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Abstract

From a differential geometric point of view, this paper expresses in time
dependent least squares Lagrangian terms that the solutions of any DEs sys-
tems of order one are harmonic curves on 1-jet spaces. Natural time dependent
electromagnetic fields, together with their generalized Maxwell equations, are
derived from the given DEs systems and suitable geometric structure. Impor-
tant applications to biological DEs systems governing the intracellular calcium
oscillations in a model involving degradation of inositol triphosphate or calcium
oscillations in a model that takes into account three stored in the cell (endo-
plasmic reticulum, mitochondria and cytosolic proteins), together with some
natural biologic-electromagnetic Yang-Mills energies of geometric-physical type,
are established. Some derived geometric-biological interpretations are exposed
as well.
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1 Introduction

According to Olver’s opinion expressed in [23] and private discussions, we consider
that the 1-jet spaces of kind J1(T, M), where T is a smooth p-dimensional ”multi-
time” manifold and M is a smooth n-dimensional ”spatial” manifold, are basic objects
in the study of a lot of applicative problems coming from many branches of Theoretical
Physics: continuum mechanics [15], quantum field theories [23], generalized multi-time
field theories [17]. All preceding applicative studies were required a profound analysis
of the differential geometry of 1-jet spaces. Consequently, many different geometrical
methods on 1-jet spaces were intensively studied by a lot of authors: Saunders [26]
(Riemannian geometrical methods on jet spaces of arbitrary orders Jr(T, M), r ≥ 1),
Vondra [34] (Lagrangian geometrical methods on J1(R, M)), Giachetta, Mangiarotti
and Sardanashvily [9] (Hamiltonian polysymplectic geometrical methods on dual of
J1(T,M)), Marsden, Pekarsky, Shkoller and West [15] (Hamiltonian multisymplectic
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geometrical methods on dual of J1(T, M)), Asanov [2] (Riemann-Finslerian Gauge
geometrized methods on J1(T, M)) or Neagu [19], [17] (Riemann-Lagrange geometri-
cal methods on J1(T, M)).

In this paper we will present some Riemann-Lagrange geometrical results on 1-jet
spaces of kind J1(R,Rn), that allow the description of some interesting applications
in Theoretical Biology. In this direction, we recall that the 1-jet spaces are good
mathematical models for fruitful geometrical studies of DEs or PDEs. We refer to
the point of view related on the Poincaré problem [24] and its generalization due to
Udrişte [30], concerning the possibility of finding of a geometrical structure that to
convert the trajectories of a given vector field X into ”geodesics” or, more general, the
solutions of a given PDEs system of order one into ”harmonic maps” or ”potential
maps”. We would like to point out that, via a natural notion of generalized harmonic
map on J1(T, M) introduced by first author of this paper in his Ph.D. Thesis [19] the
generalized Poincaré problem and its generalization are now geometrically solved by
Neagu and Udrişte in [22].

The final answer at the Poincaré problems is given in [22], using that so-called
the least squares variational calculus method for PDEs systems of order one. Briefly
speaking, the least squares variational calculus method for PDEs systems of order one
consists in a natural extension of the following well known and simple idea: In any
euclidian vector space (V,<, >) the equivalence v = 0V ⇔ ||v|| = 0 holds always good.
In order to extend this simple idea from linear algebra to the study of PDEs systems
of order one, let us consider a PDEs system of order one on the 1-jet space J1(T, M),
expressed locally by

xi
α = X

(i)
(α)(t

γ , xk), ∀i = 1, n, ∀α = 1, p, ⇔

xi
α −X

(i)
(α)(t

γ , xk) = 0, ∀i = 1, n, ∀α = 1, p,

(1.1.1.1)

where (tγ) → (xi(tγ)) is the unknown map, xi
α = ∂xi/∂tα and X

(i)
(α)(t

γ , xk) is a given
and known d-tensor on J1(T, M).

Obviously, using now two ”a priori” fixed Riemannian metrics hαβ(tγ) on T and
ϕij(xk) on M that produce the vertical metrical d-tensor hαβ(tγ)ϕij(xk) on J1(T, M),
we conclude that the PDEs system (1.1.1.1) is equivalent with (see the preceding idea
from linear algebra)

n∑

i,j=1

p∑

α,β=1

hαβϕij

(
xi

α −X
(i)
(α)

)(
xj

β −X
(j)
(β)

)
= 0.(1.1.1.2)

We emphasize that the equivalent form (1.1.1.2) of the initial PDEs system
(1.1.1.1) is a more convenient one for our geometrical studies. This is because the
solutions of the PDEs system (1.1.1.2) are exactly the global minimum points of the
quadratic multi-time Lagrangian of electrodynamics kind

PDEsED =
{

hαβ(tγ)ϕij(xk)xi
αxj

β + U
(α)
(i) (tγ , xk)xi

α + Φ(tγ , xk)
}√

h,

where h = det(hαβ), U
(α)
(i) = −2hαµϕimX

(m)
(µ) and Φ = hµνϕrsX

(r)
(µ)X

(s)
(ν), whose

Riemann-Lagrange geometrization, in the sense of derived nonlinear connections,
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linear d-connections, d-torsions, d-curvatures and generalized Maxwell and Einstein
equations, is now completely done in the papers [20] and [22].

Taking into account yet that only the nonlinear connections, the d-torsions and
the generalized Maxwell equations are dependent efectively on the PDEs system
(1.1.1.1), that is in their local expressions appear explicitely the tensorial components
X

(i)
(α)(t

γ , xk) that define the PDEs system (1.1.1.1) or the covariant partial deriva-

tives of X
(i)
(α)(t

γ , xk), we will study only these geometrical objects and properties. We
point out that the other geometrical objects derived from the multi-time Lagrangian
PDEsED, like the linear d-connections, the d-curvatures and the generalized Einstein
equations, are dependent only on the pair of metrics (hαβ(tγ), ϕij(xk)). For more
geometrical details, the reader is invited to consult the work [22].

In this geometrical context, the aim of this paper is to apply the preceding least
squares variational calculus method to several important biological nonlinear DEs
equations on 1-jet spaces J1(T, M), where T ⊂ R and M ⊂ Rn, n ≥ 2. We will
prove that the solutions of these biological DEs systems are harmonic curves on
jet space J1(T,M), that is these solutions minimize a least squares relativistic time
dependent energy functional. Moreover, the Riemann-Lagrange geometry of these
biological DEs systems, in the sense of the derived nonlinear connections, d-torsions
and time dependent biological evolution, will be described. Particularly, interesting
and unpublished geometric-biological interpretations for calcium oscillations in the
biological living cells are obtained.

Remark 1.1. i) In other ways, using as a pattern the already classical Lagrangian
geometrical methods developed on the tangent bundle TM by Miron and Anastasiei in
[16], interesting geometrical results about DEs systems from Biology or Biodynamics
are given by Antonelli and Miron [1].

ii) The special curves (v-paths, h-paths and geodesics) on the 1-jet spaces J1(T, M),
together with few particular and interesting computer-drawn Maple-V plots, are stud-
ied by Balan in [3]. From our point of view, these special curves on 1-jet spaces may
be intimately connected by that we have called harmonic curves.

Taking into account that we would like to develope the Riemann-Lagrange geom-
etry of the DEs systems that govern the calcium oscillations in a large variety of
living cells, we would like to expose few biological properties of these oscillations.
So, we recall that the oscillations of cytosolic calcium concentration, known as cal-
cium oscillations, play a vital role in providing the intracellular signalling and a lot
of biological processes are controlled by the oscillatory changes of cytosolic calcium
concentration. For more details, please see the paper of Rottingen and Iversen [25].
Since the 1980’s, when the self-sustained calcium oscillations were found experimen-
tally by Cuthbertson and Cobbold [6] or by Woods, Cuthbertson and Cobbold [35],
a lot of experimental works have been published. For review in this topics, please see
the book of Goldbeter [10] or the paper of Berridge, Lipp and Bootman [4]. Also,
interesting results may be found in the paper of Shuttleworth and Thompson [27].

Various models have been constructed to simulate calcium oscillations in living
cells. In this paper, we will consider and will geometrically study only two of these
models. These mathematical models were proposed in the course of investigations of
plausible mechanisms capable of generating complex calcium oscillations.
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The first one was proposed by Borghans, G. Dupont and A. Goldbeter in [5] and
was deeply mathematically analysed by Houart, Dupont and Goldbeter in [13]. This
first mathematical model, describing the cytosolic calcium oscillations, relies on the
interplay between CICR∗ (calcium-induced calcium release) and the Ca2+-stimulated
degradation of InsP3.

Alternatively, the second mathematical model was introduced by Marhl, Haberichter,
Brumen and Heinrich in [14] and was intensively studied from a mathematical point
of view in [12]. This model, refering also to the calcium oscillations, is based on the
interplay between three calcium stores in the living cells: endoplasmic reticulum, mi-
tochondria and cytosolic proteins.

2 From DEs systems of order one to geometric dy-
namics on 1-jet fibre bundles

In order to approach the DEs systems that govern the calcium oscillations in biological
living cells from a differential geometric point of view, let us consider the jet fibre
bundle of order one J1(T,M) → T ×M associated to the Riemannian submanifolds

(T, h11(t)) ⊂ (R, h11(t))

and

(M, ϕij(xk)) ⊂ (Rn, ϕij(xk)).

Remark 2.1. i) The inverse d-tensors of the preceding Riemannian metrics are de-
noted by h11(t) and ϕij(xk). We recall that these must verify the formulas h11(t) =
1/h11(t) and

∑n
m=1 ϕim(xk)ϕmj(xk) = δi

j .
ii) From a physical point of view, it is well known that the Riemannian metrics are

modelling the gravitational potentials of a space of events [28]. By a natural exten-
sion to the biological phenomenas, we may assert that the Riemannian metrics may
model abstract microscopic biologic-gravitational potentials intrinsically produced
by biological matter.

We recall that the local coordinates of the 1-jet space J1(T,M) are (t, xi, xi
1),

i = 1, n, and transform by the rules

t̃ = t̃(t), x̃i = x̃i(xj), x̃i
1 =

∂x̃i

∂xj

dt

dt̃
xj

1.(2.2.2.1)

From a physical point of view, the manifold T is regarded as the relativistic physical
time, the manifold M is viewed as a space of theoretical physics events with n-freedom
degrees, and the coordinates xi

1 have the physical meaning of velocity or direction,
which is intimately related on the well known physical concept of anisotropy.

The Riemann-Lagrange geometry of the 1-jet spaces J1(R, M), where (M, ϕij(xk))
is a general Riemannian manifold, is now completely done in Neagu’s paper [21]. In
order to develope our applicative geometrical least squares variational calculus method
for the DEs systems from Biology, let us recall the main geometrical concepts and
properties with physical meaning used in [21].
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2.1 Time dependent sprays, harmonic curves, nonlinear con-
nections and h-normal Γ-linear connections on the 1-jet
space J1(R,Rn)

One of the most important geometrical concepts used on 1-jet spaces, which is con-
nected to the Euler-Lagrange equations of the time dependent Lagrangians L =
L

√
h11(t), h11(t) > 0, is the notion of time dependent spray.

Definition 2.1. A pair S = (H(i)
(1)1, G

(i)
(1)1) of local functions on the 1-jet space

J1(T,M), which transform by the rules

2H̃
(k)
(1)1 = 2H

(j)
(1)1

(
dt

dt̃

)2
∂x̃k

∂xj
− dt

dt̃

∂x̃k
1

∂t
,

2G̃
(k)
(1)1 = 2G

(j)
(1)1

(
dt

dt̃

)2
∂x̃k

∂xj
− ∂xi

∂x̃j

∂x̃k
1

∂xi
x̃j

1,

(2.2.2.2)

is called a time dependent spray on J1(T, M). The local functions H
(j)
(1)1 (resp.

G
(j)
(1)1) are called the temporal (resp. spatial) components of the time dependent

spray S of the 1-jet space J1(T, M).

Remark 2.2. The introducing of the transformation rules (2.2.2.2) was suggested by
the local transformations laws of the second derivatives ẍi(t) not= xi

11 of the components
xi(t) of an arbitrary smooth curve c : T → M, c(t) = (x1(t), x2(t), ..., xn(t)).

Example 2.1. Let us consider the Christoffel symbols H1
11(t) and γi

jk(xl) of the Rie-
mannian metrics h11(t) and ϕij(xk), where

H1
11(t) =

h11

2
dh11

dt
, γi

jk(xl) =
ϕim

2

(
∂ϕmj

∂xk
+

∂ϕmk

∂xj
− ∂ϕjk

∂xm

)
.

Taking into account the transformation laws of the preceding Christoffel symbols, to-
gether with the form of the group of transformations (2.2.2.1), by local computations,
we must conclude that the components

H̊
(i)
(1)1 = −1

2
H1

11x
i
1, G̊

(i)
(1)1 =

1
2
γi

jmxm
1 xj

1,

represent a time dependent spray S0 on the 1-jet space J1(T, M). This is called the
canonical time dependent spray on J1(T, M) produced by the Riemannian
metrics h11(t) and ϕij(xk).

Definition 2.2. Let S = (H(i)
(1)1, G

(i)
(1)1) be a time dependent spray on the 1-jet space

J1(T,M). A smooth curve c ∈ C∞(T, M), locally expressed by c(t) = (xi(t)), whose
components verify the second order DEs system

h11(t)
{

xi
11 + 2G

(i)
(1)1 + 2H

(i)
(1)1

}
= 0, ∀i = 1, n,(2.2.2.3)

is called a harmonic curve on J1(T, M) of the time-dependent spray S, with
respect to the Riemannian metric h11(t).
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Remark 2.3. i) The harmonic curves on J1(T, M) provided by the particular time
dependent spray S0 = (H̊(i)

(1)1, G̊
(i)
(1)1) are exactly the classical harmonic maps between

the Riemannian manifolds (T, h11(t)) and (M, ϕij(xk)). We recall that these harmonic
maps are minimizing the energy action functional

E : C∞(T, M) → R+, E(c(t)) =
∫

T

h11(t)ϕij(xk(t))ẋi(t)ẋj(t)
√

h11(t)dt,

where ẋi(t) not= xi
1(t) = dxi/dt. In other words, the Euler-Lagrange equations of the

energy action functional E are exactly

h11(t)
{

xi
11 −H1

11x
i
1 + γi

jmxm
1 xj

1

}
= 0, ∀i = 1, n.(2.2.2.4)

A deep study of classical harmonic maps between general Riemannian manifolds may
be found in the work of Eells and Lemaire [8].

ii) More particularly, when the temporal manifold T is the usual physical time
represented by the Riemannian manifold (R, h11(t) = 1), the harmonic curves become
exactly the classical geodesics of the Riemannian manifold (M,ϕij(xk)). In other
words, these verify the DEs system of order two

h11(t)
{

xi
11 + γi

jmxm
1 xj

1

}
= 0, ∀i = 1, n.(2.2.2.5)

iii) Arithmetically speaking, it is obvious that the second order DEs system
(2.2.2.3), that define the harmonic curves of the time dependent spray, are equivalent
with the DEs system

xi
11 + 2G

(i)
(1)1 + 2H

(i)
(1)1 = 0, ∀i = 1, n.(2.2.2.6)

From a geometrical point of view connected to the Einstein’s principles for General
Relativity, we point out that the equations (2.2.2.3), that is the equations (2.2.2.6)
multiplied with the term h11(t), have a global geometrical character on the 1-jet space
J1(T,M) (i. e., the equations have the same form in all physical systems of refer-
ences), while the equations (2.2.2.6) have not a such global geometrical-physics char-
acter. For more details upon the relativistic aspects of the differential geometry, please
see the paper of Sóos [28].

iv) We point out also that the harmonic curves on 1-jet spaces naturally gener-
alize the classical paths of sprays used in the Lagrangian geometry of Miron and
Anastasiei [16].

In conclusion, we consider that the statements i), ii), iii) and iv) emphasize the
naturalness of Definition 2.2.

In Riemann-Lagrange geometrical studies of 1-jet spaces a very important role is
played by the nonlinear connections Γ = (M (i)

(1)1, N
(i)
(1)j) that allow the construction

of some convenient derivative operators or, alternatively, of some adapted basis of
vector fields {δ/δt, δ/δxi, ∂/∂xi

1}. These adapted covariant derivative operators are
characterized by simple tensorial laws of transformation and are defined by
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δ

δt
=

∂

∂t
−M

(j)
(1)1

∂

∂xj
1

and
δ

δxi
=

∂

∂xi
−N

(j)
(1)i

∂

∂xj
1

.(2.2.2.7)

Because of preceding reason, let us introduce the definition of a nonlinear connection
and let us describe few interesting geometrical properties of them.

Definition 2.3. A pair Γ = (M (i)
(1)1, N

(i)
(1)j) of local functions on the 1-jet space

J1(T,M), which transform by the rules

M̃
(j)
(1)1

dt̃

dt
= M

(k)
(1)1

dt

dt̃

∂x̃j

∂xk
− ∂x̃j

1

∂t
,

Ñ
(j)
(1)k

∂x̃k

∂xi
= N

(k)
(1)i

dt

dt̃

∂x̃j

∂xk
− ∂x̃j

1

∂xi
,

(2.2.2.8)

is called a nonlinear connection on J1(T, M). The local functions M
(i)
(1)1 (resp.

N
(i)
(1)j) are called the temporal (resp. spatial) components of the nonlinear con-

nection Γ of the 1-jet space J1(T, M).

Example 2.2. Studying the local transormation rules of the local components

M̊
(i)
(1)1 = −H1

11x
i
1 and N̊

(i)
(1)j = γi

jmxm
1 ,

we conclude that the pair Γ0 = (M̊ (i)
(1)1, N̊

(i)
(1)j) is a nonlinear connection on J1(T, M).

This is called the canonical nonlinear connection produced by the Rie-
mannian metrics h11(t) and ϕij(xk).

Taking into account the local transformations laws (2.2.2.2) and (2.2.2.8), it is
easy to prove the following important result that connects the geometrical concepts
of time dependent spray and nonlinear connection on 1-jet spaces.

Proposition 2.1. i) If the pair S = (H(i)
(1)1, G

(i)
(1)1) is a time dependent spray on

J1(T,M), then the pair ΓS = (M (i)
(1)1, N

(i)
(1)j), where

M
(i)
(1)1 = 2H

(i)
(1)1 and N

(i)
(1)j =

∂G
(i)
(1)1

∂xj
1

,

is a nonlinear connection on the 1-jet space J1(T, M).
ii) Conversely, if the pair Γ = (M (i)

(1)1, N
(i)
(1)j) is a nonlinear connection on

J1(T,M), then the pair SΓ = (H(i)
(1)1, G

(i)
(1)1), where

H
(i)
(1)1 =

1
2
M

(i)
(1)1 and G

(i)
(1)1 =

1
2
N

(i)
(1)mxm

1 ,

is a time dependent spray on the 1-jet space J1(T, M).
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It is well known from the classical Riemannian geometry the importance of co-
variant derivatives (linear connections 5) in the geometrical studies of a space of
physical events. The importance of linear connections is coming from the possibility
of construction of the torsion and curvature tensors which locally characterize the
form of the space. For that reason, let us study some convenient special covariant
derivatives on the 1-jet space J1(T, M), whose local behavior is described at level of
adapted components (i. e., components derived using the adaptad basis of vector fields
{δ/δt, δ/δxi, ∂/∂xi

1} of a fixed nonlinear connection Γ. We recall that these special
linear connections 5Γ produce some local covariant derivatives ”/1” (the T -horizontal
covariant derivative), ”|i” (the M -horizontal covariant derivatives) and ”|(1)(i) ” (the ver-
tical derivatives), which are convenient to use in order to differentiate the geometrical
objects of the 1-jet space J1(T,M). For a deep study of the local covariant derivatives
produced by special linear connections 5Γ on 1-jet spaces, the reader is invited to
consult the papers [2, 21, 18]. In the preceeding direction, let us recall the following
geometrical definition.

Definition 2.4. A set of local functions 5Γ = (H1
11, G

k
i1, L

k
ij , C

k(1)
i(j) ) on J1(T, M),

whose adapted components transform by the rules [21]

Gk
i1 = G̃m

j1

∂xk

∂x̃m

∂x̃j

∂xi

dt̃

dt
,

Lm
ij

∂x̃r

∂xm
= L̃r

pq

∂x̃p

∂xi

∂x̃q

∂xj
+

∂2x̃r

∂xi∂xj
,

C
k(1)
i(j) = C̃

s(1)
p(r)

∂xk

∂x̃s

∂x̃p

∂xi

∂x̃r

∂xj

dt

dt̃
,

is called an h-normal Γ-linear connection on the 1-jet space J1(T, M).

Example 2.3. Using the group of local transformations (2.2.2.1), by local computa-
tions, we deduce that the set of local functions

BΓ0 = (H1
11, 0, γk

ij , 0),

defines an h-normal Γ0-linear connection on J1(T, M). This is called the generalized
Berwald connection produced by the pair of Riemannian metrics h11(t) and
ϕij(xk).

In Riemann-Lagrange geometry of the 1-jet space J1(T, M), the local covariant
derivatives of the generalized Berwald connection BΓ0 produced by the pair of metrics
(h, ϕ) are ususally denoted by ”//1”, ”||i” and ”||(1)(i) ”. In order to reach the aim of

our paper, let us consider now X =
(
X

(i)
(1)(t, x

k)
)

as an arbitrary d-tensor field on

the 1-jet space J1(T, M), whose local components are independent on the directions
xj

1. Taking into account the independence of directions of the d-tensor components
X

(i)
(1)(t, x

k) and some general formulas from [21], by direct local computations, we
easily find the following important geometrical result.
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Proposition 2.2. The T -horizontal and M -horizontal local covariant derivatives
”//1” and ”||j” of the generalized Berwald connection BΓ0 produce the following co-
variant derivatives of the d-tensor field X

(i)
(1)(t, x

k):

X
(i)
(1)//1 =

∂X
(i)
(1)

∂t
−X

(i)
(1)H

1
11, X

(i)
(1)||j =

∂X
(i)
(1)

∂xj
+ X

(m)
(1) γi

mj .
(2.2.2.9)

2.2 Solutions of DEs systems of order one as harmonic curves
on 1-jet spaces. Canonical nonlinear connections

In the sequel, let us show that the solutions of class C2 of an arbitrary DEs system
of order one may be naturally regarded as harmonic curves on 1-jet spaces. So, let
us consider an unknown curve c = (xi(t)) and an arbitrary given d-tensor field X =(
X

(i)
(1)(t, x

k)
)

, that define on the 1-jet space J1(T, M) the following DEs system of
order one:

xi
1 = X

(i)
(1)(t, x

k(t)), ∀i = 1, n ⇔

xi
1 −X

(i)
(1)(t, x

k(t)) = 0, ∀i = 1, n,

(2.2.2.10)

where xi
1 = ẋi(t) = dxi/dt.

Recall that we are working with two a priori Riemannian manifolds (T, h11(t)) ⊂
(R, h11(t)) and (M, ϕij(xk)) ⊂ (Rn, ϕij(xk)). Moreover, suppose that the relativistic
time-manifold T is a connected, compact and orientable manifold (i. e., like a closed
interval of real numbers [a, b]). Under these geometrical assumptions, we can prove
the following interesting qualitative-energetic result.

Theorem 2.1. All solutions of class C2 of the DEs system (2.2.2.10) are harmonic
curves on the 1-jet space J1(T, M) of the time dependent spray SDEs = (H(i)

(1)1, G
(i)
(1)1),

whose components are given by the formulas

H
(i)
(1)1 = −1

2
H1

11x
i
1, G

(i)
(1)1 =

1
2
γi

jkxj
1x

k
1 + h11F

i(t, xk, xr
1),

where

F i(t, xk, xr
1) =

h11

2

{
ϕilX

(s)
(1)||lϕsr

[
X

(r)
(1) − xr

1

]
+ X

(i)
(1)||mxm

1 + X
(i)
(1)//1

}
.

In other words, the C2 solutions of the initial first order DEs system (2.2.2.10) are
verifying the second order DEs system (2.2.2.3) of harmonic curves for the time de-
pendent spray SDEs.

Proof. Via the least squares variational calculus geometric method for general PDEs
systems of order one discussed at the beginning of this paper, note that the initial
first order DEs system (2.2.2.10) is an equivalent one with the first order DEs system

∑

i,j=1,n

{
h11(t)ϕij(xk)

(
xi

1 −X
(i)
(1)(t, x

k(t))
)(

xj
1 −X

(j)
(1)(t, x

k(t))
)}

= 0.(2.2.2.11)
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This is because, we underline this fact, the Riemannian metrics h11(t) and ϕij(xk)
are positive definite ones and produce a d-metric on J1(T, M). It is obvious now that
the local computations in the preceding DEs system lead to the following new form
of the equations (2.2.2.11):

h11(t)
n∑

i,j=1

ϕij(xk)xi
1x

j
1 +

n∑
1

U
(1)
(i) (t, xk)xi

1 + Φ(t, xk) = 0,(2.2.2.12)

where U
(i)
(1)(t, x

k) = −2h11
∑n

m=1 ϕimX
(m)
(1) and Φ(t, xk) = h11

∑n
r,s=1 ϕrsX

(r)
(1)X

(s)
(1) .

Using the Einstein convention for summations, let us consider now the least squares
time dependent Lagrangian of electrodynamics kind, which is given by

DEsED = ||C−X||2
√

h11(t) =

=
{

h11(t)ϕij(xk)
[
xi

1 −X
(i)
(1)

] [
xj

1 −X
(j)
(1)

]}√
h11(t) =

=
{

h11(t)ϕij(xk)xi
1x

j
1 + U

(1)
(i) (t, xk)xi

1 + Φ(t, xk)
} √

h11(t),

where C = xi
1(∂/∂xi

1), X = X
(i)
(1)(∂/∂xi

1). Let us consider also the least squares energy
action functional EDEsED : C2(T,M) → R+, given by

EDEsED(c) =
∫

T

DEsEDdt =
∫

T

||C−X||2
√

h11(t)dt ≥ 0.

It is obvious now that a smooth curve c ∈ C2(T, M), locally expressed by c(t) =
(x1(t), x2(t), ..., xn(t)), is a solution of the DEs system (2.2.2.12) if and only if the
curve c vanishes the time dependent Lagrangian DEsED. In other words, c is a solution
of the DEs system (2.2.2.12) if and only if the curve c is a global minimum point for
the least squares energy action functional EDEsED. Therefore, every curve c = (xi(t))
of class C2 is a solution of the initial DEs system (2.2.2.10) if and only if it verifies
the Euler-Lagrange equations

∂[DEsED]
∂xi

− d

dt

(
∂[DEsED]

∂xi
1

)
= 0, ∀i = 1, n.(2.2.2.13)

Taking into account the expression of the time dependent least squares Lagrangian
DEsED and some local differential computations in the Euler-Lagrange equations
(2.2.2.13), we claim that the equations (2.2.2.13) can be rewritten in the form (2.2.2.3)
of the second order DEs system of the harmonic curves of a time dependent spray

SDEs = (H(i)
(1)1, G

(i)
(1)1),(2.2.2.14)

whose temporal components are given by

H
(i)
(1)1 = −1

2
H1

11x
i
1.
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Moreover, the spatial components of the time-dependent SDEs are expressed by

G
(i)
(1)1 =

1
2
γi

jkxj
1x

k
1 +

h11ϕ
il

4


U

(1)
(l)mxm

1 +
∂U

(1)
(l)

∂t
+ U

(1)
(l) H1

11 −
∂Φ
∂xl


 ,

where

U
(1)
(i)j =

∂U
(1)
(i)

∂xj
−

∂U
(1)
(j)

∂xi
.

In what follows, using the expressions which give U
(1)
(i) and Φ, together with direct

local computations, we find

U
(1)
(i)j = −2h11

[
ϕimX

(m)
(1)||j − ϕjmX

(m)
(1)||i

]
,

∂U
(1)
(i)

∂t
+ U

(1)
(i) H1

11 = −2h11ϕimX
(m)
(1)//1,

∂Φ
∂xl

= 2h11ϕmrX
(m)
(1) X

(r)
(1)||l.

In conclusion, all our preceding constructions imply what we were looking for. For
a more clear geometrical understanding of the proof of this Theorem, the authors of
this paper invite the reader to study the proofs of the Theorems 2.3.1 and 2.3.2 from
the paper [21], pp 156-157.

Definition 2.5. The time dependent spray SDEs = (H(i)
(1)1, G

(i)
(1)1) given by Theorem

2.1 is be called the canonical time-depedent spray produced by the DEs sys-
tem (2.2.2.10) and the pair of Riemannian metrics (h11(t), ϕij(xk)).

Remark 2.4. Note that the Theorem 2.1 holds also good if we use a semi-Riemannian
metric ϕij(xk) (not necessarily a Riemannian one) on the spatial manifold of physi-
cal events M . This is because the Euler-Lagrange equations (2.2.2.13) of the electro-
dynamic Lagrangian DEsED have the same geometrical form and properties in the
semi-Riemannian case, too.

Taking into account the geometrical connection between the time dependent sprays
and the nonlinear connections on 1-jet spaces, given by the Proposition 2.1, we easily
deduce the following important geometrical corollary and definition.

Corollary 2.1.1. The canonical nonlinear connection ΓSDEs
= (M (i)

(1)1, N
(i)
(1)j)

produced by the DEs system (2.2.2.10) and the pair of Riemannian metrics
(h11(t), ϕij(xk)) on the 1-jet space J1(T, M) has the components

M
(i)
(1)1 = −H1

11x
i
1 and N

(i)
(1)j = γi

jkxk
1 −H(i)

(1)j ,(2.2.2.15)

where

H(i)
(1)j =

1
2

[
X

(i)
(1)||j − ϕirX

(s)
(1)||rϕsj

]
.
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2.3 Time dependent geometric dynamics of DEs systems of
order one. Generalized Maxwell equations

The geometrization of the time dependent Lagrangians on 1-jet spaces of form
J1(R,M), in the sense of natural construction of canonical nonlinear connections, gen-
eralized Cartan connections, torsion and curvature d-tensors from these Lagrangians,
is now completely developed in the paper [21]. Some generalized gravitational and
electromagnetic field theories produced by such time dependent Lagrangians, which
are characterized by natural and interesting generalized Einstein and Maxwell equa-
tions, are described there too.

In this section, we will particularize the main geometrical and physical results
from [21], [17], and [20] for our particular time dependent electrodynamics La-
grangian DEsED on the 1-jet space J1(T,M), where (T, h11(t)) ⊂ (R, h11(t)) and
(M, ϕij(xk)) ⊂ (Rn, ϕij(xk)). We recall that the least squares Lagrangian DEsED
from Theorem 2.1 is derived from the DEs system (2.2.2.10) and the pair of Rie-
mannian metrics (h11(t), ϕij(xk)).

Definition 2.6. The pair (J1(T, M),DEsED), endowed with the nonlinear connec-
tion ΓSDEs

given by (2.2.2.15), is denoted by DEsEDLn
1 and is called the canon-

ical relativistic rheonomic Lagrange space produced by the DEs system
(2.2.2.10) and the pair of metrics (h11(t), ϕij(xk)).

In this geometrical context, using general formulas from [20], [21] and [22], together
with local computations, we find the following important differential geometric results:

Theorem 2.2. i) The canonical generalized Cartan connection CΓSDEs
of the rela-

tivistic rheonomic Lagrange space DEsEDLn
1 has the adapted components

CΓSDEs
= (H1

11, 0, γi
jk, 0).

where γi
jk are the Christoffel symbols of the semi-Riemannian metric ϕij .

ii) The torsion d-tensor T of the canonical generalized Cartan connection CΓSDEs

of the space DEsEDLn
1 is determined by two adapted local d-tensors:

R
(i)
(1)1j =

1
2

[
X

(i)
(1)||j//1 − ϕirX

(s)
(1)||r//1ϕsj

]
,

R
(i)
(1)jk = ri

jkmxm
1 − 1

2

[
X

(i)
(1)||j||k − ϕirX

(s)
(1)||r||kϕsj

]
,

where rl
ijk are the local curvature tensors of semi-Riemannian metric ϕij and the

second covariant derivatives of the d-tensor X
(i)
(1)(t, x

k) are given by

X
(i)
(1)||j//1 =

∂X
(i)
(1)||j
∂t

−X
(i)
(1)||jH

1
11,

X
(i)
(1)||j||k =

∂X
(i)
(1)||j

∂xk
−X

(m)
(1)||jγ

i
mk −X

(i)
(1)||mγm

jk.
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iii) The curvature d-tensor R of the canonical generalized Cartan connection
CΓSDEs

of the space DEsEDLn
1 is determined only by the adapted components

Rl
ijk = rl

ijk, that is exactly the components of the curvature tensor of the semi-
Riemannian metric ϕij.

Remark 2.5. Both generalized Cartan CΓSDEs
and Berwald BΓ0 linear connections

on the 1-jet space J1(T,M) have the same adapted components. However, they are
two distinct linear connections. This is because the generalized Cartan connection is a
ΓSDEs-linear connection while the generalized Berwald connection is a Γ0-linear one.
For more details, please see the works [18] and [19].

In the sequel, following the geometrical and abstract physical ideas from the papers
[22] and [21], by direct local computations, we can construct a canonical 2-form of
the space which is similar to the electromagnetic field of the space DEsEDLn

1 and
describe its generalized Maxwell equations.

Theorem 2.3. i) The time dependent electromagnetic field F of the relativistic rheo-
nomic Lagrange space DEsEDLn

1 is expressed by the distinguished 2-form (gyroscopic
field)

F = F
(1)
(i)jδx

i
1 ∧ dxj ,

where δxi
1 = dxi

1 + M
(i)
(1)1dt + N

(i)
(1)jdxj and

F
(1)
(i)j =

h11

2

[
ϕimX

(m)
(1)||j − ϕjmX

(m)
(1)||i

]
.

ii) The adapted components F
(1)
(i)j of the gyroscopic field are governed by the fol-

lowing generalized Maxwell equations





F
(1)
(i)j//1 =

1
4
A{i,j}

{
h11ϕim

[
X

(m)
(1)||j//1 − ϕmrX

(s)
(1)||r//1ϕsj

]}

∑
{i,j,k} F

(1)
(i)j||k = 0

∑
{i,j,k} F

(1)
(i)j ||

(1)
(k) = 0,

where A{i,j} represents an alternate sum and
∑
{i,j,k} means a cyclic sum.

Remark 2.6. We did not describe the time dependent gravitational theory of the
relativistic rheonomic Lagrange space DEsEDLn

1 because its time dependent gravita-
tional field G and its attached generalized Einstein equations are independent on the
tensorial components X

(i)
(1)(t, x

k) that define DEs system (2.2.2.10). In fact, the geo-
metric time dependent gravitational entities are depending only on the pair of metrics
(h11(t), ϕij(xk)).
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3 Geometric dynamics produced on 1-jet spaces by
DEs systems of order one and pair of Euclidian
metrics ∆ = (1, δij)

In order to use the preceding geometrical results for the study of some DEs systems
of order one coming from Theoretical Biology, let us consider the particular Euclidian
metrics as the pair of Riemannian metrics:

∆ = (h11(t) = 1, ϕij(xk) = δij),

where

δij =
{

0, i 6= j
1, i = j,

is the classical Kronecker symbol.
In this particular situation, we are placed on the 1-jet space J1(T, M) produced

by the Riemannian submanifolds (T, h11(t) = 1) ⊂ (R, 1) and (M,ϕij(xk) = δij) ⊂
(Rn, δij). Consequently, the Theorem 2.1 asserts now that all solutions of C2 class
of the DEs system (2.2.2.10) may be regarded as the harmonic curves of the time-
dependent spray SDEs(∆) = (H(i)

(1)1, G
(i)
(1)1), whose components are given by the for-

mulas

H
(i)
(1)1 = 0, G

(i)
(1)1 =

1
2

{
X

(r)
(1)||i

[
X

(r)
(1) − xr

1

]
+ X

(i)
(1)||mxm

1 + X
(i)
(1)//1

}
,

where

X
(i)
(1)//1 =

∂X
(i)
(1)

∂t
and X

(i)
(1)||j =

∂X
(i)
(1)

∂xj
.

In other words, following the Proof of Theorem 2.1, we conclude that the solutions of
the DEs system (2.2.2.10) are minimizing the least squares time dependent Lagrangian

LSQ(t, xk, xk
1) =

n∑

i=1

(
xi

1 −X
(i)
(1)(t, x

k)
)2

,

which is obviously the time dependent electrodynamics Lagrangian DEsED for the
particular pair of Euclidian metrics ∆ = (1, δij).

In what follows, let us denote the rheonomic Lagrange space produced by the DEs
system (2.2.2.10) and the pair of Euclidian metrics ∆ = (1, δij) by

DEsEDLn
1 (∆) = (J1(T, M),LSQ).

By simple computations, the geometrical results from preceding sections may be ex-
pressed on the particular space DEsEDLn

1 (∆).

Theorem 3.1. i) The canonical nonlinear connection ΓSDEs(∆) = (M (i)
(1)1, N

(i)
(1)j) of

the space DEsEDLn
1 (∆) is given by the components
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M
(i)
(1)1 = 0 and N

(i)
(1)j =

1
2


∂X

(i)
(1)

∂xj
−

∂X
(j)
(1)

∂xi


 .

ii) The canonical generalized Cartan connection CΓSDEs(∆) of the relativistic rheo-
nomic Lagrange space DEsEDLn

1 (∆) has all its adapted components as null ones.
iii) The torsion d-tensor T of the canonical generalized Cartan connection CΓSDEs(∆)

of the space DEsEDLn
1 (∆) is determined by two adapted local d-tensors:

R
(i)
(1)1j =

1
2


∂2X

(i)
(1)

∂xj∂t
−

∂2X
(j)
(1)

∂xi∂t


 and R

(i)
(1)jk = −1

2


 ∂2X

(i)
(1)

∂xj∂xk
−

∂2X
(j)
(1)

∂xi∂xk


 .

iv) All adapted components of the curvature d-tensor R of the canonical generalized
Cartan connection CΓSDEs(∆) of the space DEsEDLn

1 (∆) vanish.
v) The 2-form F of the space DEsEDLn

1 (∆) is expressed by

F = F
(1)
(i)jδx

i
1 ∧ dxj ,

where

δxi
1 = dxi

1 +
1
2


∂X

(i)
(1)

∂xj
−

∂X
(j)
(1)

∂xi


 dxj and F

(1)
(i)j =

1
2


∂X

(i)
(1)

∂xj
−

∂X
(j)
(1)

∂xi


 .

vi) The components F
(1)
(i)j of the relativistic rheonomic Lagrange space DEsEDLn

1 (∆)
are governed by the following generalized Maxwell equations:





F
(1)
(i)j//1 =

1
4
A{i,j}






∂2X

(i)
(1)

∂xj∂t
−

∂2X
(j)
(1)

∂xi∂t






 =

1
2


∂2X

(i)
(1)

∂xj∂t
−

∂2X
(j)
(1)

∂xi∂t




∑
{i,j,k} F

(1)
(i)j||k = 0,

where A{i,j} represents an alternate sum,
∑
{i,j,k} means a cyclic sum and

F
(1)
(i)j//1 =

∂F
(1)
(i)j

∂t
, F

(1)
(i)j||k =

∂F
(1)
(i)j

∂xk
.

In many applicative problems from Theoretical Biology we meet d-tensors X
(i)
(1)

which are not depending on the time coordinate t ∈ T ⊂ R. In other words, in a lot of
biological problems we are working with DEs systems of order one given by d-tensors
X on J1(T,M), having the components of the particular form X

(i)
(1) = X

(i)
(1)(x

k). In
these time independent situations, it is obvious that many geometrical objects studied
by us disappear, in the sense that they are vanishing. In fact, for time independent
d-tensors X

(i)
(1) = X

(i)
(1)(x

k) the Riemann-Lagrange geometrical structure produced by
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the DEs system (2.2.2.10) and the pair of Riemannian metrics ∆ is characterized by
the following Corollary, in which the geometrical space of biological events is denoted
ADEsEDLn

1 (∆). We use this notation because we have in study that so called an
autonomous Lagrange space or, in other words, a time-independent Lagrange space
(i. e., a non-rheonomic Lagrange space).

Corollary 3.1.1. i) The canonical nonlinear connection ΓSDEs(∆) = (M (i)
(1)1, N

(i)
(1)j)

of the autonomous Lagrange space ADEsEDLn
1 (∆) is given by the components

M
(i)
(1)1 = 0 and N

(i)
(1)j =

1
2


∂X

(i)
(1)

∂xj
−

∂X
(j)
(1)

∂xi


 .

ii) The torsion d-tensor T of the null canonical generalized Cartan connection
CΓSDEs(∆) of the autonomous Lagrange space ADEsEDLn

1 (∆) is determined only by
the adapted components

R
(i)
(1)jk = −1

2


 ∂2X

(i)
(1)

∂xj∂xk
−

∂2X
(j)
(1)

∂xi∂xk


 .

iii) The gyroscopic field F is a time independent one and is given by the same
formulas as in the Theorem 3.1.

iv) The components F
(1)
(i)j are governed by the following more simple generalized

Maxwell equations
∑

{i,j,k}
F

(1)
(i)j||k = 0.

4 Geometric Yang-Mills energy

Let us consider in this Section that the DEs system (2.2.2.10) governs some phenom-
enas coming from Theoretical Biology. In a such biological context, our geometrical
methods have proved that the given DEs system, together with the pair of Euclidian
metrics ∆, provides an abstract gyroscopic field F , which, in our opinion, must be
intimately related to biologic phenomenas taken in study. In order to observe the in-
formations that may be suggested by this field F , we introduce a natural geometrical
energy of F , like the Yang-Mills energies studied by Bourgouignon and Lawson [7]
or Teleman [29]. In this direction, recall that the L(G)-valued 2-forms F, where G is
a Lie subgroup of the linear group of matrices with real entries GLn(R) and L(G)
is its Lie algebra, models from a geometrical point of view important physical fields.
As examples, for specific several subgroups G ⊂ GLn(R), a L(G)-valued 2-form F
can model one from the gravitational, electromagnetic, strong nuclear or weak nuclear
physical fields. Moreover, we recall that a G-valued 1-form of connection 5, verifying
the equality d5 = F , is called a potential of the physical field F .

In such geometrical and physical approach, we assert that our 2-forms F produced
by biologic DEs systems and pairs of Euclidian metrics, may be regarded as o(n)-
valued 1-forms on the time manifold T , setting
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F = F(1)dt ∈ Γ(Λ1(T∗T )⊗ o(n)),

where

F(1) =




0 F
(1)
(1)2 F

(1)
(1)3 ... ... F

(1)
(1)n

−F
(1)
(1)2 0 F

(1)
(2)3 ... ... F

(1)
(2)n

−F
(1)
(1)3 F

(1)
(2)3 0 ... ... F

(1)
(3)n

... ... ... ... ... ...

... ... ... ... 0 F
(1)
(n−1)n

−F
(1)
(1)n −F

(1)
(2)n −F

(1)
(3)n ... −F

(1)
(n−1)n 0




∈ o(n),

o(n) beeing the set of skew-matrices as the Lie algebra L(O(n)) of the subgroup of
orthogonal matrices O(n) ⊂ GLn(R). As a conclusion, let us introduce the following
geometrical, physical and abstract biological concept of energy.

Definition 4.1. The Lagrangian function of Yang-Mills type, which is given by the
formula

EYMDEs(∆)(F) = ||F(1)||2 =
1
2
Trace

(
F(1) ·T F(1)

)
=

n−1∑

i=1

n∑

j=i+1

[
F

(1)
(i)j

]2

,

is called the geometric gyroscopic energy of the biologic phenomenas gov-
erned by the DEs system taken in study.

In the next sections, we study the expressions of the abstract biological Yang-Mills
energies produced by the calcium oscillations in a large variety of cell types.

4.1 Intracellular calcium oscillations induced by self-modulation
of the inositol 1, 4, 5- triphosphate signal

The mathematical model [13] that describes calcium oscillations which can arise in a
model based on the mechanism of calcium-induced calcium release, takes into account
the calcium-stimulated degradation of inositol triphosphate (InsP3).

In some cell types, particularly in hepatocytes, calcium oscillations have been
observed in response to stimulation by specific agonists. As these cells are not electri-
cally excitable, it is likely that this calcium oscillations rely on the interplay between
two intracellular mechanisms capable of destabilizing the steady state: an increase in
InsP3 is expected to lead to an increase in the frequency of calcium spikes, but at the
same time the InsP3-induced rise will also lead to increased InsP3 hydrolysis due to
the calcium activation of the InsP3 3-kinase.

The classical mathematical model for the study of cytosolic calcium oscillations
and their associated degradations of InsP3 in endoplasmic reticulum contains three
variables Z(t), Y (t) and A(t), where

• Z is the concentration of free calcium in the cytosol;
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• Y is the concentration of free calcium in the internal pool;

• A is the InsP3 concentration.

The time evolution of these variables is governed by the following first order dif-
ferential equations of cytosolic calcium oscillations (for more details, please see [5]),
denoted by us with [Ca2+ − InsP3]:





dZ

dt
= VM3

Zm

Km
Z + Zm

· Y 2

K2
Y + Y 2

· A4

K4
A + A4

− VM2

Z2

K2
2 + Z2

+

+ kfY − kZ + V0 + βV1

dY

dt
= VM2

Z2

K2
2 + Z2

− kfY − VM3

Zm

Km
Z + Zm

· Y 2

K2
Y + Y 2

· A4

K4
A + A4

dA

dt
= βVM4 − VM5

Ap

Kp
5 + Ap

· Zn

Kn
d + Zn

− εA,

where

• V0 refers to a constant input of calcium from the extracellular medium;

• V1 is the maximum rate of stimulus-induced influx of calcium from the extra-
cellular medium;

• β is a constant parameter reflecting the degree of stimulation of the cell by an
agonist and thus only varies between 0 and 1;

• the rates V2 = VM2

Z2

K2
2 + Z2

and V3 = VM3

Zm

Km
Z + Zm

· Y 2

K2
Y + Y 2

· A4

K4
A + A4

refer

to the pumping of cytosolic calcium into the internal stores and to the release
of calcium from these stores into the cytosol in a process activated by cytoso-
lic calcium, respectively. The constants VM2 and VM3 represent the maximum
values of the preceding rates;

• the parametres K2, KY , KZ and KA are treshold constants for pumping, release,
and activation of release by calcium and by InsP3;

• kf is a rate constant measuring the passive, linear leak of Y into Z;

• k relates on the assumed linear transport of cytosolic calcium into the extracel-
lular medium;

• VM4 is the maximum rate of stimulus-induced synthesis of InsP3;

• V5 = VM5

Ap

Kp
5 + Ap

· Zn

Kn
d + Zn

is the rate of phosphorylation of the InsP3 by the

3-kinase, which is caracterized by a maximum value VM5 and a half-saturation
constant K5;

• m, n and p are the Hill’s coefficients related to the cooperative processes;
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• ε is the rate of phosphorylation of the InsP3 by the 5-phosphatase.

From a biologic point of view, we recall that the preceding DEs system is based
on the mechanism of Ca2+- induced Ca2+ release (CICR), that takes into account
the Ca2+ stimulates the degradations of the inositol 1, 4, 5 triphosphate (InsP3) by
a 3-kinase.

From a geometrical point of view, the DEs system of calcium oscillations and the
degradation of the inositol trisphosphate InsP3 may be regarded as a DEs system on
the particular 1-jet space J1(T, M) ⊂ J1(R,Rn), where dim T = 1 and dim M = n =
3. Let us denote the coordinates of the manifold M by x1 = Z, x2 = Y and x3 = A.
In this geometrical context, the DEs system [Ca2+ − InsP3], as a particular DEs
system of the form (2.2.2.10), is determined by the following tensorial components
X

(i)
(1)(x

1, x2, x3):

X
(1)
(1) (Z, Y, A) = VM3

Zm

Km
Z + Zm

· Y 2

K2
Y + Y 2

· A4

K4
A + A4

− VM2

Z2

K2
2 + Z2

+

+ V0 + βV1 + kfY − kZ,

X
(2)
(1) (Z, Y, A) = VM2

Z2

K2
2 + Z2

− kfY − VM3

Zm

Km
Z + Zm

· Y 2

K2
Y + Y 2

· A4

K4
A + A4

,

X
(3)
(1) (Z, Y, A) = βVM4 − VM5

Ap

Kp
5 + Ap

· Zn

Kn
d + Zn

− εA.

Consequently, using the general results from the preceding sections, some partial
derivatives and computations, we find the following important geometrical result that
characterizes the cytosolic calcium oscillations in hepatocytes and the degradation of
InsP3 through endoplasmic reticulum.

Theorem 4.1. The biologic gyroscopic field F produced by the DEs system [Ca2+ −
InsP3] and the pair of Euclidian metrics ∆ has the components

F
(1)
(1)2 =

1
2

{
kf − 2VM2K

2
2

Z

(K2
2 + Z2)2

+ VM3

Zm−1

Km
Z + Zm

· Y

K2
Y + Y 2

· A4

K4
A + A4

·

·
[
2

K2
Y Z

K2
Y + Y 2

+ m
Km

Z Y

Km
Z + Zm

]}
,

F
(1)
(1)3 =

2VM3K
4
AZm

Km
Z + Zm

· Y 2

K2
Y + Y 2

· A3

(K4
A + A4)2

+
n

2
· Ap

Kp
5 + Ap

· VM5K
n
d Zn−1

(Kn
d + Zn)2

,

F
(1)
(2)3 = −2VM3K

4
A ·

Zm

Km
Z + Zm

· Y 2

K2
Y + Y 2

· A3

(K4
A + A4)2

.

Proof. Particularizing the formulas that define the gyroscopic components of a DEs
system of order one and a pair of Riemannian metrics, for the particular DEs system
[Ca2+ − InsP3] and the pair of Euclidian metrics ∆ = (1, δij), we find
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F
(1)
(1)2 =

1
2


∂X

(1)
(1)

∂Y
−

∂X
(2)
(1)

∂Z


 , F

(1)
(1)3 =

1
2


∂X

(1)
(1)

∂A
−

∂X
(3)
(1)

∂Z


 ,

F
(1)
(2)3 =

1
2


∂X

(2)
(1)

∂A
−

∂X
(3)
(1)

∂Y


 .

So, the computations imply the required result.

We recall that the formulas from Theorem 3.1 show that the spatial components
N

(i)
(1)j of the nonlinear connection Γ[Ca2+−InsP3] = (0, N

(i)
(1)j) produced by the DEs

system [Ca2+ − InsP3] and the pair of Euclidian metrics ∆ = (1, δij) are exactly the
same with the gyroscopic components N

(i)
(1)j = F

(1)
(i)j . Consequently, the Theorem 2.1

and his Corollary imply the following interesting qualitative geoemetrical result with
biological energetical connotations.

Theorem 4.2. The C2 solutions of the DEs system [Ca2+ − InsP3] may be re-
garded as harmonic curves on the 1-jet space J1(T, M) of the nonlinear connection
Γ[Ca2+−InsP3] = (0, F

(1)
(i)j). In other words, the C2 solutions (Z(t), Y (t), A(t)) of the

first order DEs system [Ca2+−InsP3] verify also the following second order biological
DEs system:





d2Z

dt2
+ F

(1)
(1)2

dY

dt
+ F

(1)
(1)3

dA

dt
+

3∑

k=1

∂zX
(1)
(1) ·X

(k)
(1) = 0

d2Y

dt2
− F

(1)
(1)2

dZ

dt
+ F

(1)
(2)3

dA

dt

3∑

k=1

∂zX
(1)
(1) ·X

(k)
(2) = 0

d2A

dt2
− F

(1)
(1)3

dZ

dt
− F

(1)
(2)3

dY

dt

3∑

k=1

∂zX
(1)
(1) ·X

(k)
(3) = 0.

(4.4.4.1)

Remark 4.1. The importance of the second order system (4.4.4.1) is that its equa-
tions are equivalent with the Euler-Lagrange equations of the least squares Lagrangian
on the 1-jet space J1(T, M), given by

LSQ =
(
Ż −X

(1)
(1) (Z, Y, A)

)2

+
(
Ẏ −X

(2)
(1) (Z, Y,A)

)2

+
(
Ȧ−X

(3)
(1) (Z, Y,A)

)2

,

where (t, Z, Y, A, Ż, Ẏ , Ȧ) are the coordinates on J1(T,M) ≡ T × TM. Therefore,
the C2 solutions (Z(t), Y (t), A(t)) of the first order DEs system [Ca2+ − InsP3],
which characterizes the intracellular calcium oscillations in non-excitable cells in-
volving Ca2+-activated InsP3 degradation, are minimizing the least squares biological
Lagrangian LSQ.
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Particularizing the general definition of the geometric gyroscopic energy of a gen-
eral DEs system coming from Theoretical Biology to our present biological phenom-
enas, we deduce that the geometric gyroscopic energy produced by the intracellular
calcium oscillations in some non-excitable cell types has the form

EYM[Ca2+−InsP3](∆)(Z, Y, A) =
[
F

(1)
(1)2

]2

+
[
F

(1)
(1)3

]2

+
[
F

(1)
(2)3

]2

.

Note that we have three important sets of parameter values corresponding to three
types of complex Ca2+ oscillations in this model that involves Ca2+-activated InsP3

degradation including bursting, chaos and quasiperiodicity are listed in the following
table. For more details, please see [13].

Parameters Bursting Chaos Quasiperiodicity
β 0.46 0.65 0.51
n 2 4 4
m 4 2 2
p 1 1 2

K2 (µM) 0.1 0.1 0.1
K5 (µM) 1 0.3194 0.3
KA (µM) 0.1 0.1 0.2
Kd (µM) 0.6 1 0.5
KY (µM) 0.2 0.3 0.2
KZ (µM) 0.3 0.6 0.5
k (s−1) 0.1667 0.1667 0.1667
kf (s−1) 0.0167 0.0167 0.0167
ε (s−1) 0.0167 0.2167 0.0017

V0 (µM s−1) 0.0333 0.0333 0.0333
V1 (µM s−1) 0.0333 0.0333 0.0333

VM2 (µM s−1) 0.1 0.1 0.1
VM3 (µM s−1) 0.3333 0.5 0.3333
VM4 (µM s−1) 0.0417 0.05 0.0833
VM5 (µM s−1) 0.5 0.8333 0.5

These parameter values are corresponding to the various types of complex oscil-
latory behaviour observed in the model defined by equations [Ca2+ − InsP3] and
obviously produce particular geometric biological Yang-Mills energies.

Theorem 4.3. The following formulas for the geometric biological energies of Yang-
Mills type are true:

(i) Biological Yang-Mills energy of bursting cytosolic calcium oscilla-
tions in the model involving Ca2+ activated InsP3 degradation.

EYMbursting
[Ca2+−InsP3](∆) =

{
0.00835− 0.001Z

(0.01 + Z2)2
+

0.3333Z3

0.0081 + Z4
· Y

0.04 + Y 2
·
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· A4

0.0001 + A4
·
[

0.04Z

0.04 + Y 2
+

0.0162Y

0.0081 + Z4

]}2

+
{

0.6666 · 10−4Z4

0.0081 + Z4
· Y 2

0.04 + Y 2
·

A3

(0.0001 + A4)2
+

A

(1 + A)2
· 0.18Z

(0.36 + Z2)2

}2

+
0.44435556 · 10−8Z8

(0.0081 + Z4)2
·

· Y 4

(0.04 + Y 2)2
· A6

(0.0001 + A4)4
;

(ii) Biological Yang-Mills energy of chaos cytosolic calcium oscillations
in the model involving Ca2+ activated InsP3 degradation.

EYMchaos
[Ca2+−InsP3](∆) =

�
0.00835− 0.001Z

(0.01 + Z2)2
+

0.5Z

0.36 + Z2
· Y

0.09 + Y 2
·

· A4

0.0001 + A4
·
�

0.09Z

0.09 + Y 2
+

0.36Y

0.36 + Z2

��2

+

�
0.0001Z2

0.36 + Z2
· Y 2

0.09 + Y 2
·

· A3

(0.0001 + A4)2
+

2A

0.3194 + A
· 0.8333Z3

(1 + Z4)2

�2

+
10−8Z4

(0.36 + Z2)2
· Y 4

(0.09 + Y 2)2
·

· A6

(0.0001 + A4)4
;

(iii) Biological Yang-Mills energy of quasiperiodicity cytosolic calcium
oscillations in the model involving Ca2+ activated InsP3 degradation.

EYMquasiperiodicity
[Ca2+−InsP3](∆)

=

�
0.00835− 0.001Z

(0.01 + Z2)2
+

0.3333Z

0.25 + Z2
· Y

0.04 + Y 2
·

· A4

0.0016 + A4
·
�

0.04Z

0.09 + Y 2
+

0.25Y

0.25 + Z2

��2

+

�
0.00106656Z2

0.25 + Z2
· Y 2

0.04 + Y 2
·

· A3

(0.0016 + A4)2
+

2A2

0.09 + A2
· 0.03125Z3

(0.0625 + Z4)2

�2

+
0.00001137550233Z4

(0.25 + Z2)2
·

· Y 4

(0.04 + Y 2)2
· A6

(0.0016 + A4)4
.
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4.2 Calcium oscillations in a model involving endoplasmic
reticulum, mitochondria and cytosolic proteins

The next mathematical model represents a possible mechanism for complex calcium
oscillations based on the interplay between three calcium stores in the biological liv-
ing cells: the endoplasmic reticulum (ER), mitochondria and cytosolic proteins. The
majority of calcium released from the ER is first very quickly sequestred by mito-
chondria. Afterwards, a much slower release of calcium from the mitochondria servs
as the calcium suply for the intermediate calcium exchanges between the ER and the
cytosolic proteins. We would like to point out that the oscillations of cytosolic calcium
concentration play a vital role in providing the intracellular signalling. Moreover, a lot
of cellular processes, like cell secretion or egg fertilisation for instance, are controlled
by the oscillatory regime of the cytosolic calcium concentration.

In this second mathematical model, we have three variables Cacyt(t), CaER(t)
and Cam(t), where

• Cacyt means the free cytosolic calcium concentration;

• CaER means the free calcium concentration in the ER;

• Cam means the free calcium concentration in the mitochondria.

The preceding variables of calcium are governed by the following first order DEs
system of the calcium oscillations through endoplasmic reticulum, mitochondria and
the cytosolic proteins (for more details, please see [14]), denoted by us with [Ca2+ −
ER− cyt.pr −m]:

8
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

dCacyt

dt
= kch

Ca2
cyt

K2
1 + Ca2

cyt

(CaER − Cacyt) + kleak(CaER − Cacyt)−

− kpumpCacyt +

�
kout

Ca2
cyt

K2
1 + Ca2

cyt

+ km

�
Cam−

− kin
Ca8

cyt

K8
2 + Ca8

cyt

+ k−

�
Catot − Cacyt − ρER

βER
CaER−

−ρm

βm
Cam

�
− k+Cacyt (Prtot−Catot + Cacyt+

+
ρER

βER
CaER +

ρm

βm
Cam

�
,

dCaER

dt
=

βER

ρER

�
kpumpCacyt − kch

Ca2
cyt

K2
1 + Ca2

cyt

(CaER − Cacyt)−

−kleak(CaER − Cacyt)]

dCam

dt
=

βm

ρm

�
kin

Ca8
cyt

K8
2 + Ca8

cyt

−
�

kout
Ca2

cyt

K2
1 + Ca2

cyt

+ km

�
Cam

�
,

where
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• Prtot is the total concentration of cytosolic proteins;

• Catot represents the total cellular Ca2+ concentration;

• K1 represents the half-saturation for Ca2+;

• K2 represents the half-saturation for Ca2+ of uniporters in the mitochondrial
membrane;

• Vpump = kpumpCacyt is the adenosine triphosphate (ATP )- dependent calcium
uptake from the cytosol into the ER;

• Vch = kch

Ca2
cyt

K2
1 + Ca2

cyt

(CaER−Cacyt) is the calcium efflux from the ER through

channels following the calcium-induced calcium release mechanism;

• Vleak = kleak(CaER−Cacyt) represents the calcium leak flux from the ER into
the cytosol;

• Vin = kin

Ca8
cyt

K8
2 + Ca8

cyt

is the active calcium uptake by mitochondrial uniporters;

• Vout =

(
kout

Ca2
cyt

K2
1 + Ca2

cyt

+ km

)
Cam is a very small non-specific leak flux;

• k− and k+ denote the off and the on rate constants of the calcium binding;

• ρER and ρm represent the volume ratio between the ER and the cytosol or
between the mitochondria and the cytosol, respectively;

• βER and βm are constant factors for relating the concentrations of free calcium
in the ER and the mitochondria to the respective total concentrations;

• kpump is the rate constant of the ATP -ases;

• kch represents the maximal permeability of the calcium channels in the ER
membrane;

• kleak is the rate constant for calcium leak flux through the ER membrane;

• kin represents the maximal permeability of the uniporters in the mitochondrial
membrane;

• kout represents the maximal rate for calcium flux through pores;

• km stands for the non-specific leak flux;

Remark 4.2. From a biological point of view, note that, in addition to the endoplas-
mic reticulum as the main intracellular calcium store used in the first mathematical
model, in this second model, the mitochondrial and cytosolic Ca2+- binding proteins
are also taken into account. We recall that this model was proposed in [14] especially
for the study of the physiological role of mitochondria and the cytosolic proteins in
generating complex Ca2+ oscillations.
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From a differential geometric point of view, we underline that the first order
DEs system of calcium oscillations through endoplasmic reticulum, mitochondria and
cytosolic proteins may be regarded as a DEs system on the particular 1-jet space
J1(T,M) ⊂ J1(R,Rn), where dim T = 1 and dim M = n = 3. Denoting the coordi-
nates of the manifold M by x1 = Cacyt, x2 = CaER and x3 = Cam, we remark that
the DEs system of order one [Ca2+−ER− cyt.pr−m] is determined by the following
tensorial components X

(i)
(1)(x

1, x2, x3):

X
(1)
(1) (Cacyt, CaER, Cam) =

kchCa2
cyt

K2
1 + Ca2

cyt

(CaER − Cacyt) + kleak(CaER − Cacyt)−

− kpumpCacyt +

(
kout

Ca2
cyt

K2
1 + Ca2

cyt

+ km

)
Cam−

− kin

Ca8
cyt

K8
2 + Ca8

cyt

+ k−

(
Catot − Cacyt − ρER

βER
CaER−

−ρm

βm
Cam

)
− k+Cacyt (Prtot−Catot + Cacyt+

+
ρER

βER
CaER +

ρm

βm
Cam

)
,

X
(2)
(1) (Cacyt, CaER, Cam) =

βER

ρER
[kpumpCacyt − kleak(CaER − Cacyt) −

−kch

Ca2
cyt

K2
1 + Ca2

cyt

(CaER − Cacyt)

]
,

X
(3)
(1) (Cacyt, CaER, Cam) =

βm

ρm

[
kinCa8

cyt

K8
2 + Ca8

cyt

−
(

kout

Ca2
cyt

K2
1 + Ca2

cyt

+ km

)
Cam

]
.

As in the preceding biological case, it is obvious that again some partial deriva-
tives and computations imply geometrical results which characterize the microscopic
changes produced by the calcium oscillations in the model involving endoplasmic
reticulum, mitochondria and cytosolic proteins.

Theorem 4.4. The adapted components of the gyroscopic field F produced by the
DEs system [Ca2+−ER− cyt.pr−m] and the pair of Euclidian metrics ∆ are given
by the following expressions:
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F
(1)
(1)2 =

1
2


 ∂X

(1)
(1)

∂CaER
−

∂X
(2)
(1)

∂Cacyt


 =

1
2

{
kch

Ca2
cyt

K2
1 + Ca2

cyt

+ kleak − βER

ρER
[kpump−

− 2kchK2
1Cacyt(

K2
1 + Ca2

cyt

)2 (CaER − Cacyt) + kch

Ca2
cyt

K2
1 + Ca2

cyt

+ kleak

]
−

−ρER

βER
(k− + k+Cacyt)

}
,

F
(1)
(1)3 =

1
2


 ∂X

(1)
(1)

∂Cam
−

∂X
(3)
(1)

∂Cacyt


 =

1
2

{
kout

Ca2
cyt

K2
1 + Ca2

cyt

+ km − βm

ρm
·

·
[
8kinK8

2

Ca7
cyt(

K8
2 + Ca8

cyt

)2 − 2koutK
2
1

CamCacyt(
K2

1 + Ca2
cyt

)2

]
−

−ρm

βm
(k− + k+Cacyt)

}
,

F
(1)
(2)3 =

1
2


 ∂X

(2)
(1)

∂Cam
−

∂X
(3)
(1)

∂CaER


 = 0.

Now, taking again into account that the spatial components N
(i)
(1)j of the nonlinear

connection Γ[Ca2+−ER−cyt.pr−m] = (0, N
(i)
(1)j) produced by the DEs system [Ca2+ −

ER − cyt.pr − m] and the pair of Euclidian metrics ∆ = (1, δij) coincid with the
components N

(i)
(1)j = F

(1)
(i)j , we naturally establish the following qualitative geometrical

result with biological energetical meaning.

Theorem 4.5. The C2 solutions of the DEs system [Ca2+ −ER− cyt.pr −m] may
be viewed as harmonic curves on the 1-jet space J1(T, M) of the nonlinear connection
Γ[Ca2+−ER−cyt.pr−m] = (0, F

(1)
(i)j). In other words, the solutions (Cacyt(t), CaER(t), Cam(t))

of the first order DEs system [Ca2+−ER−cyt.pr−m] verify the second order biological
DEs system





d2Cacyt

dt2
+ F

(1)
(1)2

dCaER

dt
+ F

(1)
(1)3

dCam

dt

3∑

k=1

X
(k)
(1) ∂CacytX

(k)
(1) = 0

d2CaER

dt2
− F

(1)
(1)2

dCacyt

dt

3∑

k=1

X
(k)
(1) ∂CaERX

(k)
(1) = 0

d2Cam

dt2
− F

(1)
(1)3

dCacyt

dt

3∑

k=1

X
(k)
(1) ∂CamX

(k)
(1) = 0.

(4.4.4.2)
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Remark 4.3. The second order differential equations (4.4.4.2) are obviously equiva-
lent with the Euler-Lagrange equations system of the least squares Lagrangian

LSQ =
( .

Cacyt −X
(1)
(1)

)2

+
( .

CaER −X
(2)
(1)

)2

+
( .

Cam −X
(3)
(1)

)2

,

where (t, Cacyt, CaER, Cam,
.

Cacyt,
.

CaER,
.

Cam) are the coordinates on the 1-jet space
J1(T,M) ≡ T ×TM. In other words, the C2 solutions (Cacyt(t), CaER(t), Cam(t))
of the first order DEs system [Ca2+−ER−cyt.pr−m], that characterizes the calcium
oscillations in this model involving endoplasmic reticulum, mitochondria and cytosolic
proteins, are minimizing the least squares Lagrangian LSQ.

In the sequel, particularizing the general definition of the geometric energy of a
general DEs system coming from Theoretical Biology to our present biological phe-
nomenas, we deduce that the geometric Yang-Mills energy produced by the calcium
oscillations in this model that takes into account endoplasmic reticulum, mitochondria
and cytosolic proteins has the form

EYM[Ca2+−ER−cyt.pr−m](∆)(Cacyt, CaER, Cam) =
[
F

(1)
(1)2

]2

+
[
F

(1)
(1)3

]2

.

Also. it is important to note that three sets of parameter values corresponding
to three types of complex Ca2+ oscillations, including bursting, chaos and birhyth-
micity are listed in the following table, in which the parameter values correspond to
the various types of complex oscillatory whose behaviour was observed in the model
[Ca2+ − ER− cyt.pr −m]. For more details, please see [14].

Parameters Bursting Chaos Birhythmicity

Catot (µM) 90 90 90

Prtot (µM) 120 120 120

ρER 0.01 0.01 0.01

ρm 0.01 0.01 0.01

βER 0.0025 0.0025 0.0025

βm 0.0025 0.0025 0.0025

K1 (µM) 5 5 5

K2 (µM) 0.8 0.8 0.8

kch (s−1) 4100 2780-2980, 3598-3636 1968-2456

kpump (s−1) 20 20 20

kleak (s−1) 0.05 0.05 0.05

kin (µM s−1) 300 300 300

kout (s−1) 125 125 125

km (s−1) 0.00625 0.00625 0.00625

k+ (µM s−1) 0.1 0.1 0.1

k− (s−1) 0.01 0.01 0.01

Obviously the preceding parameter values produce particular geometric biological
Yang-Mills energies for calcium oscillations phenomenas through endoplasmic reticu-
lum, mitochondria and cytosolic proteins.

Theorem 4.6. The following formulas for the geometric biological energies of Yang-
Mills type are true:
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(i) Biological Yang-Mills energy of bursting calcium oscillations in the
model involving endoplasmic reticulum, mitochondria and cytosolic pro-
teins.

EYMbursting
[Ca2+−ER−cyt.pr−m](∆) =

1
4

{
3075Ca2

cyt

25 + Ca2
cyt

+ (CaER − Cacyt)·

· 51250Cacyt

(25 + Ca2
cyt)2

− 0.4Cacyt − 5.0025
}2

+
1
4

{
1562.5CamCacyt

(25 + Ca2
cyt)2

−

− 100.663296Ca7
cyt

(0.16777216 + Ca8
cyt)2

+
125Ca2

cyt

25 + Ca2
cyt

− 0.4Cacyt − 0.03375

}2

,

(ii) Biological Yang-Mills energy of chaos calcium oscillations in the
model involving endoplasmic reticulum, mitochondria and cytosolic pro-
teins.

EYMchaos
[Ca2+−ER−cyt.pr−m](∆) =

1
4

{
0.75kchCa2

cyt

25 + Ca2
cyt

+ (CaER − Cacyt)·

· 12.5kchCacyt

(25 + Ca2
cyt)2

− 0.4Cacyt − 5.0025
}2

+ 1
4

{
1562.5CamCacyt

(25 + Ca2
cyt)2

−

− 100.663296Ca7
cyt

(0.16777216 + Ca8
cyt)2

+
125Ca2

cyt

25 + Ca2
cyt

− 0.4Cacyt − 0.03375

}2

,

where kch ∈ [2780, 2980] ∪ [3598, 3636];

(iii) Biological Yang-Mills energy of birhythmicity calcium oscillations
in the model involving endoplasmic reticulum, mitochondria and cytosolic
proteins.

EYMbirhythmicity
[Ca2+−ER−cyt.pr−m](∆) =

1
4

{
0.75kchCa2

cyt

25 + Ca2
cyt

+ (CaER − Cacyt)·

· 12.5kchCacyt

(25 + Ca2
cyt)2

− 0.4Cacyt − 5.0025
}2

+
1
4

{
1562.5CamCacyt

(25 + Ca2
cyt)2

−

− 100.663296Ca7
cyt

(0.16777216 + Ca8
cyt)2

+
125Ca2

cyt

25 + Ca2
cyt

− 0.4Cacyt − 0.03375

}2

,

where kch ∈ [1968, 2456].
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5 Theoretical biological interpretations

In authors’s opinion, from a biological point of view, the appeareance in our geomet-
rical studies of an unknown gyroscopic field F, directly and naturally provided by a
DEs system of form (2.2.2.10) that governs some biological phenomenas, and the pair
of Euclidian metrics ∆, may probably have interesting connections with the intrinsic
biological phenomenas studied. Moreover, from a point of view of classification of
field theories exposed by Gotay, Isenberg and Marsden in [11], we appreciate that our
study may be included in the category of parametrized metrical field theories.

As a conclusion, taking into account our preceding discussions and some possible
theoretical biological interpretations, we believe that our geometric biological field F
may be regarded as follows:

• Or this biological field F must vanish in order to realize a stability of the bi-
ological phenomenas studied. This should be probably because a such electro-
magnetic field must not exist in the biological phenomenas.

• Or this biological field F must not vanish, having a natural and microscopic
character in the biological phenomenas studied. In other words, this microscopic
biological field F may be probably regarded as beeing provided not necessarily
by the DEs systems involved in studies but by the pair of metrics ∆ that have the
well known physical meaning of gravitational potentials produced intrinsically
by the biological matter.

Open problems.

1. There is a biological meaning of our preceding geometrical Yang-Mills energies
? In the affirmative case, what are their real biological meanings?

2. We think that the study of classical geometries (i. e. the fundamental forms and
the main curvatures) of the surfaces of constant level, provided by the geometric
Yang-Mills energies of DEs systems studied in this paper, together with some
eventually computer drawn graphics, may represent an interesting research topic
for the Theoretical Biology.

3. Developments of analogous multi-time geometric electromagnetisms on 1-jet
spaces produced by PDEs systems of order one coming also from Theoretical
Biology, together with new eventually theoretical biologic interpretations, are
parts of the work in progress of authors of this paper.
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E. Stoica, K. Teleman and C. Udrişte for stimulative discussions on the geometrical
methods used in the preceding biological applicative research.

The first author of this paper emphasizes that G.S. Asanov’s paper [2] provides
the foundations for a similar framework. Special thanks go to Professor R. G. Beil, the
reviewer of the paper [17], which has kindly provided essential papers for the study
of differential geometry of I-jet spaces.



Geometric dynamics of calcium oscillations ODEs systems 65

References

[1] P. L. Antonelli, R. Miron, Lagrange and Finsler Geometry. Applications to
Physics and Biology, Kluwer Academic Publishers, 1996.

[2] G.S. Asanov, Jet extension of Finslerian Gauge approach, Fortscritte der Physik,
38 (1990), 8, 571-610.

[3] V. Balan, Notable curves in geometrized J1(T, M) framework, Balkan Journal of
Geometry and Its Applications, 8 (2003), 2, 1-10.

[4] M. Berridge, P. Lipp, M. Bootman, Calcium signalling, Curr. Biol., 9 (1999),
R157-R159.

[5] J. A. M. Borghans, G. Dupont, A. Goldbeter, Complex intracellular calcium
oscillations: A theoretical exploration of possible mechanisms, Biophys. Chem.,
66 (1997), 25-41.

[6] K. S. R. Cuthbertson, P. H. Cobbold, Phorbol ester and sperm activate mouse
oocytes by inducing sustained oscillations in cell Ca2+, Nature, 316 (1985), 541-
542.

[7] J. P. Bourgouignon, H. B. Lawson Jr., Yang-Mills Theory: Its Physical Origins
and Differential Geometric Aspects, Seminar on Differential Geometry, Princeton
University Press, New Jersey, 1982, 395-421.

[8] J. Eells, L. Lemaire, A Report on Harmonic Maps, Bulletin of London Mathe-
matical Society, 20 (1988), 385-524.

[9] G. Giachetta, L. Mangiarotti, G. Sardanashvily, Covariant Hamiltonian Field
Theory, http://xxx.lanl.gov/hep-th/9904062, 1999.

[10] A. Goldbeter, Biochemical oscillations and cellular rhythms, Cambridge Univer-
sity Press, Cambridge, 1996.

[11] M. Gotay, J. Isenberg, J. E. Marsden, Momentum Maps and the Hamiltonian
Structure of Classical Relativistic Field Theories I, http://xxx.lanl.gov/hep-
th/9801019.

[12] T. Haberichter, M. Marhl, R. Heinrich, Birhythmicity , trirhythmicity and chaos
in bursting calcium oscillations, Biophysical Chemistry, 90 (2001), 17-30.

[13] G. Houart, G. Dupont, A. Goldbeter, Bursting, chaos and birhythmicity origi-
nating from self-modulation of the inositol 1, 4, 5-trisphosphate signal in model
for intracellular Ca2+ oscillations, Bulletin of Mathematical Biology, 61 (1999),
507-530.

[14] M. Marhl, T. Haberichter, M. Brumen, R. Heinrich, Complex calcium oscillations
and the role of mitochondria and cytosolic proteins, Biosystems, 57 (2000), 75-86.

[15] J. E. Marsden, S. Pekarsky, S. Shkoller and M. West, Variational methods, multi-
symplectic geometry and continuum mechanics, J. Geom. Phys., 38 (2001), 253-
284.



66 M. Neagu and Ileana Rodica Nicola

[16] R. Miron, M. Anastasiei, The Geometry of Lagrange Spaces: Theory and Appli-
cations, Kluwer Academic Publishers, Dordrecht 1994.

[17] M. Neagu, Generalized metrical multi-time Lagrange geometry of physical fields,
Journals from de Gruyter, Forum Mathematicum, 15 (2003), 63-92.

[18] M. Neagu, Ricci and Bianchi identities for h-normal Γ-linear connections on
J1(T, M), Hindawi Publishing Corporation, International Journal of Mathemat-
ics and Mathematical Sciences, 34 (2003), 2177-2191.

[19] M. Neagu, Riemann-Lagrange Geometry of 1-Jet Spaces (Romanian), University
”Politehnica” of Bucharest, Ph.D. Thesis 2001.

[20] M. Neagu, The Geometry of autonomous metrical multi-time Lagrange space
of electrodynamics, Hindawi Publishing Corporation, International Journal of
Mathematics and Mathematical Sciences, 29 (2002), 1, 7-15.

[21] M. Neagu, The geometry of relativistic rheonomic Lagrange spaces, Workshop
on Differential Geometry, Global Analysis and Lie Algebras, University ”Aristo-
tle” of Thessaloniki, Greece; Editor: Prof. Dr. Gr. Tsagas, Proceedings 5, 2001,
142-168.
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