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Abstract

The aim of this paper is to apply the symmetry group approach to the partial
differential equations arising in the Tzitzeica surfaces theory. As a consequence,
we find a new solution of the Tzitzeica equation which defines a ruled Tzitzeica
surface. The symmetry groups for the Liouville-Tzitzeica equation and the Tz-
itzeica equation are determined. We prove that these are also Euler-Lagrange
equations. The variational symmetry groups and respectively, the associated
conservation laws are found. Recently, we have shown that the simple Tzitzeica
surfaces equation is an Euler-Lagrange equation. According to these results, the
Tzitzeica surfaces theory is strongly related to variational problems, and hence
this is a subject of global differential geometry.
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1 Introduction

Tzitzeica – the founder of the centroaffine geometry – introduced in 1907 the so-called
S-surfaces, with the property that K

d4 =constant, where K is the Gaussian curvature
and d is the distance from the origin to the tangent plane at an arbitrary point [24].
These surfaces are called Tzitzeica surfaces by Gheorghiu, affine spheres by Blaschke,
and projectives spheres by Wilczynski. The spheres and the quadrics are the simplest
examples of Tzitzeica surfaces. Tzitzeica also considered their generalization to hy-
persurfaces (see for details [25] and [26]). Mayer [20], Gheorghiu [11], Dobrescu [9] and
Vranceanu [30], [31] studied the properties of these hypersurfaces. Gheorghiu proved
that the Tzitzeica hypersurfaces can be considered as affine spaces An−1 embedded
in an affine Euclidean space En, and he introduced a new class of affine space A0

n.
Udrişte [27] gave and studied new examples of these affine spaces.

Let us briefly explain the basic notions of Tzitzeica surfaces theory. Consider
D ⊂R2 an open set and let
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Σ : r(u, v) = x(u, v)i + y(u, v)j + z(u, v)k, (u, v) ∈ D,

be a surface in R3. Assume that Σ is different from a cone with the vertex at the
origin, i.e.,

(r, ru, rv) 6= 0,(1.1)

where r denotes the position vector of an arbitrary point on the surface. In this case,
the surface Σ can be defined by the following PDE system





ruu = aru + brv + cr
ruv = a′ru + b′rv + c′r
rvv = a′′ru + b′′rv + c′′r,

(1.2)

where a, a′, a′′, ... are nine functions of u and v, and for which the conditions of
completely integrability

(ruu)v = (ruv)u, (ruv)v = (rvv)u(1.3)

must be satisfied. Note that (1.2) defines a surface leaving a centroaffinity aside, so
that, the coefficients a, a′, a′′, ... are called centroaffine invariants. Recall that the
asymptotic lines are different for a surface which is not developable. Next, if the
surface Σ is related to the asymptotic lines then we have c = c′′ = 0 in (1.2), and so
Σ is given by 




ruu = aru + brv

ruv = a′ru + b′rv + c′r
rvv = a′′ru + b′′rv.

(1.4)

Theorem 1 (Tzitzeica). Let Σ be a surface defined by the PDE system (1.4).Then
the ratio I = K

d4 is constant if and only if a′ = b′ = 0.
According to the above theorem, the following PDE system





ruu = aru + brv

ruv = hr
rvv = a′′ru + b′′rv,

(1.5)

defines a Tzitzeica surface (here denote c′ = h). In this case, the integrability condi-
tions (3) turn into

ah = hu, av = ba′′ + h, bv + bb′′ = 0,

hv = b′′h, a′′u + aa′′ = 0, h = b′′u + a′′b.
(1.6)

Particular cases:
1. if b = 0 or a′′ = 0 then Σ is a simply ruled surface;
2. if b = 0, a′′ 6= 0 then the coordinates curves v = v0 are straight lines;
3. if b 6= 0, a′′ = 0 then the coordinates curves u = u0 are straight lines;
4. if b = a′′ = 0, then Σ is a double ruled surface (a quadric surface).

The PDE system (1.5) takes two different forms if Σ is a Tzitzeica ruled surface
or not. Thus, the Tzitzeica ruled surfaces are given by the PDE system
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



ruu = hu

h ru + ϕ(u)
h rv

ruv = hr
rvv = hv

h rv,

(1.7)

where h is a solution of the Liouville-Tzitzeica PDE

(lnh)uv = h.(1.8)

The Tzitzeica surfaces which are not ruled surfaces are defined by the system





ruu = hu

h ru + 1
hrv

ruv = hr
rvv = 1

hru + hv

h rv,
(1.9)

with h a solution of the Tzitzeica equation

(ln h)uv = h− 1
h2

.(1.10)

It can be proved that (1.5) is related to the scalar PDE system





θuu = aθu + bθv

θuv = hθ
θvv = a′′θu + b′′θv,

(1.11)

for which (1.6) holds, through the condition: three independent solutions of (1.11)
and (1.6) define a Tzitzeica surface. Every linear combination of three independent
solutions of (1.11) is also a solution of this system. Some recent results related to the
Liouville-Tzitzeica equation and the Tzitzeica equation can be found in [6] and [32].

The purpose of this paper is to apply the classical symmetry approach to the PDE
systems arising in Tzitzeica surfaces theory, and to make the connection of our study
to the already known results. The symmetry analysis of PDEs, introduced by Sophus
Lie at the end of the 19-th century [18] has been proven to be a powerful tool in
studying ODEs and PDE systems arising in geometry, mechanics and physics (see
e.g., [2] - [5], [7], [8], [13], [17], [19], [21], [22], [28], [29] and [32]). Lie’s method, known
today as the classical Lie method, is based on the notion of the symmetry group. This
is a local group of transformations acting on the space of the independent variables
and the space of the dependent variables of a studied PDE system with the property
that it leaves the set of its solutions invariant. Since the classical Lie method is an
algorithmic procedure, many symbolic manipulation programs have been designed
for this purpose [14]. Unfortunately, in the case of the PDE systems (1.5) and (1.11),
none of these packages can be used due to the form of these systems.

The paper is structured as follows: in Section 2 we present the classical symmetry
approach for a PDE system (see for details Olver’s book [21]). Classical symme-
tries associated with the PDE system (1.5) and respectively, with the PDE system
(1.11) are studied in Section 3. Variational symmetries and conservation laws for the
Liouville-Tzitzeica PDE and Tzitzeica PDE are given in the last section.
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2 Symmetry group of a PDE system

Consider the PDE system

∆ν(x, u(n)) = 0, ν = 1, ..., l,(2.12)

where x = (x1, ..., xp) are the independent variables, u = (u1, ..., uq) are the dependent
variables and

∆(x, u(n)) = (∆1(x, u(n)), ..., ∆l(x, u(n)))

is a differentiable function. Denote u(n) all the partial derivatives of the function u to
0 up to the order n. For any function u = h(x), where

h : D ⊂ Rp → U ⊂ Rq, h = (h1, ..., hq),

we can define its prolongation of order n,

pr(n)h : D → U (n),

where u(n) = pr(n)h, uα
J = ∂Jhα, so that, for each x ∈ D, pr(n)h is a vector whose

qp(n) = Cn
p+n entries represent the values of h and its derivatives up to order n at the

point x.
The space D × U (n), whose coordinates represent the independent variables, the

dependent variables and the derivatives of the dependent variables up to order n, is
called the jet space of order n of the underlying space D × U . In this sense, ∆ is a
map from the jet space D×U (n) to Rl, and moreover, the PDE system (2.12) defines
the subvariety

S = {(x, u(n)) |∆(x, u(n)) = 0}
of the total jet space D × U (n). In that follows, (2.12) is identified with S.

Consider M ⊂ D × U an open set. A symmetry group associated with the PDE
system (2.12) is a local group of transformations G acting on M with the property
that whenever u = f(x) is a solution of (2.12), and whenever g ·f is defined for g ∈ G,
then u = g · f(x) is also a solution of the system. Then the system (2.12) is called
invariant with respect to G.

Let X be a vector field on M . Assume that X is the infinitesimal generator of the
symmetry group of the PDE system (2.12), which is the (local) one-parameter group
exp(εX). Then its associated prolongation of order n is the one parameter group
pr(n)[exp(εX)] with the infinitesimal generator

pr(n)X|(x,u(n)) =
d

dε
pr(n)[exp(εX)](x, u(n))|ε=0

where (x, u(n)) ∈ M (n). This is a vector field on M (n) called the prolongation of order
n of X.

The PDE system (2.12) is a maximal rank system if the Jacobi matrix

J∆(x, u(n)) =
(

∂∆ν

∂xi
,
∂∆ν

∂uα
J

)

of the function ∆ satisfies the condition rankJ∆ = l on S.
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Theorem 2. Let

X =
p∑

i=1

ζi(x, u)
∂

∂xi
+

q∑
α=1

φα(x, u)
∂

∂uα

be a vector field on open set M ⊂ D × U . The prolongation of order n of X is given
by the vector field

pr(n)X = X +
q∑

α=1

∑

J

φJ
α(x, u(n))

∂

∂uα
J

,(2.13)

defined on the corresponding jet space M (n) ⊂ D × U (n), where

φJ
α(x, u(n)) = DJ

(
φα −

p∑

i=1

ζiuα
i

)
+

p∑

i=1

ζiuα
J,i,

with uα
i = ∂uα

∂xi , uα
J,i = ∂uα

J

∂xi (the second summation in (2.13) is over all multi-indices
J = (j1, ...jk) with 1 ≤ jk ≤ p, 1 ≤ k ≤ n).

The coefficient functions of X, i.e., ξi and φα, are called infinitesimals.
Theorem 3 (Criterion for infinitesimal invariance). Let (2.12) be a PDE system
of maximal rank on M ⊂ D × U . If G is a local group of transformations acting on
M and

pr(n)X[∆ν(x, un)] = 0, ν = 1, ..., l,(2.14)
whenever ∆ν(x, u(n)) = 0, for every infinitesimal generator X of G, then G is a
symmetry group of the PDE system (2.12).
The classical Lie method: consider X a vector field on M and write the criterion
for infinitesimal invariance for the system (2.12); eliminate any dependence between
the partial derivatives of the functions uα, determined by the PDE system itself;
write the condition (2.14) like polynomials in the partial derivatives of uα; equate to
zero the coefficients of partial derivatives of uα. The resulting over-determined linear
PDE system for the infinitesimals ζi, φα is called the determining equations of the
symmetry group G.

3 Symmetries of the Tzitzeica Surfaces PDE
systems

3.1 Classical symmetries of the PDE system (1.5)

In the first part of this subsection we discuss the symmetries of the PDE system (1.5),
in the case when Σ admits two real asymptotic lines. Note that this system can be
written as 




xuu = axu + bxv

xuv = hx
xvv = a′′xu + b′′xv

yuu = ayu + byv

yuv = hy
yvv = a′′yu + b′′yv

zuu = azu + bzv

zuv = hz
zvv = a′′zu + b′′zv,

(3.15)
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for which the conditions (1.1) and (1.6) must be satisfied. The relation (1.1) is equiv-
alent to

(yuzv − zuyv)x− (xuzv − xvzu)y + (xuyv − xvyu)z = f,(3.16)

where f = f(u, v) is a nonzero function. Let D×U (2) be the jet space of second order
associated with the PDE system (3.15) whose coordinates represent the independent
variables u, v, the dependent variables x, y, z and the derivatives of the dependent
variables up to the order two. Consider M ⊂ D × U an open set and let

X = ζ∂u + η∂v + φ∂x + λ∂y + ψ∂z(3.17)

be the infinitesimal generator of the symmetry group G of the PDE system (3.15)
and (3.16) (here the infinitesimals ζ, η, φ, λ and ψ are functions of u, v, x, y and z).

3.1.1 Symmetries acting on the space of the dependent variables

In that follows, we seek for a symmetry subgroup G1 (of the symmetry group G), which
acts on the space of the dependent variables x, y and z of the system (3.15). Let Y
be its associated infinitesimal generator. For that, set ζ = 0, η = 0, φ = φ(x, y, z),
λ = λ(x, y, z) and ψ = ψ(x, y, z) in (3.17). The second prolongation of the vector field
Y (see (2.13)) is defined by the following functions

Φu = φxxu + φyyu + φzzu,

Φv = φxxv + φyyv + φzzv,

Φuu = φxxx2
u + φyyy2

u + φzzz
2
u + 2φxyxuyu + 2φxzxuzu + 2φyzyuzu

+φxxuu + φyyuu + φzzuu,

Φuv = φxxxuxv + φxyxvyu + φxzxvzu + φxyxuyv + φyyyuyv + φyzyvzu

+φxzzvxu + φyzyuzvφzzzuzv + φxxuv + φyyuv + φzzuv,

Φvv = φxxx2
v + 2φxyxvyv + 2φxzxvzv + 2φyzyvzv + φyyy2

v + φzzz
2
v

+φxxvv + φyyvv + φzzvv,

and respectively, by the functions Λu, Λv, Λuu, Λuv, Λvv, and Ψu, Ψv, Ψuu, Ψuv, Ψvv

that have a similar form obtained by substituting φ by λ, and respectively, φ by ψ.
Note that the PDE system (3.15) and (3.16) is of maximal rank. Writing the criterion
for infinitesimal invariance (2.14) for the system (3.15) we obtain the relations





aΦu + bΦv − Φuu = 0
hΦ− Φuv = 0
a′′Φu + b′′Φv − Φvv = 0
..................................... .

(3.18)

Substituting Φu,Φv and Φuu into the first relation of (3.18) we get

a(φxxu + φyyu + φzzu) + b(φxxv + φyyv + φzzv)− φxxx2
u − 2φxyxuyu − 2φxzxuzu

−2φyzyuzu − φyyy2
u − φzzz

2
u − φxxuu − φyyuu − φzzuu = 0.
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Eliminate the dependencies between the derivatives of x, y and z by substituting into
the above relation

xuu = axu + bxv, yuu = ayu + byv, zuu = azu + bzv,

so that, we obtain

φxxx2
u + φyyy2

u + φzzz
2
u + 2φxyxuyu + 2φxzxuzu + 2φyzyuzu = 0.

Equate to zero the coefficients of the remaining unconstrained partial derivatives of
x, y and z. It follows the PDE system

φxx = 0, φyy = 0, φzz = 0, φxy = 0, φyz = 0, φxz = 0,

with the solution given by

φ(x, y, z) = a11x + a12y + a13z + k,

where a11, a12, a13 and k are real numbers. Substituting the function φ into the next
two relations of the system (3.18) we get k = 0, and thus

φ(x, y, z) = a11x + a12y + a13z.

Similarly, from the next six relations of the system (3.18) we have

λ(x, y, z) = a21x + a22y + a23z,

and
ψ(x, y, z) = a31x + a32y + a33z,

where aij are real numbers. Writing the criterion for infinitesimal invariance (2.14) in
the case of the equation (3.16), we get the relation

φ(yuzv − zuyv) + λ(xvzu − xuzv) + ψ(xuyv − xvyu) + Φu(zyv − yzv) + Φv(yzu − zyu)

+Λu(xzv − zxv) + Λv(zxu − xzu) + Ψu(yxv − xyv) + Ψv(xyu − yxu) = 0.

The substitution of the functions Φu,Φv, .... into the above relation yields

(xuyv − xvyu)(ψ − xψx − yψy + zφx + zλy) + (xvzu − xuzv)(λ− xλx − zλz + yφx

+yψz) + (yuzv − yvzu)(φ− yφy − zφz + xλy + xψz) = 0.

Any dependencies between the derivatives of x, y and z is eliminated by using the
relation (3.16). It follows the relation

φx + λy + ψz = 0

which is equivalent to
a33 + a11 + a22 = 0.

Thus, the infinitesimal generator Y of the symmetry subgroup G1 is defined by the
following functions
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φ(x, y, z) = a11x + a12y + a13z,
λ(x, y, z) = a21x + a22y + a23z,
ψ(x, y, z) = a31x + a32y − (a11 + a22)z,

and so, this has the form

Y = a11 (x∂x − z∂z) + a22 (y∂y − z∂z) + a12y∂x + a13z∂x

+a21x∂y + a23z∂y + a31x∂z + a32y∂z.

Theorem 4. The Lie algebra of the subgroup G1 of the symmetry group G of the
PDE system (3.15) and (3.16) (G1 acts on the space of the dependent variables) is
described by the vector fields

Y1 = x∂x − z∂z, Y2 = y∂y − z∂z, Y3 = y∂x, Y4 = z∂x(3.19)

Y5 = x∂y, Y6 = z∂y, Y7 = x∂z, Y8 = y∂z.

The subgroup G1 is the unimodular subgroup of the group of centroaffine transforma-
tions.

Knowledge of the symmetry subgroup G1 allows us to find the group-invariant
solutions of the PDE system (3.15) and (3.16). For example, consider the subalgebra
described by the vector fields Y1 and Y2. A function F invariant with respect to these
vector fields satisfies Y1(F ) = 0, and Y2(F ) = 0. Therefore, we get F = ϕ(u, v, xyz).
In this case we obtain the well-known Tzitzeica surfaces

z =
C

xy
, C ∈ R∗.(3.20)

3.1.2 Symmetries acting on the space of the independent variables

Let G2 be the symmetry subgroup of the symmetry group G acting only on the space
of the independent variables u and v of the system (3.15) and (3.16). Suppose Z is its
associated infinitesimal generator, for which we have ζ = ζ(u, v), η = η(u, v), φ = 0,
λ = 0, and ψ = 0 in (3.17). Similarly, applying the classical Lie method we get
Theorem 5. The symmetry subgroup G2 acting on the space of the independent
variables of the system (3.15) is generated by the vector field

Z = ζ(u)∂u + η(v)∂v,(3.21)

where the infinitesimals ζ and η satisfy the PDE system:




ζau + ηav + aζu + ζuu = 0
ζbu + ηbv − bηv + 2bζu = 0
ζhu + ηhv + h(ζu + ηv) = 0
ζa′′u + ηa′′v − a′′ζu + 2a′′ηv = 0
ζb′′u + ηb′′v + b′′ηv + ηvv = 0,

(3.22)

and the functions a, b, h, a′′ and b′′ satisfy the integrability conditions (1.6).
In that follows, we discuss the PDE system (3.22) for the Tzitzeica surfaces defined

by (1.7), and respectively by (1.9).
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I. If Σ is a ruled Tzitzeica surface (1.7) then the completely integrability conditions
(1.6) are given by

a =
hu

h
, b =

ϕ(u)
h

, a′′ = 0, b′′ =
hv

h
,

where h is a solution of the Liouville-Tzitzeica equation (1.8). In this case, the relations
(3.22) can be written as





ζhu + ηhv + h(ζu + ηv) = 0
ζ3 = k

ϕ ,

hhuv − huhv = h3.

Consider the change of variables ζ = 1
U ′ and η = − 1

V ′ , where U = U(u) and V = V (v).
The first equation implies h = U ′V ′µ(U + V ), and by substituting it into the last
PDE (that is the Liouville-Tzitzeica equation), we get the second order ODE

µµ′′ − µ′2 = µ3,

with the general solution given by

µ(t) =





2
(t+C)2 , k = 0

l2

2cos2( l
2 t+C)

, k = −l2

l2

2sinh2( l
2 t+C)

, k = l2, l > 0,

where t = U + V . Consider the following changes of functions:
- for k = 0 set Ũ = F (U) and Ṽ = G(V ), where Ũ = U + C and Ṽ = V ;
- k = l2 then Ũ = tanh l

2 (U + C) and Ṽ = tanh l
2V ;

- k = −l2 set Ũ = cot( l
2U + C) and Ṽ = tan l

2V .
We obtain the general solution of the Liouville-Tzitzeica equation (see [15] and [25])
written as

h(u, v) =
2Ũ ′Ṽ ′

(Ũ + Ṽ )2
.(3.23)

II. If Σ is a Tzitzeica surface which is not a ruled surface then the conditions (1.6)
turn into

a =
hu

h
, b = a′′ =

1
h

, b′′ =
hv

h
,

where h is a solution of the Tzitzeica equation (1.10). If we substitute these functions
into the system (3.22) then we get the PDE system

ζu = 0, ηv = 0, ζhu + ηhv + h(ζu + ηv) = 0,

with the solution ζ = C1, η = C2 and h = µ(C1v − C2u). Then the infinitesimal
generator of G2 has the form

Z = C1∂u + C2∂v.(3.24)
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Substituting the function h = µ(C1v − C2u) into the Tzitzeica equation we obtain
the following second order ODE

−C1C2(µµ′′ − µ′2) = µ3 − 1.(3.25)

Case 1. If C1C2 = 0 then µ = 1, and so h = 1. In this case we get the Tzitzeica
solution [25].
Case 2. If C1C2 6= 0 then denote k = − 1

C1C2
. The ODE (3.25) becomes

µµ′′ − µ′2 = k(µ3 − 1).

Consider k = 1. Then (3.25) can be reduced to the following first order ODE

µ′2 = 2µ3 + Cµ2 + 1, C ∈ R,

and after the change of function µ = 1
2g, this turns into

g′2 = g3 + Cg2 + 4.(3.26)

Let λ be the real root of the polynomial written in the right hand side of the ODE
(3.26). Since that λ 6= 0 and λ cannot be a triple solution, the ODE is equivalent to

g′2 = (g − λ)
(

g2 − 4
λ2

g − 4
λ

)
.(3.27)

Case 2.1. If λ = −1 then C = −3 and (3.27) becomes

g′2 = (g + 1)(g − 2)2.

If g = w−2 + 2 then we get the ODE

w′2 =
1
4

(
3w2 + 1

)
,

with the general solution given by

w(t) =
1√
3

sinh

(
t
√

3
2

+ C1

)
, C1 ∈ R,

where t = u + v. It follows that the Tzitzeica equation has the solution

h =
1

2w2
+ 1,

and for C1 = 0 this can be written as follows

h(t) =
3

2sinh2
(

t
√

3
2

) + 1, t = u + v.(3.28)

Case 2.2. Assume λ 6= −1. Then for λ > −1 or C < −3, the roots of the polynomial
from the right hand side of (3.26) are three different real numbers. For λ < −1 or
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C > −3 then the polynomial has a real root and the other two are complex. Note
that, in this case, the integral

J =
∫

dg√
(g − λ)

(
g2 − 4

λ2 g − 4
λ

)

can be reduced to a first genus elliptical integral [10]

J =
∫

dϕ√
1− k2 sin ϕ

.

In conclusion, for C 6= −3, the solutions of the Tzitzeica equation of the form h =
µ(u + v) are written in the terms of the elliptical functions.
Proposition 1. The solution (3.28) defines a revolution Tzitzeica surface. Moreover,
there is also an associated ruled Tzitzeica surface.
Proof. Studying the revolution surfaces defined by (1.11), Tzitzeica (see [25], pp. 164–
174) showed that hu = hv. From that we get h = µ(u + v) which must satisfy the
ODE

µµ′′ − µ′2 = µ3 − 1.(3.29)

Tzitzeica did not integrate the equation (3.29) but he proved that, by using the
notation

µ′2 − 2µ3 − 1
4µ2

= −k2,

the solution of the system (1.11) is the following

θ(u, v) = k1e
∫

h′−1
2h dα cos kβ + k2e

∫
h′−1
2h dα sin kβ + k3e

∫
h2

h′+1
dα

,(3.30)

for k 6= 0, and respectively,

θ(u, v) = e
∫

h′−1
2h dα

[
k1

(
β2 +

∫
4µ

µ′ + 1
dα

)
+ k2β + k3

]
,

for k = 0, where α = u + v, β = u − v and ki are real numbers. According to our
results, we have k2 = −C

4 . It results that the function (3.28) defines a revolution
surface (3.30). Moreover, after the change of functions

Ũ = tanh
√

3
2

(U + C1), Ṽ = tanh
√

3
2

V,

the function h takes the form

h(u, v) =
2Ũ ′Ṽ ′

(Ũ + Ṽ )2
+ 1 = H(u, v) + 1.

Notice that the function H is in fact a solution of Liouville-Tzitzeica equation (1.8)
and this defines a ruled Tzitzeica surface.
Proposition 2. The solution (3.30) given by Tzitzeica is invariant under the sym-
metry subgroup generated by (3.24).
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3.2 Classical symmetries of the PDE system (1.11)

Consider the PDE system (1.11) with the integrability conditions (1.6). Let D× Ū (2)

be the second order jet space associated with this system, whose coordinates are
the independent variables u, v, the dependent variable θ and the derivatives of the
dependent variable up to the order two. Consider M̄ ⊂ D × Ū an open set and let

X̄ = ζ∂u + η∂v + α∂θ

be the infinitesimal generator of the symmetry group Ḡ of this system, where the
infinitesimals ζ, η and α are functions of u, v and θ.

Similarly, we are interested in finding the symmetry subgroups Ḡ1, and respec-
tively, Ḡ2 of the symmetry group Ḡ, with the property that they act on the space of
the dependent variable θ, and respectively, the space of the independent variables u
and v of (1.11). It this case, it can be proved that
Theorem 6. The symmetry subgroup Ḡ1, acting on the space of the dependent variable
of the system (1.11) is generated by the vector field

Ȳ1 = θ∂θ.(3.31)

Theorem 7. The vector field

Z̄ = ζ(u)∂u + η(v)∂v,(3.32)

where ζ and η satisfy the relations (3.22), generates the symmetry subgroup Ḡ2 of Ḡ
(G2 acts on the space of the independent variables of the system (1.11)).

3.3 Symmetries for Liouville-Tzitzeica PDE and Tzitzeica PDE

In order to study the symmetries of the Liouville-Tzitzeica equation (1.8) and the
Tzitzeica equation (1.10), consider the change of function ln h = ω. Then

ωuv = eω(3.33)

is equivalent to the Liouville-Tzitzeica PDE, and respectively, the equation

ωuv = eω − e−2ω(3.34)

is equivalent to the Tzitzeica PDE. Note that (3.33) and (3.34) belong to the same
class of second order PDEs

ωuv = H(ω),(3.35)

that has been studied by Sophus Lie, and recently by Pucci, Saccomandi and Mansfield
[19].
Theorem 8. If ζ = ζ(u, v, ω), η = η(u, v, ω) and φ = φ(u, v, ω) satisfy the PDE
system

ζv = 0, ζω = 0, ηu = 0, ηω = 0, φωω = 0, φuω = 0, φvω = 0,(3.36)

φuv + (φω − ζu − ηv − φ)H −H ′φ = 0,

where H = H(ω), then
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X = ζ∂u + η∂v + φ∂ω

is the infinitesimal generator of the symmetry group associated with (3.35).
In particular, in the case of the equations (3.33) and (3.34) we get

Theorem 9. The vector field

W = f∂u + g∂v − (f ′ + g′)∂ω,(3.37)

where f = f(u) and g = g(v), generates the symmetry group of the Liouville-Tzitzeica
equation (3.33).
Theorem 10. There is a 3D Lie algebra associated with the symmetry group of the
Tzitzeica equation (3.34) and this is described by

U1 = u∂u − v∂v, U2 = ∂u, U3 = ∂v.(3.38)

Notice that for any ω = f(u, v) solution of the Tzitzeica PDE (3.33) the following
functions

ω(1) = f(eεu, e−εv), ω(2) = f(u− ε, v), ω(3) = f(u, v − ε),

are also solutions of the equation (here ε is a real number).
Using the adjoint representation of the symmetry group of the Tzitzeica PDE

(3.33) given by the following table

Ad U1 U2 U3

U1 U1 eεU2 e−εU3

U2 U1 − εU2 U2 U3

U3 U1 + εU3 U2 U3

Table 1

the one-dimensional subalgebras of the Lie algebra associated with Tzitzeica equation
(1.10) can be classified. The optimal system of these subalgebras is described by U2,
U3 and respectively, by U2 − U3.
1. For U2 and U3, the group-invariant solution is ω = 0. In this case, we get the
Tzitzeica solution h = 1.
2. The group-invariant solutions with respect to U2 −U3 have the form ω = f(u + v)
(and respectively, we have h = µ(u + v) for equation (1.10)). Note that this case was
studied in Section 3.1.2.
Theorem 11. The second order PDE invariant with respect to the symmetry group
of the Tzitzeica PDE, has the form

H(ω, ωuωv, ωuv, ωuuωvv) = 0.(3.39)

Proof. Consider the following maximal chain of Lie subalgebras

{U2} ⊂ {U2, U3} ⊂ {U1, U2, U3}.

of the Lie algebra of the symmetry group related to (3.33). Let F (u, v, ω(2)) = 0 be
a second order PDE for the unknown function ω = ω(u, v). If this is an equation
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invariant under the considered symmetry group, then the criterion for infinitesimal
invariance must be satisfied by the vector fields Ui. If pr(2)U2(F ) = 0 then we get
F = F1(v, ω(2)). From pr(2)U3(F ) = 0 it results F = F2(ω(2)), and pr(2)U1(F ) = 0
leads us to the PDE

U1(F2)− ωu
∂F2

∂ωu
+ ωv

∂F2

∂ωv
− 2ωuu

∂F2

∂F2ωuu
+ 2ωvv

∂F2

∂ωvv
= 0,

with the general solution given by F2 = H in (3.39).

4 Lagrangians associated with Tzitzeica PDEs

4.1 Euler-Lagrange equations and Tzitzeica PDEs

If a PDE is an Euler-Lagrange equation then the classical Lie symmetries lead us to
variational symmetries for the associated variational problem. Moreover, by using the
Noether Theorem, we can determine conservation laws for the studied PDE (see for
more details [1], [7], [16], [21], [22], [29], [32] and references therein). In this subsection
we study the inverse problem for the equations (3.33) and (3.34).

Remind that a second order PDE

∆(u, v, ω(2)) = 0,(4.40)

for the unknown function ω = ω(u, v) is said to be identically to an Euler-Lagrange
equation if and only if the integrability Helmholtz conditions





∂∆
∂ωu

= Du

(
∂∆

∂ωuu

)
+ Dv

(
1
2

∂∆
∂ωuv

)

∂T
∂ωv

= Du

(
1
2

∂∆
∂ωuv

)
+ Dv

(
∂∆

∂ωvv

)(4.41)

are satisfied, where denote D the total derivatives. In this case, we can find a function
L called Lagrangian for which the Euler-Lagrange equation, i.e.,

E(L) =
∂L

∂ω
−Du

(
∂L

∂ωu

)
−Dv

(
∂L

∂ωv

)
= 0

is equivalent to (4.40) – in the sense that every solution of (4.40) is a solution of the
Euler-Lagrange equation and conversely.

On the other hand, the equation (4.40) is said to be equivalent to an Euler-
Lagrange equation if there is a nonzero function

f = f(u, v, ω, ωu, ωv),

called variational integrant factor, such that f ·∆ = E(L).
Theorem 12. The Liouville-Tzitzeica equation (3.33) and the Tzitzeica equation
(3.34) are Euler-Lagrange equations, and their associated Lagrangians are given by

L1(u, v, ω(1)) = −1
2
ωuωv − eω,(4.42)

and respectively,
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L2(u, v, ω(1)) = −1
2
ωuωv − eω − 1

2
e−2ω.(4.43)

Proof. Since the Helmholtz integrability conditions (4.41) are satisfied, we write the
Euler-Lagrange equations for L1, and respectively, for L2, and so, we get the PDE
(3.33), and respectively (3.34).

Notice that the equations (1.8) and (1.10) are equivalent to Euler-Lagrange equa-
tions, and they admit h−3 as variational integrant factor.

4.2 Variational symmetries and conservation laws

In this subsection, the theory of variational symmetry groups is briefly presented (for
more details see [21] and [22]). Consider the functional

L[ω] =
∫ ∫

Ω0

L(u, v, ω(1))dudv,(4.44)

where Ω0 is a domain in R2. Let D ⊂ Ω0 be a subdomain, U an open set in R,
and M an open set in D × U . Consider ω ∈ C2(D), ω = f(u, v) such that its
graph Γω = {(u, v, ω(u, v))|(u, v) ∈ D} ⊂ M . A local group of transformations G
acting on M is called variational symmetry group of the functional (4.44), if for any
gε ∈ G, gε(u, v, ω) = (ū, v̄, ω̄), then the function ω̄ = f̄(ū, v̄) = (g · f)(ū, v̄) is defined
on Ω̄ ⊂ Ω0 and

∫ ∫

D̄

L(ū, v̄, pr(1)f̄(ū, v̄))dūdv̄ =
∫ ∫

D

L(u, v, pr(1)f(u, v))dudv.

Theorem 13 (Infinitesimal criterion for the variational problem). A con-
nected group of transformations G acting on M ⊂ Ω0×U is a variational symmetries
group of the functional (4.44) if and only if the condition

pr(1)X(L) + L Div ξ = 0(4.45)

holds for any (u, v, ω(2)) ∈ M (2) ⊂ D × U (2) and for any infinitesimal generator

X = ζ(u, v, ω)∂u + η(u, v, ω)∂v + φ(u, v, ω)∂ω

of G (here ξ = (ζ, η) and Div ξ = Duζ + Dvη is the total divergence).
Theorem 14. If G is a variational symmetry group of the functional (4.44), then G
is a symmetry group of the Euler-Lagrange equation.

In general, the converse of Theorem 14 is false.
A conservation law associated with the equation (4.40) is a divergence expression

of the form
Div P = 0

that is identically zero on the set of the solutions u = f(x) of the equation. If P =
(P 1, P 2) then Div P = DuP 1 + DvP 2 is the total divergence. The function P 1 is
called the associated flow and P 2 is called the conserved density of the conservation
law. It can be proved that there is a function Q such that

Div P = Q ·∆.(4.46)
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The above relation is called the characteristic form of the conservation law, and Q is
called the characteristic of the conservation law. The vector field of evolution associ-
ated with a vector field

X = ζ(u, v, ω)∂u + η(u, v, ω)∂v + φ(u, v, ω)∂ω(4.47)

is given by
XQ = Q∂u, Q = φ− ζωu − ηωv,

where Q is called the characteristic of X.
Theorem 15 (Noether Theorem). Let (4.47) be the infinitesimal generator of the
symmetry group G of the variational problem (4.44). Then the characteristic Q of
the field X is also a characteristic of the conservation law for the associated Euler-
Lagrange equation E(L) = 0.

If L = L(u, v, ω(1)) is a first order Lagrangian, then ( [21], p. 356)

P = −(A + Lξ) = −(A1 + Lζ, A2 + Lη) = (P 1, P 2),(4.48)

where A = (A1, A2) is given by

A1 = Q · E(u)(L), A2 = Q · E(v)(L).

In this case,

E(u)(L) =
∂L

∂ωu
and E(v)(L) =

∂L

∂ωv

are called first order Euler operators.

4.3 Variational symmetries and conservation laws for the Liouville-
Tzitzeica PDE and Tzitzeica PDE

The variational problems related to the first order Lagrangians (4.42) and (4.43) are
the following

L[ω] =
∫ ∫

D

L1(u, v, ω(1))dudv,(4.49)

and respectively,

L̄[ω] =
∫ ∫

D

L2(u, v, ω(1))dudv,(4.50)

where D is a domain in R2 and ω ∈ C2(D).
Theorem 16. The Lie algebra of the variational symmetry group of the functional
(4.49) is described by the vector fields

W1 = u∂u − ∂ω, W2 = v∂v − ∂ω, W3 = ∂u, W4 = ∂v.(4.51)

Proof. According to Theorem 13 and Theorem 14, the condition (4.45) must be sat-
isfied only for certain vector fields that generate the symmetry group of the equation
(3.33). Consider the vector field (3.37) and its second order prolongation (see Theorem
9) given by

pr(2)W = W − (f ′′ + f ′ωu)
∂

∂ωu
− (g′′ + g′ωv)

∂

∂ωv
.



Symmetry groups and Lagrangians 89

Substituting ξ = (f, g) and Div ξ = f ′ + g′ into (4.45) we get the relation f ′′ωv +
g′′ωu = 0. Equate to zero the coefficients of the partial derivatives of the function ω.
It follows f ′′ = g′′ = 0, and so f = C1u + C3 and g = C2v + C4. Thus the variational
symmetry group is generated by the vector field

W = C1 (u∂u − ∂ω) + C2 (v∂v − ∂ω) + C3∂u + C4∂v.

Theorem 17. The following vector fields

U1 = u∂u − v∂v, U2 = ∂u U3 = ∂v.(4.52)

generate the variational symmetry group of the functional (4.50).
Proposition 3. The associated flows and the conserved densities related to the
Liouville-Tzitzeica equation (3.33), and respectively, of the Tzitzeica equation (3.34)
are given by

−Wi P 1 P 2

−W1
1
2ωv − ueω 1

2ωu(1 + uωu)
−W2

1
2ωv(1 + vωv) 1

2ωu − veω

−W3 −eω 1
2ω2

u

−W4
1
2ω2

v −eω

Table 2

−Ui P 1 P 2

−U1 − 1
2ue−2ω − 1

2vω2
v − ueω 1

2uω2
u + veω + 1

2ve−2ω

−U2 −eω − 1
2e−2ω 1

2ω2
u

−U3
1
2ω2

v −eω − 1
2e−2ω

Table 3
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Bucureşti, 1923.
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