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Abstract

Starting from a family of categories Ap , where p ranges over a set P of
indices, and functors Gp : Ap −→ X , p ∈ P , where X is a category and each
Gp has a left adjoint Fp, we construct a categoryA and a functor G : A −→ X
that has a multi-adjoint in the sense of Y. Diers, and then a category A and
a functor G : A −→ X that has a pluri-adjoint in the sense of the authors.
These constructions show, at least in this instance, how the transition from
adjoints to multi-adjoints to pluri-adjoints is performed. The problem of the
existence and the characterization of a general class of pluri-adjoints arising
in this manner invites further study.

1. Let P be a set, and let (Ap)p∈P be a family of small categories. Let X be a small
category. Assume that, for each p ∈ P , there is given a functor Gp : Ap −→ X
that has a left adjoint Fp : X −→ Ap, Fp a Gp . Let A be the disjoint union

of the categories Ap , p ∈ P, that is, the coproduct in Cat (the category of small
categories and functors between them) of the categories Ap , p ∈ P . Recall that an
object of A is then a pair (A, p) with A an object of Ap and p ∈ P . A morphism in
A between (A, p) and (B, q) is a morphism A −→ B in Ap if p = q (otherwise there

are no morphisms (A, p) −→ (B, q)). Thus,

A((A, p), (B, q)) =

{
Ap(A,B) if p = q,

∅ if p 6= q.

Received by the editors July 1994
Communicated by A. Warrinier
AMS Mathematics Subject Classification : 18A40, 18A35
Keywords : Multi-adjoints, pluri-adjoints.

Bull. Belg. Math. Soc. 2 (1995), 259–264



260 A. Solian – T. M. Viswanathan

Composition is clearly reduced to composition of morphisms in eachAp. The identity
of (A, p) inA is idA inAp . We shall abbreviate (A, p) toA when the context permits.

We shall define a functor
G : A −→ X

as the functor [Gp]p∈P arising from the functors Gp , p ∈ P , by the universal property
of the coproduct. Explicitly, for (A, p) ∈ ObA , we shall define G(A, p) = Gp(A),
and if f : (A, p) −→ (B, p) is a morphism in A (recall that the second components of
the two objects must be equal for a morphism to exist), then, by definition, G(f) =

Gp(f). The G thus defined is indeed a functor. For example, if (A, p)
f−→ (B, p)

g−→
(C, p) are morphisms in A, then G(g◦f) = Gp(g◦f) = Gp(g)◦Gp(f) = G(g)◦G(f).

Proposition 1.1. The functor G defined above has a canonical left multi-adjoint,
in the sense of Diers [1,2].

Proof. Let X ∈ ObX . To construct a universal family of morphisms [cf. loc.
cit.] from X to G, consider the family (Fp(X))p∈P and the corresponding family
(Fp(X), p)p∈P of objects of A. For each p, let

ηp(X) : X −→ Gp(Fp(X)) = G(Fp(X), p)

be the unit of the adjunction Fp a Gp . To show that the family (ηp(X))p∈P is
universal (in the sense of the definition of the multi-adjoint), let (A, p) ∈ ObA and
let

f : X −→ G(A, p) = Gp(A)

be a morphism in X . Since Fp a Gp , there is a unique morphism g : Fp(X) −→ A

in Ap such that the composite

X
ηp(X)−→ Gp(Fp(X))

Gp(g)−→ Gp(A)

is equal to f . In terms of A and G, this means that the composite

X
ηp(X)−→ G(Fp(X), p)

G(g)−→ G(A, p)

is equal to f . But, of course, since (A, p) is given, p is unique and then, as shown,
g is unique.

2. In order to go on with our construction, we need to make additional assumptions
on the categories Ap and X . First, we shall assume that X is a finitely complete
category (that is, has all finite limits) and that it has a zero object (that is, the
terminal object, which is the product of the empty family, is also initial), denoted 0.

As a consequence of this assumption, X has a family of zero morphisms. That is, for
each pair of objectsX, Y of X , there is the composite morphism 0X,Y : X −→ 0 −→
Y , where the first, resp. second, arrow arises from the quality of 0 as a terminal,



Adjoints, Multi–adjoints, Pluri–adjoints 261

resp. initial, object. We note that the composite of each such zero morphism with
any morphism is also a zero morphism. In addition, we shall assume that each Ap ,

p ∈ P , has a zero object 0p and, of course, a class of zero morphisms. (In case any
of these categories did not have a zero object, we can certainly add one.)

Now we are ready to construct a new category, denoted A. The objects of A are
finite sequences A = (Ap1, Ap2, . . . , Apn) of objects Api of Api, where the order of

components does not really matter, but where it is assumed that components that
lie on different spots come from different Ap’s. Two such sequences, the above A
and B = (Bq1, Bq2 , . . . , Bqm), will be considered equal and will be identified iff each

one is obtained from the other one by adding or deleting zero objects from categories
Ap . If all components of such a sequence are zero objects, then that sequence will
consequently be equal to the empty sequence, which will be a zero object of A (this
will become clear when we define the morphisms). If A = (Ap1, Ap2, . . . , Apn) and

B = (Bp1 , Bp2, . . . , Bpn) are two objects (by the above identification of sequences, we
can always assume that in A and B we have the same set of indices), the morphisms
A −→ B in A will be all sequences f = (fp1, fp2, . . . , fpn), where fpi : Api −→ Bpi

in Api, i = 1, 2, . . . , n. If in the above A one has n = 0, then there is exactly one

morphism from each object to A and exactly one from A to each object. Composition
of morphisms will be performed componentwise, and the identity of an object will
be the sequence of identities of the components in their respective categories. We
note that A is naturally a subcategory of A, namely, the one whose objects and

morphisms have exactly one component.
Now, we shall define the functor

G : A −→ X .

First, let us remark that each Gp sends the zero object 0p of Ap to the zero object

of X . This follows from the fact that each Gp , p ∈ P , has a left adjoint and the
zero object of each one of this categories is terminal. Then the effect of G on each
zero object is the same as the effect of the corresponding Gp on it (cf. Section 1.),
that is, the zero object of X . Then, if A = (Ap1, Ap2, . . . , Apn) is any object of A,

we define

G(A) =
n∏
i=1

G(Api) (1)

Up to isomorphism, the right hand side of (1) does not depend on the way the object
A is represented. Since, if we add/delete zero components to/from the sequence A,
this will add/delete zero factors to/from the product. But the zero object is terminal,

and thus, for each X ∈ ObX , we have X × 0 ' X. In particular, G(0) = 0. For
morphisms, the definition is similar. If f = (fp1, fp2, . . . , fpn) is a morphism of A,
then, by definition,

G(f) =
n∏
i=1

G(fpi)

and G carries zero morphisms to the corresponding zero morphisms. It is easily
checked that G thus defined is indeed a functor. Moreover, for objects and mor-
phisms from A (sequences with just one component), G coincides with G.
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Proposition 2.1. G has a pluri-adjoint (cf. [4, 5]).

Proof. Let X ∈ ObX , X 6= 0. By assumption, each functor Gp has a left adjoint
Fp and, hence, for each p, there is the unit ηp(X) : X −→ Gp(Fp(X) = G(Fp(X)).

We shall take as objects of the index category T (X) at X all finite subsets of P .
Let τ = {p1, p2, . . . , pn} be such an object. Then the functor Θ(X) : T (X) −→ A
will assign to τ the object F τ(X) = (Fp1(X), . . . , Fpn(X)). If n = 0, then τ = ∅ and

F τ(X) is the zero object of A. For each τ ∈ ObT (X), we define the morphism

hτ : X −→ GF τ(X) = G(Fp1(X), . . . , Fpn(X)) =
n∏
i=1

G(Fpi(X)

by hτ = 〈ηp1(X), ηp2(X), . . . , ηpn(X)〉, that is, the morphism obtained from ηp1(X),
ηp2(X), . . ., ηpn(X) by the universal property of the product. If X is the zero
object, then T (X) has by definition a single object, say ∗, and then F ∗(0) = 0
with h∗ : 0 −→ GF ∗(0) = 0 the unique possible morphism. And, of course, the

morphisms σ −→ τ in T (X) are those morphisms u : F σ(X) −→ F τ(X) of A for
which G(u) ◦ hσ = hτ .

We will verify that the above data satisfy the conditions for a pluri-adjoint (cf.
[5]).

(1). Global covering property. Let g : X −→ GA be given in X . If A =
(Ap1, Ap2, . . . , Apn), take τ = {p1, p2, . . . , pn}. Since G has a multi-adjoint with
(ηp(X))p∈P as universal family (cf. 1.), there is a unique morphism ϕi : Fpi −→ Api

in A such that the composite

X
g−→ G(A) =

n∏
k=1

G(Apk)
proji−→ G(Api) (2)

is equal to G(ϕi) ◦ ηpi(X), where proji is the ith projection of the product. Then

n∏
i=1

Gϕi :
n∏
i=1

G(Fpi(X)) = GF τ(X) −→
n∏
i=1

GApi = G(A)

has the property that
∏n
i=1 Gϕi ◦hτ = g. Indeed, this can be checked by “projecting

onto the factors.” If “proj” is the standard symbol for projection, then

proji ◦
n∏
k=1

Gϕk ◦ hτ = Gϕi ◦ proji ◦ hτ = Gϕi ◦ ηpi(X) = proji ◦ g.

(2). Inductive injectivity. Let τ ∈ ObT (X) where X ∈ ObX , let A ∈ ObA, and

let f1, f2 : F τ(X) −→ A be such that

Gf1 ◦ hτ = Gf2 ◦ hτ . (3)

By adding zero components to F τ(X) and A, we can assume that A = (Ap1, Ap2, . . . ,
Apn), F

τ(X) = (Vp1, Vp2, . . . , Vpn) (same set of indices), where some of the compo-
nents Vpi are Fpi(X) and some are zero objects. Similarly, f1 = (u1, u2, . . . , un),
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f2 = (v1, v2, . . . , vn). Denote proji ◦ hτ = ζi, where proji : GF τ(X) −→ G(Vpi) is
the canonical projection. Then ζi is either ηpi(X) (if Vpi = Fpi(X) ) or the corre-

sponding zero morphism (if Vpi is a zero object). Projecting (3) onto the ith factor,
we get G(ui) ◦ ζi = G(vi) ◦ ζi for i = 1, 2, . . . , n. If ζi = ηpi(X), we get ui = vi by
the uniqueness condition for the multi-adjoint; if ζi = 0, then Vpi is a zero object
and hence ui = vi. Thus, f1 = f2. Hence we can take σ = τ and r = idF τ (X) to get

f1 ◦ r = f2 ◦ r.
(3). Directedness. Let X ∈ ObX , and let τ, ρ ∈ ObT (X). We can assume that

F τ(X) = (Vp1, Vp2 , . . . , Vpn), F
ρ(X) = (Wp1,Wp2, . . . ,Wpn) (same set of indices),

where some of the Vpi’s and/or Wpi’s might be zero. (It is, however, convenient,

and possible, to assume that, for each i, at least one of Vpi and Wpi is nonzero
since otherwise we can delete both of them.) Let ξ = (p1, p2, . . . , pn) and hence
F ξ(X) = (Fp1(X), Fp2(X), . . . , Fpn(X)). We shall define the morphisms

u = (u1, u2, . . . , un) : F ξ(X) −→ F τ(X),

v = (v1, v2, . . . , vn) : F ξ(X) −→ F ρ(X)

in the following way: If, for a given i, both Vpi and Wpi are nonzero, we have
Vpi = Wpi = Fpi(X), and we define both ui and vi as the identity of Fpi(X); if

Vpi 6= 0 and Wpi = 0, we define ui as above and vi as the unique morphism to 0; in
case Vpi = 0 and Wpi 6= 0, we interchange the roles of ui and vi.

We claim that
G(u) ◦ hξ = hτ and G(v) ◦ hξ = hρ. (4)

Indeed, for the first equality, projecting the left-hand side onto the ith factor, we
get:

proji ◦G(u) ◦ hξ = G(ui) ◦ proji ◦ hξ = G(ui) ◦ ηpi(X).

The latter is either ηpi(X) if Vpi 6= 0 or the zero morphism if Vpi = 0. On the other

hand, proji ◦ hτ is the same thing. This proves the first equality (4). The proof for
the second equality is similar.

Because of (4), u and v are morphisms of the category T (X), namely, u : ξ −→ τ ,
v : ξ −→ ρ.



264 A. Solian – T. M. Viswanathan

References

[1] Y. Diers, Spectres et localisations relatifs à un foncteur, C. R. Acad. Sc. Paris,
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