Stable Clifford Theory for Divisorially
Graded Rings

José Gémez Torrecillas Blas Torrecillas

Introduction

Dade [D1, Theorem 7.4] obtained an important result on the equivalence of cat-
egories, extending the classical stable Clifford theory. He used the theory of strongly
graded rings. Recently, this work has been generalized to arbitrary graded rings, see
E. Dade [D2],[D3], J.L. Gémez Pardo and C. Nastasescu [GN], C. Nastasescu and
F. Van Oystaeyen [NV O2]. In the classical case the stable Clifford theory relates
isomorphism classes of simple modules on a strongly graded ring R which are direct
sums of a fixed simple R.-module, where R, is the component of degree e, with
the isomorphism classes of simple modules on a crossed product. The aim of this
paper is extend the foregoing result to C-cocritical modules, where C is a localizing
subcategory, on divisorially graded rings. We start with a relative version of Clif-
ford theory using the simple objects of the quotient category. We investigated the
situation of the so-called divisorially graded rings introduced by F. Van Oystaeyen
in the commutative case and then generalized by many other author to more gen-
eral situations (see the monograph [LVVO] and the references quoted there). We
will work in the categories of R-Mod and R — gr, thus we prefer use the a general
Grothendieck category and the concept of static objects in this kind of category to
establish our basic results.

The paper is organized as follows. After a Section of preliminaries, we introduce
the notion of static objects in quotient categories in the next section. If we have
adjoints functors between two Grothendieck categories A and B and a localizing
subcategory C of A, then we show that under certain conditions it is possible to
obtain an equivalence between the category of static objects in .A4/C and the category
of co-static objects of some quotient category of B. In the last Section, we apply
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this result to study the stable Clifford theory on divisorially graded rings, extending
(see Theorem 3.14) the main result of Dade (cf. [D1, Theorem 8.2]).

1 Preliminaries

All the rings considered in this paper are associative with identity element. Let R
be a ring, R-Mod will denote the category of the unital left R-modules.

Let G be a multiplicative group with identity element e. A G-graded ring R is a
ring with identity 1, together with a direct decomposition R = @,eq R, (as additive
subgroups) such that RyRy, C Ry, for all g, h € G. Thus R, is a subring of R, 1 € R,
and for every g € G, R, is an R, -bimodule. A G-graded left R-module is a left
R-module M endowed with an internal direct sum decomposition M = ®gecqM,
where each M, is a subgroup of the additive group of M such that R,M; C My,
for all g,h € G. Let M and N be graded left modules over the graded ring R. For
every g € G we set

HOMg(M,N), ={f: M — N | fis R — linear and f(M;) C M,}

HOMg(M, N), is an additive subgroup of the group Hompg(M, N) of all R-linear
maps from M to N. Observe that

HOMgz(M, N) = @4e¢ HOMg(M, N),

is a subgroup of Hompg(M, N) and it is a graded abelian group of type G. Clearly
HOMg(M, N). is just Homp_, (M, N), i.e. the group of all morphisms from M
to N in the category R — gr of all graded left R-modules. Define for g € G the g-
suspension M (g) of a graded left R-module M as follows: M(g) is the left R-module
M graded by G by putting M(g), = My, for all h € G. Observe that

HOMpg(M, N), = Homg_,.(M, N(g)) = Homg_,(M(g~"), N)

It is well known that R — gr is a Grothendieck category (See [NVO1]).

We recall some ideas from torsion theories on Grothendieck categories. Let A
be a Grothendieck category. A non empty subclass 7 of A is a torsion class if T
is closed under quotient objects, coproducts and extensions. In this case for any
M € A one can consider the greatest suboject t7(M) of M belonging to 7. A
torsion class is said to be hereditary if it is closed under subobjects.

Let us now recall the concept of quotient category. A Serre class (or Serre
subcategory) of an abelian category A is a non-empty class S which is closed under
subobjects, quotient objects and extensions. The quotient category A/S of A by
S is the category defined as follows: the objects of A/S are those of A and the
morphism are defined by

Hom,s(A, B) =lim Homyu(A', B/B’)
—

where A’ runs over the subojects of A such that A/A’” € S and B’ runs over the
subobjects of B such that B’ € S. A/S is an abelian category and the canonical
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functor Ts : A — A/S, which is the identity on objects and maps morphisms in
Hom 4 (A, B) onto their canonical image in the direct limit Hom 4,s(A, B), is an exact
functor. The Serre class S is called a localizing subcategory of A if the canonical
functor T has a right adjoint. If A is a Grothendieck category then the concept
of localizing subcategory coincides with that of hereditary torsion class. If C is a
localizing subcategory of A, then for any X € A we consider the greatest subobject
te(X) of X belonging to C. If t¢(X) = 0 then X is called a C-torsionfree object, if
te(X) = X, then M is said to be a C-torsion object. Following Gabriel [G], if C is a
localizing subcategory of A, we can define the quotient category .A/C which is also a
Grothendieck category. We denote by T¢ : A — A/C,S¢ : A/C — A, the canonical
functors. It is well known [G] that T¢ is an exact functor, and Sc is right adjoint of
Tc. Moreover, S¢ is a left exact functor.

2 Static objects in quotient categories.

Let A and B be two Grothendieck categories, and consider two additive functors F’
and G, such that F' is a left adjoint of G.

B

Fl |G

A

For an R — S-bimodule M over associative rings R and S, the adjunction M ®g—
Hompg (M, —) was used in [Na] to define full subcategories of R-Mod and S-Mod in
order to have that the restrictions of the functors M ®g — and Hompg (M, —) to such
subcategories establish an equivalence of categories between them. The aim of this
section is to carry this construction to a quotient category of A.

If C is a localizing subcategory of A we can induce a subcategory D of B setting

D={Y eB|F(Y)isC — torsion}.

It is evident that D is stable under homomorphic images and direct sums. To check
that D is closed by extensions, consider

0—-X—-Y—-27—-0

an exact sequence in B with X, Z € D. Applying F, we obtain an exact sequence
in A,

F(X)-L F(y) - F(Z) =0
with F/(X) and F(Z) C-torsion. Construct the exact sequence

0— Kerg— F(Y)— F(Z)— 0.
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Since Kerg = Imf and F'(X) is C-torsion it follows that Kerg is C-torsion and there-
fore F/(Y) is C-torsion. This gives Y € D. In order to have that D is a localizing
subcategory of B, we require that F satisfies certain property of exactness, as reflects
the following result.

Proposition 2.1. Let A, B be two Grothendieck categories. Consider the following
situation of adjoints functors.

Fl |G

A

Let C be a localizing subcategory of A and D = {Y € B | F(Y) is C-torsion} the
induced subcategory of B. The class D is a localizing subcategory of B whenever for
every monomorphism f: X —Y in B, Ker(F(f)) is C-torsion.

Proof. For every monomorphism in B, f : X — Y we have the exact sequence
0 — Ker(F(f)) — F(X) — Im(F(f)) — 0.

If Y is C-torsion then Im(F(f)) is C-torsion. Thus F(X) is C-torsion if and only if
Ker(F(f)) is C-torsion. The proposition follows from this fact.

Definition 2.2. A functor F satisfying Proposition 2.1 is said to be C-exact.

Throughout this section the functor F' will be assumed to be C-exact. Following
Gabriel [G] we can define the quotient categories .A/C and B/D. We will denote by
Te: A— A/C and S¢c : A/C — A (resp. Tp : B — B/D and Sp : B/D — B)
the canonical functors (see [G, ch. III]). We have also natural transformations
®c : TeSe — id and Ye:id— SeTe such that ®¢ is a natural isomorphism and for
each object X in A the morphism (Ve)x : X — S¢T¢(X) has kernel and cokernel
C-torsion. Analogous notations will be used for D. The adjunction

B

Fl |G

induces functors



Stable Clifford Theory for Divisorially Graded Rings 627

G
ASS— B

TC SC TD SD

AJcE——B/D
H

defined as K = TpGSe and H = T¢FSp. There exist natural transformations
X : HK — id and v:id— K H described as follows: For each object Y in B/D there
is a natural B-morphism

SpY — GFSpY
Applying Tp we obtain a natural morphism in B/D,

Y = T'DS'DY — T'DGFS'DY

The natural B-morphism

induces a natural A-morphism
GFSpY — GS¢T¢FSpY.
Applying again Tp and composing we obtain the natural homomorphism in B/D
vy 1 Y 2 TpSpY — TpGFSpY — TpGScTcFSpY = KHY
On the other hand, given X in A/C, we can use the natural morphism in B,
GScX — SpTpGSc X
with kernel and cokernel D-torsion to define the canonical morphism
FGSeX — FSpTpGScX.

By a standard argument and the definition of D it is not difficult to check that this
morphism permits us to obtain a natural isomorphism in 4/C

TeFGSe X = TeFSpTpGSe X.
Now, the canonical morphism FGS:X — S¢X gives a morphism in .A4/C
TeFGSe X — TeScX.
Therefore we achieve the definition of a natural homomorphism in .A/C
Xx : HKX = TeFSpTpGSe X = TeFGSe X — TeSeX — X

We are now ready to define full subcategories of A/C and B/D equivalent by re-
striction of K and H.
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Definition 2.3. An object X of A/C is said to be F-static whenever xx : HKX —
X is an isomorphism. The category of all F-static objects in A/C will be denoted
by A/Cr which is a full additive subcategory of A/C. An object Y of B/D is said to
be F-co-staticif vy : Y — KHY is an isomorphism. The category of all F'-co-static
objects will be denoted by B/D! which is a full additive subcategory of B/D. When
the original adjunction is M ®g — - Homp (M, —) for some left R-bimodule with
S = Endg(M), we will speak of M-static and M-co-static objects of R-Mod/C and
S-Mod/D.
We have immediately the following theorem, that extends [Na, Theorem 2.5].

Theorem 2.4. The restrictions of the additive functors

and
H =TcFSp:B/D" — A/Cp

form an equivalence between the categories A/Cr and B/DF.

As usual, we will say that an object X in A divides an object U if there is an
object X" in A and an isomorphism U = X @& X’. When X divides a finite direct
sum of copies of U, we say that X weakly divides U. We will say that two objects
of A are weakly isomorphic if each weakly divides the other. It is clear that both
functors K as H preserve finite direct sums. Therefore, the following result has an
easy straightforward proof.

Proposition 2.5. The subcategories A/Cr and B/DY are closed under finite direct
sums and direct summands.

Let M be a C-closed object in A, i.e., M = S¢T¢ M naturally, and S = End 4(M).
We can take G = Hom 4(M, —) and we know by [P, Corollary 7.3] that there exists
a left adjoint F' of G, satisfying F'(S) = M. Assume that F' is C-exact. As in a
foregoing argument, we have that

HK(TeM) = To(FSpTpGSeTeM) = To(FGSTM)
>~ To(FS) = Te M.

This gives immediately that M is F-static. Therefore TpS is G-co-static. If & is
the filter of left ideals of S associated with the torsion theory (D, G) and Y is a left
S-module, then Yg = lim _| . Homg(a, Y/tp(Y)) denotes the localized S-module.

Indeed, Sy is an S-algebra via the canonical map S — Sg and Yy is a left Sg-
module. It is well known [S, Ch. X] that there exists a full and faithful functor
Ss : S —Mod/D — Sg — Mod such that the diagram of functors

S — Mod U Sy — Mod

Tp Sg
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commutes, where U is the restriction of scalars. Moreover, USg is isomorphic to Sp.
It follows from this that the restriction of Sg to the full subcategory of S-Mod/D
of the objects that weakly divides TpS gives an isomorphism between this category
and the category of the projective Sg-modules of finite type. This last category will
be denoted by (S | weak Sg). In what follows, these categories will be identified.
Analogously, the subcategory of A/Cys consisting of the objects that weakly divides
TcM will be denoted by (A/C |weak M). These are equivalent categories, as shows
the following result, that generalizes [Na, Theorem 3.7].

Corollary 2.6. The restrictions of the additive functors
H =TpGSc¢ : (A/C | weak M) — (Ss | weak Sg)

and
K =T¢FSp: (S| weak Sg) — (A/C | weak M)

form an equivalence between the categories (A/C |weak M) and (Ss | weak Ss).

We specialize to the case of modules. For a left R-module M we have the adjoint
functors

S — Mod

M ®gs—| |Homg(M, —)

R — Mod

where S = Endg(M). Let C denote a localizing subcategory of R-Mod. In order to
assure that the subcategory of S-Mod

D={Xe€S—Mod: M®sX eC}

is a localizing subcategory of S-Mod we will assume that the functor M ®g — is
C-exact (see Proposition 2.1 and Definition 2.2). In this case we will say that M is
weakly C-flat. In the absolute case [Na, Theorem 3.7], under the condition that M
is finitely generated, it is proved that there is an equivalence between the category of
left R-modules that divide M and the category of all projective left S-modules. In
our quotient situation we will need some finiteness condition on the torsion theory
(C,F) defined by the localizing subcategory C of A = R-Mod. Actually, (C,F) is
said to be a torsion theory of finite type if the Gabriel filter of left ideals R associated
with (C,F) has a cofinal subset of finitely generated left ideals. On the other hand,
the assumption on M can be weakened, and we will prove a generalization of [Na,
Theorem 3.7] for a C-closed left R-module M which is C-finitely generated, i.e., there
is a finitely generated submodule N of M such that M/N is C-torsion. When (C, F)
is of finite type, the functor T¢ preserves arbitrary direct sums. In such case, we
will denote by (R-Mod/C | M) the full subcategory of R-Mod/C consisting of the
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objects that divide some direct sum of copies of T¢ M and by (Sg | Sg) the category
of all projective Sg-modules.

Theorem 2.7. Assume that the torsion theory (T, F) on R-Mod is of finite type and
let M be a C-finitely generated, C-closed and C-flat left R-module. The restrictions
of the additive functors

H = Tp(Hompg(M,Sce(—)) : (R—Mod/C | M) — (Ss | Ss)

and

form an equivalence between the categories (R-Mod/C | M) and (Ss | Ss).

Proof. In view of Corollary 2.6 and the discussions made throughout this section, we
need only prove that K and H preserve arbitrary direct sums and that they are well
defined. First, we claim that D is of finite type. If this claim is assumed, then Tp
preserves direct sums by [ S, Proposition XIII.2.1]. Since M is C-finitely generated
and C is of finite type, Hompg(M, S¢(—)) preserves direct sums and this shows that
K preserves direct sums. Moreover, the fact that D is of finite type forces that every
projective left Sg-module is D-closed as left S-module. Since Sg is full and faithful,
(Ss | Sg) can be identified with the full subcategory of B/D consisting of the objects
that divide some direct sum of copies of TpS. This shows that H is well defined.
Analogous arguments give that K preserves direct sums and it is well defined. In
this way, the proof will be complete if we prove the claim. For, observe that the
filter of left ideals of S associated with D is S = {I <g S : M/MI is C-torsion}.
Take I a left ideal in & and let my, ..., m, in M such that N = Rm; + ...+ Rm,,
is C-dense in M. For each ¢« = 1,...,n there is an finitely generated left ideal «;
of R in the filter ® such that aym; C MI . It is straightforward to check that
army + ... + a,m, is C-dense in N. Since N is C-dense in M this implies that
army + ...+ apm, is C-dense in M. Now, for each ¢ = 1,...,n the left ideal «;
can be expressed as «a; = Diea, Ra;j, for some a;; in R and A; a finite index set.
Thus aym; + ... + aymy, = 200, ZjeAi Ra;ym; € MI. For every i = 1,...,n
and for every j € A;, there is f;; € I such that a;;m; € Imf;;. This implies that
i1 2jea, Imfi; = M{fi;} is C-dense in M. Hence, the left S-ideal Iy generated by
the f;; verifies that M, is C-dense in M. Hence, I is in & and this proves that D
is of finite type.

3 Divisorial Clifford theory

In this section the notation will be slightly modified. So, R = @©4cqR, will denote
a G-graded ring for G an arbitrary group with neutral element e and C will be a
localizing subcategory of R.-Mod that induces an hereditary torsion theory (C,F)
with associated filter of left ideals of R, denoted by . We will denote by R — gr
the Grothendieck category whose objects are the G-graded left R-modules. The
morphisms in R — gr are the R-linear graded maps of degree e. Every graded left
R-module decomposes, when it is considered as left R.-module, as a direct sum
M = @®g4ecM, of R.-modules and every morphism f : M — N in R — gr is, after
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forgetting the R-linear structure, a morphism of left R.-modules f : M — N that
maps the g-th component M, of M to the g-th component N, of N. This construction
defines an exact functor

(Je: R— gr — R.—Mod

This permits us to induce a localizing subcategory CY from C by putting
C'={XeR—ygr|XecC}

This localizing subcategory of R — gr define a rigid [NV O1] torsion theory (C9, F9)
in R — gr with associated filter of graded left ideals R9.
Now we can consider the following diagram of functors

R®p, —
R—gr R, — Mod
(-)e
Tea| [Scs Te| |Se
R —gr/CY R — Mod/C
B

where R—gr/C9 (resp. R.-Mod/C) is the quotient category of R—gr (resp. R.-Mod)
under the localizing subcategory C (resp. C9). B is defined as T¢ o (R ®p, —) o Scq
and analogously A is defined as T¢s o ()e © Se.

We remember [D1] that R is strongly graded by G (i.e. RyR, = Ry, for all
g,h € G) if and only if (_). and R ®g, — establish an equivalence between the
categories R — gr and R.-Mod. In [AGT', Theorem 1.1] we analyzed when B and A
give an equivalence between the categories R — gr/C? and R.-Mod/C. The results
there obtained were expressed in the equivalent language of torsion theories. Now,
we will restate some of these facts in the formalism of quotient categories.

Definition 3.1. Let R be a G-graded ring and C a localizing subcategory of R.-
Mod. Following [N R] we will say that C is G-stable if R®p, A is C-torsion for every
C-torsion left R.-module A.

The ring morphism R, — R permits to define canonically the localizing subcat-
egory C* of R-Mod consisting of the left R-modules that are C-torsion considered as
left R.-modules. The following Lemma relates C* and CY under the hypothesis of
G-stability for C.

Lemma 3.2. Let R be a G-graded ring and C a G -stable localizing subcategory of
R.-Mod. Let us denote by R the filter of left ideals of R.-Mod associated with C
and by R* the filter associated with C*. The localizing subcategory C* is the smallest
localizing subcategory of R-Mod that contains the underlying R-modules of the objects
in C9. Moreover, (C*, F*) is a graded torsion theory on R-Mod and

R*={I<grR| thereis He R with H CI} ={I <g R|INR. € R}

Proof: If we prove that C* is the smallest localizing subcategory of R-Mod contain-
ing the underlying R-modules of the objects in CY, then, by [INR, Proposition 1.1],
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the rest of the assertions follows. Let £ be any localizing subcategory of R-Mod
containing C? and take A any C*-torsion left R-module. Then g, A is C-torsion. By
G-stability, R ®pr, A is C-torsion. But R ®p, A is a graded left R-module and, so,
R®p, Ais C9-torsion. This implies that R ®pg, A is E-torsion. Observe that there is
a canonical epimorphism of left R-modules from R ®pg, A onto A. This shows that
A is E-torsion. Therefore C* C £ and the Lemma is proved.

Definition 3.3. A G-graded ring R is said to be C-divisorially graded (see [LVV O])
whenever for every g, h € G, RyR), is C-dense in R..

In [AGT, Theorem 1.1] it is essentially proved that the categories R — gr/C? and
R.-Mod/C are canonically equivalent if and only if R is C-divisorially graded and C
is G-stable. We recall this result now.

Theorem 3.4. Let R = ©yecqlRy be a graded ring and consider C a localizing
subcategory of R.-Mod. Then the following assertions are equivalent:

(i) B and A establish an equivalence between the categories R — gr/C9 and R.-
Mod/C.

(ii) A graded left R-module X is C9-torsion if and only if X, is C-torsion.

(#ii) R is C-divisorially graded and C is G-stable.

A graded ring R satisfying Theorem 3.4 is said to be C-strongly graded. Note
that it is possible that a strongly graded ring fails to be C-strongly graded. This
happens if C is not G-stable. This last condition was studied on strongly graded
rings in [NV R].

In the part (ii) < (i) of the proof of the Theorem 3.4 [AGT, Theorem 1.1} was
proved a property of relative flatness on the ring extension R, — R that we record
in the following proposition.

Proposition 3.5. Let R = ©4ccRy be a C-strongly graded ring. For each exact
sequence 0 - K — L — N — 0 in R.-Mod with K C-torsion, the kernel of the
canonical morphism R ®r, L — R®p, N is C-torsion.

For a graded left R-module M, consider the ring S = ENDg(M) consisting of
the graded endomorphism of M. S is canonically G-graded [D, Sections 3 and 4]
by putting

Sy ={f € ENDgr(M) : f(My) C M, for all h € G}.

Therefore S, = Endg_,, (M, M). Before to prove the main results on equivalence of
certain categories constructed from the module M and the localizing subcategory C,
we need some technical results. These facts will be stated in the following lemmas.

Lemma 3.6. Let R be a C-strongly graded ring and M a C9-torsionfree graded left
R-module. The map p:Endpr_g-(M) — Endg, (M.), given by p(f) = fe for every f €
Endp_g-(M) is a ring isomorphism.

Proof: It is clear that p is a ring homomorphism. We will prove that it has trivial
kernel and it is surjective. Note that

Kerp = {f S EndR—gr(M) : fe = 0}
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Observe that for f € Endg_g. (M), fo = 0 if and only if (Im f). = 0. By Theorem 3.4,
Im f is a CY9-torsion graded left R-module. Since Imf C M and M is C9-torsionfree,
Im f must be trivial, i.e., f = 0. This proves that Kerp = 0.

To prove that p is surjective, take f € Endg, (M.). We construct the morphism
of graded left R-modules

R®Re f : R®Re Me — R®Re Me
Consider the canonical morphism of graded left R-modules
(:R®r, M. — M

Because (. is an isomorphism, it follows from Theorem 3.4 that ( has kernel and
cokernel C%-torsion. This implies that

(o(R®p, f): R®r, M. — M

annihilates Ker(, since M is CY%-torsionfree. But this implies that there exists a
morphism of graded left R-modules f : M — M such that

fo¢=C(o(R®g, f)

It is immediate to check that f. = f. Therefore, p is surjective and the Lemma is
proved.

Assume that M is a CY9-torsionfree graded left R-module over a C-strongly graded
ring R. The localizing subcategory C of R.-Mod induces (see Section 1) a subcat-
egory D of the category of left modules on Endg, (M.). From Lemma 3.6 it is
possible to identify Endg, (M.) with S, and, therefore, M. can be considered as an
R. — Sc-bimodule. Therefore, up to this identification, we rewrite

D={BeS.—Mod: M, ®g, BisC — torsion}.

Proposition 2.1. assures that if the functor M. ®g, B : S.-Mod— R.-Mod is C-exact
then D is a localizing subcategory of S.-Mod. We will change for this functor the
nomenclature and we will say that M, is weakly C-flat, i.e., for each monomorphism

0—A-L Bin Se-Mod the canonical morphism in R.-Mod, M. ®g, f : M. ®g, A —
M, ®g, B, has C-torsion kernel.

At this point we can induce a localizing subcategory of S-Mod canonically from
C in two ways. The first idea is to use the restriction of scalars S, — S to define
a localizing subcategory D* of S-Mod. The D*-torsion left S-modules are the left
S-modules that are D-torsion considered as left S.-modules. The second possibility
is to define a (at this moment, possibly not localizing), subcategory P of S-Mod by
using the tensor product M ®g —. A left S-module Y is in P if and only the left
R-module M ®gY is C*-torsion.

Dade, in [D, Theorem 4.6], characterized in terms of the graded module M when
is S = ENDg(M) strongly graded. Concretely, he found that S is strongly graded
if and only if M is weakly G-invariant, i.e., M is weakly isomorphic in R — gr to all
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its suspensions M(g). It is not hard to prove that a weakly G-invariant graded left
R-module M with C-torsionfree M, must be C9-torsionfree.

Lemma 3.7. Let M be a weakly G-invariant graded left R-module such that M,
1s weakly C-flat and C-torsionfree as left R.-module. Assume that R is C-strongly
graded. The classes of left S-modules

D*={Y €S —Mod:g, Y is D— torsion}

and
P={Ye€S—Mod: M®sY isC*— torsion}

cotncide.

Proof: We make the following computation: Given Y a left S-module, Y is D*-
torsion if and only if g Y is D-torsion if and only if M. ®g, Y is C-torsion. But, since
S is strongly graded, M, ®g, Y = M, ®g, S ®sY = M®gY. Thus, Y is D*-torsion
if and only if M ®g¢ Y is C-torsion if and only if M ®¢ Y is C*-torsion.

Lemma 3.8. Let M be a weakly G-invariant graded left R-module such that M, is
weakly C-flat and C-torsionfree as left R.-module. If R is C-strongly graded, then the
strongly graded ring S is D-strongly graded. Moreover, the torsion theory on S-Mod
determined by D* is a graded torsion theory.

Proof: Given B in S.-Mod, S ®g, B is D-torsion if and only if M, ®g, S ®gs, B is
C-torsion if and only if M ®g, B is C-torsion. But M ®g, B is a graded left R-module
by putting (M ®s, B), = M, ®s, B for each g in the group G. So, M ®g, B is
C-torsion if and only if M ®g, B is C9-torsion and, by Theorem 3.4, this occurs if and
only if (M ®g, B)e = M, ®g, B is C-torsion if and only if B is D-torsion. Therefore,
B is D-torsion if and only if S ®g, B is D-torsion and we can use Theorem 3.4 to
obtain that S is D-strongly graded.

As in Section 1, we have functors

R — Mod/C*
F*| |G*
S — Mod/D*

defined as F* = Tp-Hompg(M,Sp«(—)) and G* = Te-(M ®g S¢+(—)), where R-
Mod/C* is the quotient category of R-Mod constructed from C*, S-Mod/D* is the
quotient category of S-Mod defined by D* and Tp«, Sp+, T¢+, Se+ denote the canon-
ical functors. For every object X in R-Mod/C* we can consider S¢-X as a left
R.-module and it is natural ask if g, S¢+X is C-closed, i.e., if S¢T¢Se+ X is isomor-
phic to S¢« X as left R.-modules. But this is true if R is a C-strongly graded ring,
and the proof of this fact can be constructed analogously to that of [N R, Proposition
2.1]. In this case, S is also D-strongly graded by Lemma 3.8 and so we have that



Stable Clifford Theory for Divisorially Graded Rings 635

every object in S-Mod/D* can be regarded in S.-Mod /D via the functor TpSp+. We
are now ready to establish, by restriction of the functors F™* and G*, an equivalence
of categories between certain subcategories of R-Mod/C* and S-Mod/D*.

Theorem 3.9. Consider R a C-strongly graded ring and M a weakly G-invariant
graded left R-module such that M, is a C-torsionfree C-flat R, — S.-bimodule. Let

R —Mod/C; oy pr. = {X € R—Mod/C* | T¢Se+ X is M. — static}

est.

and
S — Mod/D*estMe = fy € § — Mod/D* | TpSp-Y is M, — co — static}
The restriction of the functors
F*:R—Mod/C} g 1r. — S — Mod/Drrest-Me

and
G": S — Mod/D*mt'Me — R — Mod/C;fest.Me

establish an equivalence of categories between the full subcategories

R_MOd/C:est.Me
of R-Mod/C* and

S_Mod/p*rest.Me
of S-Mod/D*.
Proof: First, we need to prove that the restriction of

F*: R—Mod/C},,, 1. — S—Mod/D*" " Me
and
G* : S — Mod/D*rest-Me — R — Mod/C; . ar.

are well defined. For, take X € R-Mod/C;,,, 5, and observe that

est.

TD*HOHIR(M, SC*X) = TD* HomR(SC*TC*M, SC*X) =

T'D* HomR(SC*TC* (R ®Re Me)7 SC*X) = T'D*HomR(R ®Re Me, SC*X),

where the second isomorphism is given by Theorem 3.4. We have an exact sequence
in S-Mod
0 — T — Hompg(R ®g, M., Sc-X)

— Sp-Tp-Hompg(R &g, M., Sc-X) — C — 0

where T" and C are D*-torsion left S-modules. If we consider this sequence in S,-
Mod, then T and C' are D-torsion then

S'DT'DHOI’HR(R ®Re Me, SC*X) = S'DT'DS'D*T'D* HOHIR(R ®Re Me, SC*X),



636 J. G. Torrecillas — B. Torrecillas

since Sp:Tp-Homp(R ®p, M, Sc+X) is D-closed. Therefore,
S'DT'DS'D* T'D*HOI’HR(M, SC*X) = S'DT'DHOI’HR(R ®Re Me, SC*X)

= S'DT'DHomRe (M67 SCTCSC*X>'

Since

X € R—Mod/C,; 1.,
TcSc-X is Me-static by definition. Hence, TpHompg, (M., ScT¢Sc+X) is M.-co-
static by Theorem 2.4. But, by the foregoing computations,
TDHomRe (Me, ScTCsC*X) = T'DS'D*T'D* HomR(M, SC*X) = T'DS'D*F*X,

and we have that TpSp- F*X is Mc-co-static, that is, F*X € R-Mod/C;},,, 5, . Anal-
ogously, for each Y € S-Mod/D**"e ' G*Y € R-Mod/C}.. .. Concretely, we
have an exact sequence in R-Mod

0—T1T— M®sgSp-Y — SC*TC*(M Xg SD*Y) —-C =0
with both T" and C, C*-torsion. As in the foregoing argument, we can deduce that
S(;TC(M Qs SD*Y) = S TeSc-Te- (M ®g Sp+ Y)

as R.-modules. The claim follows as in the foregoing argument after observing that
M = M, ®g, S since S is strongly graded. Now, we will check that F* and G* give
the equivalence. For X € R-Mod/C,,; /. ,

S(;T(;SC*G*F*X = S(;T(;SC*TC* (M Qs SD* TD*HOHIR(M, SC*X)) =

ScTe(M, ®s, S ®g SpTp-Homp(M,Se« X)) =
ScTe(M, ®s, Sp-Tp-Hompg(M,Se« X)) =
ScTe(M. ®g, SpTpSp+Tp-Hompg, (M, Sc-X)) =
ScTe(M,. ®s, SpTpHomp, (M., ScTeScX)) = SeTeSe-X.

As S¢+ maps objects from R-Mod/C* to C-closed R.-modules, we can deduce that
Se+-G*F*X = Se« X. Since Se- is full and faithful, it follows that G*F*X = X.
Given Y € S — Mod/D*rest-Me

SDTDSD*F*G*Y = SDTDSD* TD*HOHIR(M, SC*TC* (M ®5 SD*Y)) =

SpTpSp:Tp-Homp(Se+Te«(R ®@g, M.),Sc-Te«(M ®@s SpY)) =
SpTpSp-Tp-Homp(R ®pr, M., Se+Te (M @5 Sp+Y)) =
SpTpHomp, (M., ScTeScTe« (M ®g Sp+Y)) =
SpTpHompg, (M., ScTe(M, ®s, S ®s SpY)) =
SpTpHompg, (M., ScTe(M, ®s, SpTpSp-Y)) = SpTpSp-Y.
We can again deduce from this that F*G*Y =Y.
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In order to extend [D1, Theorem 7.4], we will denote by (R-Mod/C* |weak M)
the full subcategory of R-Mod/C* consisting of the objects X such that T¢Sc«X
weakly divides T¢M,. If the hereditary torsion theory (C,F) determined by the
localizing subcategory C is of finite type, then the functor T¢ preserves direct sums.
So, it makes sense to consider (R-Mod/C* | M,), the category of all the objects
X in R-Mod/C* such that T¢S¢-X divides some direct sum of copies of T¢M..
Analogously, (S-Mod/D* |weak S.) denotes the full subcategory of S-Mod/D* whose
objects Y satisfy that TpSp+Y weakly divides TpS.. From the proof of Theorem
2.7, if (C, F) is of finite type and M, is C-finitely generated, then (D, G) is also of
finite type and we can define the category (S-Mod/D* | S.) whose objects Y verify
that TpSp+Y divides some direct sum of copies of Tp.S.. Recall from Section 1 that
we denote by Sg« : S—Mod/D* — Sg«-Mod the canonical functor that associates
uniquely a left Sg«-module to each object in S-Mod/D*. Analogously, we have
the full and faithful functor Sg :S.-Mod/D — (S¢)s-Mod. First, we remark the
following easy result.

Proposition 3.10. The subcategories
R_MOd/C:est.Me

and
S_Mod/p*rest.Me

are closed under finite direct sums and direct summands.

Lemma 3.11. If R is C-strongly graded, (C, F') is of finite type and M is a graded
left R-module such that M, is C-finitely generated, then (C*, F*) is of finite type and
M is C*-finitely generated.

Proof. Let I be a left ideal in the Gabriel topology R* associated with C*. By
Lemma 3.2, R. NI is a left ideal of R, that it is in ®. As (C,F) is of finite type,
R. N I contains a finitely generated member J of |. But R.J is finitely generated
as left ideal of R and thus we have proved that (C*, F*) is of finite type, since
RJ is in *. Now assume that M is a graded left R-module such that M, is C-
finitely generated. Thus, M, contains a C-dense finitely generated R.-submodule A.
Consider the exact sequence of left R-modules

0—-T—R®r A— R®p, M. — R®p, (M./A) — 0

Since R is C-strongly graded, R is C-flat by Proposition 3.5 and C is G-stable. Thus,
the exact sequence

0—-T—R®r A— R®p, M. — R®p, (M./A) — 0

has starting and final points C-torsion or, equivalently, C*-torsion. This means
that the R-finitely generated image on R ®p, A in R ®p, M. is C*-dense. An
analogous argument shows that the canonical image of R ®p, M, in M is C*-dense.
By composing these two canonical morphisms we obtain that the image of R ®p, A
in M is C*-dense and finitely generated.
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Theorem 3.12. Consider a localizing subcategory C of R.-Mod for which R is C-
strongly graded. Let M be a weakly G-invariant graded left module over a G-graded
ring R such that the R.— S.-bimodule M, is weakly C-flat and C-closed. The following
statements hold:

(I) The restriction of the functors

F*: (R —Mod/C* | weak M.) — (S — Mod/D* | weak S.)
and

G*: (S —Mod/D* | weak S.) — (R — Mod/C* | weak M,)
establish an equivalence of categories between the full subcategories

(R—Mod/C* | weakM.,)
of R-Mod/C* and
(S—Mod/D* | weakTpS,)

of S-Mod/D*.

(11) If (C, F) is of finite type and M. is C-finitely generated, then the restriction of
the functors
F*:(R—Mod/C*| M) — (S —Mod/D* | S,)

and
G*: (S —Mod/D* | S.) — (R — Mod/C* | M,)

establish an equivalence of categories between the full subcategories
(R—Mod/C* | M,)

of R-Mod/C* and
(S—Mod/D* | S,)

of S-Mod/D*.

Proof: (I) We need to check that if X is an object in (R-Mod/C* |weak M.) then
F*X is an object in (S-Mod/D* | weak S.) and that if Y is in (S-Mod/D* | weak S,)
then G*Y is in (R-Mod/C* |weak M.). For, take X in (R-Mod/C* |weak M.). There
is a splitting monomorphism in R-Mod/C , T¢Se«X — (T¢M,)". Now compute

SDTDSD* FrX = SDTDSD*TD * HomR(M, SC * X) =

SDTDSD*TD*HOmR(Me ®5’e S, SC*X) = SDTDHOmRe(Me, SC*X) =
SDTDHomRe (Me, ScTCsC*X)

and observe that if we apply the functor SpTpHompg, (M., S¢(—)) to the morphism
TcSce+ X — (TeM.)™ then we obtain a splitting monomorphism of left S.-modules.
But

SDTDHomRe (Me, Sc(TcMe)n) = (SDTDHomRe (Me, ScTcMe))n =

(SDTDHomRe(Me, Me))n = (S'DT'DSe)n
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Since Sp reflects splitting monomorphisms, we conclude that TpSp« F*X weakly
divides TpS.. Following a similar argument it is possible to prove that G*Y € (R-
Mod/C* |weak M.) whenever Y € (S-Mod/D* | weak S.). Part (I) follows now from
Proposition 3.10 and Theorem 3.9.

(II) By Lemma 3.11, if (C,F) is of finite type and M, is C-finitely generate, then
(C*, F*) is of finite type and M is C*-finitely generated. Therefore the categories
R-Mod/C,; ;. and S-Mod/D* ¢s"-Me have arbitrary direct sums and the functors
F* G*,T¢, Tp, Te- and Tp« preserve direct sums. By using these facts, one can
prove part (II) in a similar way that part (I).

Recall that if 3 and & denotes respectively the Gabriel topologies of left ideals of
S and of S, associated with D* and D, we have a canonical ring morphism (S,)s —
Sg+ since (Sp«Tp«S). is isomorphic to SpTpS. whenever S is D-strongly graded.
By Mod(Sgs+ | weak (Se)s) we denote the category of all the left Sg«-modules that
are projective of finite type considered as left (S, )g-modules. By Mod(Sgs+ | (Se)s)
we denote the category of all the left Sg«-modules that are projective as left (S.)g-
modules.

Let Y be a left Sg«-module such that there exists an isomorphisms of left (S )g-
modules f : Y & C — Z, where Z is a D-closed left S.-module. Assume that G
is finite. Following [NRV O, Theorem 3.1], the forgetful functor (-) : S — gr — S-
Mod has a left and right adjoint _[G] : S-Mod— S — gr that construct for the
S-module Y the G-graded left S-module Y[G]| = @,e6?Y, where Y denotes a copy
of the abelian group Y. If 9y denotes the natural image of an element y of Y in the
subgroup 9Y of Y[G] then the structure of left graded S-module in Y'[G] is given by
setting (sfy) =" (spy) for s, € Sy, and g, h € G. We have [NRV O, Remark 3.2.1]
a canonical S-homomorphism « : Y — Y[G] that is actually an injective map. It is
evident that Y[G]. 2 Y as left S.-modules and we have that Y is D-closed since it is
a direct summand of the D-closed left S.-module Z. By [N R, Proposition 2.1] this
implies that Y[G] is D*-closed and, therefore, Y is D*-torsionfree. Now we have
a canonical monomorphism of left S (or Sg«)-modules Y — Ys. that we extend
trivially to a monomorphism of left Sc-modules g : ¥ & C' — Y5 ®C. Since the
cokernel of this monomorphism is D-torsion, the isomorphism f extends uniquely
to a isomorphism f : Ya- @ C — Z. This forces that ¢ is an isomorphism. Hence,
Y = Ys« and we have obtained that Y is D*-closed. Taking Z a free left (S.)s-
module (of finite rank in the case that D is not of finite type), it is possible to
deduce the following result.

Theorem 3.13. Let R be a C-strongly graded ring by a finite group G, where C is a
localizing subcategory of R.-Mod and let M be a G-invariant graded left module over
a G-graded ring R such that the R, — S.-bimodule M, is weakly C-flat and C-closed.
The following statements hold:

(I) The restriction of the functors
F*: (R —Mod/C* | weak M.) — (Ss+ | weak (Se)s)

and
G : (Sg+ | weak(Se)s) — (R—Mod/C* | weak M,)
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establish an equivalence of categories between the full subcategories
(R—Mod/C* | weakM.,)

of R-Mod/C* and
(Ss+ | weak(Se)s)

of Sg+ -Mod.

(11) If (C, F) is of finite type and M. is C-finitely generated, then the restriction of
the functors
F*: (R —Mod/C* | M,) — (Ss+ | (Se)s)

and
G* : (Ss+ | (Se)s) — (R — Mod/C* | M,)

establish an equivalence of categories between the full subcategories
(R—Mod/C* | M,)

of R-Mod/C* and

Let M be a weakly G-invariant graded left R-module with M, C-closed. We
will assume that M, is C-cocritical as left R.-module, that is, T¢M, is a simple
object in R.-Mod/C. It is not hard to see that S. = Endg, (M,) is a division ring
and S is a crossed product. Hence M, is flat as right S.-module. Since S, is a
division ring, the localizing subcategory of S.-Mod, D = {A € S.-Mod: M, ®p, A =
0} = {0}. Therefore we have that the localizing subcategory D* of S-Mod is trivial
too. Moreover, every left S.-module is free and, therefore, (S | S.) = S-Mod and
(S |weak S,) is the category of such left S-modules that are finitely generated as left
Se-modules. In the last case, for G a finite group, it is possible to prove that a left
S-module is finitely generated as S-module if and only if it is finitely generated as
left S.-module. This happens because S is strongly graded and, so, S is a projective
of finite type left S.-module. As a corollary of Theorem 3.12 and the foregoing
observations, we have

Theorem 3.14. Let R be a C-strongly G-graded ring for C a localizing subcategory
of Re-Mod. Let M be a weakly G-invariant graded left R-module such that M, is a
C-closed and C-cocritical left R.-module. The following assertions hold:

(1) If C is of finite type then the restriction of the functors
Hompg(M,Sc+(—)) : (R —Mod/C* | M,.) — S — Mod

and
Te (M ®s—): S —Mod — (R—Mod/C* | M,)

establish an equivalence of categories between the full subcategory

(R—Mod/C* | M,)
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of R-Mod/C* and the category S-Mod.
(11) If the group G is finite then the restriction of the functors

Hompg(M,Sc+(—)) : (R —Mod/C* | weak M,) — S — mod

and
Te (M ®s—): S —mod — (R—Mod/C* | weak M,)

establish an equivalence of categories between the full subcategory
(R—Mod/C* | M,)

of R-Mod/C* and the category S-mod of the finitely generated left S-modules.
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