are projectively equivalent.

Proof. For i = 1, 2 let Si be the spread associated with the flock F(Ci) using the

Klein correspondence. As S(Ci)τ = Si, the spreads S(C1) and S(C2) are isomorphic
if and only if S1 and S2 are isomorphic. By [3] S1 ' S2 if and only if F(C1) and
F(C2) are projectively equivalent. 2
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We will denote by T (C) the affine translation plane constructed using the spread
S(C), whose points are the vectors of F 2×F 2 and whose lines are the cosets A + v

(v ∈ F 2×F 2), where A is any vector subspace of F 2×F 2 which defines a line of S(C).
Denote by C the translation complement of T (C). If τX denotes the collineation of
PG(3, q) defined by the non-singular semilinear map X : F 2× F 2→ F 2 × F 2, then
C = {X ∈ ΓL(4, q) | S(C)τX = S(C)}. The subgroup H of PΓL(4, q) defined by C

is the stabilizer of S(C) in PΓL(4, q).
For u ∈ F , let gu : F 2×F 2→ F 2×F 2 be the linear map defined by gu : (α, β) 7→

(α, α

(
0 u
u 0

)
+ β) and let E = {gu | u ∈ F}. Then each element of E fixes S(C)

and each of the reguli Rt for any t ∈ F . Moreover E is an elation group of T (C)
with axis the line {(0, α) | α ∈ F 2}.

If S(C) is not a regular spread (i.e., GQ(C) is not isomorphic to the classical

generalized quadrangle H(3, q2)) and H̄ is the stabilizer of F(C) in PΓL(4, q), then
there is a surjective homomorphism ¯ : H → H̄ whose kernel is E such that:

(1) if g ∈ H ∩ PGL(4, q), then ḡ ∈ H̄ ∩ PGL(4, q);
(2) an element g of H fixes all the reguli Rt if and only if ḡ acts as the identity

over F(C) (see [1] corollary 3, we point out that the proof of theorem 2 and corollary
3 of [1] does not depend on the characteristic.).

Theorem 8.2 If C is a Subiaco q-clan, then the plane T (C) has an elation group
of order 2q and no Baer-involution.

Proof. If C is a Subiaco q-clan obtained with the construction III, then using

lemma 6.2 and theorem 6.3 one may compute the unique involution I∞ fixing [A(∞)]

to be I∞ = θ(id,

(
a c

b d

)
, 1) with 0̄ = δ and a = d = 1 + K−1, b = c = K−1. (In

checking that this collineation really exists, we find that f(0̄) = g(0̄) = δ3+δ4+δ6+δ7

and leave the remaining details to the reader.)
Therefore there is always a non-identity involution θ of GQ(C) fixing [A(∞)].
By theorem 6.3 θ is uniquely defined and θ = θ(σ, D, λ) with σ = id, λ = 1 and

θ : A(0) 7→ A(
√

c2). By equation (7)) there is a unique involution ḡ of PGL(4, q)
fixing F(C). Moreover ḡ : π0 7→ π√c2 (we refer to notations of section 1).

Therefore, there is a non-identity element g of PGL(4, q) fixing S(C) such that

g2 ∈ E. Then either g2 = 1 or g4 = 1. Moreover g does not fix all the reguli Rt.
As S(C) is not a regular spread, by [4] each collineation of H must fix the line l∞.

As the 2-elements of PGL(2, q) (q = 2e) are all involutions, g induces an involution
over l∞ and over the set of planes through l∞. Then g fixes a point of l∞ and a

plane through l∞.
If g is the identity over l∞, then there is an elation X of T (C) such that τX = g.
If g does not induce the identity over l∞, we can choose a basis e1, e2, e3, e4 of

F 2 × F 2 such that < e1, e2 >= l∞ and g = τX where X is represented with respect

to the fixed basis by a matrix of type


1 1 x y

0 1 z t
0 0 1 1
0 0 0 1

. As q is a power of 2, X2 = 1
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and, therefore, g2 = 1.

Then either X is an elation with axis {(0, α) | α ∈ F 2} or X is a Baer-involution
of T (C).

Suppose that X is a Baer-involution. Then g fixes exactly q + 1 lines of S(C)
one of which is l∞. By [4] there are no reguli in S(C) different from Rt (t ∈ F ).
Therefore if lt,u is another line of S(C) fixed by g, then g maps the regulus Rt into
itself. As g fixes a point p of l∞, g fixes the transversal line m in Rt incident with

the point p. As q − 1 is odd, there is a third line lt,v of Rt fixed by g. Then g acts
as the identity over m because g ∈ PGL(4, q). This implies that g induces over the
plane < l∞, m > an elation with axis m and center p. As m is a transversal line of
Rt, each line through p different from l∞ is a transversal of one of the reguli of S(C).

Therefore g fixes all the reguli of S(C): a contradiction. Hence X is an elation. 2
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