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Abstract

In this paper we extend the concept of Legendrian foliation to almost S-
manifolds, generalizing the definition both of Legendrian foliations on contact
metric manifolds and of Lagrangian foliations on symplectic manifolds. A clas-
sification of this kind of foliations is given and a study of non-degenerate and
Riemannian Legendrian foliations on almost S-manifolds is carried out. More-
over we study bi-Legendrian structures and a canonical connection associated
to them.
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1 Introduction

Legendrian foliations have been studied for the first time by M. Y. Pang in [8]. He
studied these foliations in the context of contact manifolds. More precisely, given a
contact manifold (M,η) of dimension 2n+1, a Legendrian foliation on (M, η) is a folia-
tion of M by n-dimensional integral submanifolds of the contact 1-form η. Pang found
many interesting properties of Legendrian foliations and, in particular, presented a
classification by means of a bilinear, symmetric form Π on the tangent bundle of the
foliation. Later on, P. Liebermann (cf. [7]) carried out, with different methods, the
study of Legendrian foliations and N. Jayne in [5] extended the work of Pang to con-
tact metric manifolds. In this paper we give a natural generalization of the theory
of Legendrian foliations to the context of almost S-manifolds. Our definition gener-
alizes both that one of Legendrian foliations on contact metric manifolds and that
one of Lagrangian foliations on symplectic manifolds. Many of the most important
results of the standard theory of Legendrian foliations are recovered. For example we
generalize the definition of the form Π getting an analogous classification of Legen-
drian foliations on almost S-manifolds. In particular we investigate those Legendrian
foliations such that Π is non-degenerate and those which admit a bundle-like metric,
the so-called Riemannian Legendrian foliations. Finally, we introduce the notion of
bi-Legendrian structure and examine an important example, involving the so-called
”conjugate Legendrian foliation”. During the preparation of this paper the author was
a guest of the Institute of Mathematics of the Jagiellonian University of Cracow, so
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2 A generalization of the concept of Legendrian fo-
liation

An f -structure on a smooth manifold M is defined by a non-vanishing tensor field φ
of type (1, 1) of constant rank 2n which satisfies φ3+φ = 0. It can be proved that TM
splits into two complementary subbundles Im (φ) and ker (φ) and the restriction of φ
to Im (φ) determines an almost complex structure on such subbundle. When ker (φ)
is parallelizable we say that we have an f -structure with parallelizable kernel and we
call it ”f ·pk-structure”. In this case there exist a global frame {ξ1, . . . , ξr} for ker (φ)
and 1-forms η1, . . . , ηr, which satisfy ηi (ξj) = δij and

φ2 = −I +
r∑

i=1

ηi ⊗ ξi,

from which it follows that

φ (ξi) = 0, ηi ◦ φ = 0

for all i ∈ {1, . . . , r}. f · pk-structures are a generalization of almost complex and
almost contact structures, according as r = 0 and r = 1, respectively. Furthermore,
we say that an f · pk-structure is normal if the tensor field

N = [φ, φ] + 2
r∑

i=1

dηi ⊗ ξi(2.1)

vanishes, where [φ, φ] denotes the Nijenhuis torsion of φ. It is known that, given an
f · pk-structure (φ, ξi, ηi), there exists a Riemannian metric g on M such that

g (φV, φW ) = g (V, W )−
r∑

i=1

ηi (V ) ηi (W )(2.2)

for all V,W ∈ ΓTM . Such a metric, in general, is not unique. If g is any metric
satisfying (2.2) we say that (φ, ξi, ηi, g) is a metric f · pk-structure. We denote by Φ
the 2-form defined by Φ (V,W ) = g (V, φW ), for any V, W ∈ ΓTM . A metric f · pk-
manifold M2n+r with structure (φ, ξi, ηi, g) is called almost S-manifold if dη1 = · · · =
dηr = Φ. This definition reduces to that one of contact metric manifold for r = 1
and almost Hermitian manifold for r = 0. In an almost S-manifold one can define,
for each i ∈ {1, . . . , r}, the operator hi = 1

2Lξiφ. It can be proved that each hi is
self-adjoint, trace-free, anticommutes with φ and, finally, satisfies hi (ξj) = 0 and

φ (N (V, W )) + N (φ (V ) ,W ) = 2
r∑

i=1

ηi (X)hi (W ) ,(2.3)
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g (N (φ (V ) ,W ) , ξi) = 0(2.4)

for all V, W ∈ ΓTM . It can be useful also to put ξ =
r∑

i=1

ξi and h = 1
2Lξφ =

r∑
i=1

hi. For

the proofs of these properties and more details on almost S-manifolds, good references
are [4] and [2].

We will denote by H the 2n-dimensional distribution on M given by H =
r⋂

i=1

ker (ηi). This distribution in not integrable. Furthermore, it can be proved that

the maximal dimension of any integrable subbundle of H is n. So we can set the
following

Definition 2.1. Let
(
M2n+r, φ, ξi, ηi, g

)
be an almost S-manifold. A foliation F on

M is called Legendrian if its leaves are n-dimensional integral submanifolds of H and

Φ(X, X ′) = 0(2.5)

for any vector fields X, X ′ tangent to F . Two Legendrian foliations F and F ′, on the
almost S-manifolds (M,φ, ηi, ξi, g) and (M ′, φ′, η′i, ξ

′
i, g

′), i ∈ {1, . . . , r}, are said to
be equivalent if there exists a diffeomorphism f : M −→ M ′ which preserves both the
structures and the foliations.

Remark 2.2. Note that the condition (2.5) in the previous definition, except for the
case r = 0, is redundant. Indeed, if X, X ′ ∈ ΓL

Φ(X, X ′) = dηi (X,X ′) =
1
2

(X (ηi (X ′))−X ′ (ηi (X))− ηi ([X, X ′])) = 0

since L is involutive and ηi (X) = ηi (X ′) = 0. Nevertheless we have added (2.5) to
the definition of Legendrian foliation because in this way when r = 0 and dΦ = 0
our definition reduces to that one of Lagrangian foliation in a symplectic manifold. So
Definition 2.1 generalizes both the standard definition of Legendrian foliation on con-
tact metric manifold (when r = 1) and that one of Lagrangian foliation on symplectic
manifolds (when r = 0 and dΦ = 0).

We denote by L the tangent bundle of the Legendrian foliation F and by L⊥ the
orthogonal bundle of L. Then, setting Q = H∩L⊥, we obtain another n-dimensional
distribution of M and we get the decomposition

TM = L⊕Q⊕ Rξ1 ⊕ · · · ⊕ Rξr.

In next pages we will often make use of the following

Lemma 2.3. Let
(
M2n+r, φ, ηi, ξi, g

)
be an almost S-manifold and Z ∈ ΓH. Then,

for all i ∈ {1, . . . , r}, [Z, ξi] ∈ ΓH.

Proof. Indeed, for any fixed i, j ∈ {1, . . . , r}, ηj ([Z, ξi]) = −2dηj (Z, ξi)+Z (ηj (ξi))−
ξi (ηj (Z)) = −2g (Z, φ (ξi))+Z (δij)−ξi (ηj (Z)) = 0, as Z ∈ ΓH. So [Z, ξi] ∈ ΓH.

There are many properties similar to the ”contact” case described in [8] or [5]. For
example we have the following
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Proposition 2.4. Let F be a Legendrian foliation on an almost S-manifold
(M, φ, ξi, ηi, g), i ∈ {1, . . . , r}. Then

(i) φ (L) = Q and φ (Q) = L;

(ii) for any Y, Y ′ ∈ ΓQ, [Y, Y ′] ∈ ΓH.

Proof. For any X, X ′ ∈ L and for any i ∈ {1, . . . , r} we have g (X, φ (X ′)) =
dηi (X, X ′) = 1

2 (X (ηi (X ′))−X ′ (ηi (X))− ηi ([X,X ′])) = − 1
2ηi ([X, X ′]) = 0, since

L is integrable. Hence φ (X ′) ∈ L⊥. But we know also that φ (X ′) ∈ H, so φ (X ′) ∈ Q.
Since dim (φ (L)) = dim (L) = n = dim (Q), then φ (L) = Q. In a similar way one can
prove that φ (Q) = L. In order to prove (ii), take Y, Y ′ ∈ ΓQ. Then, applying (i), we
have, for each i ∈ {1, . . . , r}, ηi ([Y, Y ′]) = −2dηi (Y, Y ′) = −2g (Y, φ (Y ′)) = 0.

The last proposition states that in general the distribution Q is not integrable.
Another consequence is the possibility of constructing very useful local frames for M .

Proposition 2.5. Let
(
M2n+r, φ, ξi, ηi, g

)
be an almost S-manifold and F a Leg-

endrian foliation on M . If {X1, . . . , Xn} is a local g-orthonormal frame for L,
then {X1, . . . , Xn, φX1, . . . , φXn, ξ1, . . . , ξr} is a local g-orthonormal frame for TM
and its corresponding local coframe {ε1, . . . , εn, θ1, . . . , θn, η1, . . . , ηr} in T ∗M , where
εα = 1

2 iφ(Xα)Φ, θα = − 1
2 iXαΦ, satisfies the following relations:

(i) εα ∈ ΓL∗ and θα ∈ ΓQ∗, α ∈ {1, . . . , n},

(ii) Φ = 2
n∑

α=1
θα ∧ εα,

(iii) g|L =
n∑

α=1
εα ⊗ εα, g|Q =

n∑
α=1

θα ⊗ θα and g|Rξi = ηi ⊗ ηi, i ∈ {1, . . . , r}.

Proof. For any W ∈ ΓTM we have

εα (W ) =
1
2

(
iφ(Xα)Φ

)
W = Φ (φ (Xα) ,W ) = g (φ (Xα) , φ (W ))

= g (Xα,W )−
r∑

i=1

ηi (Xα) ηi (W ) = g (W,Xα)

and

θα (W ) = −1
2

(iXαΦ)W = −Φ(Xα, W ) = g (W,φ (Xα))

from which we obtain that εα ∈ ΓL∗ and θα ∈ ΓL∗. Moreover, for any α, β ∈
{1, . . . , n}, θα (φ (Xβ)) = g (φ (Xα) , φ (Xβ)) = g (Xα, Xβ) = δαβ and εα (Xβ) =
g (Xα, Xβ) = δαβ , so that:

n∑
α=1

θα ⊗ θα (φ (Xγ) , φ (Xβ)) =
n∑

α=1

θα (φ (Xγ)) θα (φ (Xβ))

= δγβ = g (φ (Xγ) , φ (Xβ)) .
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In the same way one can completes the proof of (iii). It remains to verify (ii). Indeed,
for any γ, β ∈ {1, . . . , n},

2
n∑

α=1

θα ∧ εα (φ (Xγ) , Xβ) =
r∑

α=1

(θα (φ (Xγ)) εα (Xβ)− θα (Xβ) εα (φ (Xγ)))

=
n∑

α=1

δαγδαβ = δγβ = Φ (φ (Xγ) , Xβ)

and the proposition is proved.

3 The invariants Π and G

In this section we will give a classification of Legendrian foliations on almost S-
manifolds, which generalizes that one given in [8] in the contact case. First we need
the following

Definition 3.1. Let F be a Legendrian foliation on the almost S-manifold(
M2n+r, φ, ξi, ηi, g

)
. We define, for any X, X ′ ∈ ΓL,

Π(X,X ′) = −
r∑

i=1

(LXLX′ηi) (ξi) .

Proposition 3.2. Π is a symmetric bilinear form on L. Furthermore, for any
X, X ′ ∈ ΓL,

Π(X, X ′) = −
r∑

i=1

ηi ([X ′, [X, ξi]])

or, equivalently,

Π(X, X ′) = 2g
([

ξ, X
]
, φ (X ′)

)
.

Proof. From the definition of Π we have, as [X, ξi] and [X ′, ξi] belong to ΓH,

Π (X, X ′) = −
r∑

i=1

(LXLX′ηi) (ξi) = −
r∑

i=1

X ((LX′ηi) (ξi))

+
r∑

i=1

(LX′ηi) ([X, ξi]) = −
r∑

i=1

X (X ′ (ηi (ξi))− ηi ([X ′, ξi]))

+
r∑

i=1

X ′ (ηi ([X, ξi]))−
r∑

i=1

ηi ([X ′, [X, ξi]]) = −
r∑

i=1

ηi ([X ′, [X, ξi]]) .

Furthermore, Π (X,X ′) = −
r∑

i=1

ηi ([X ′, [X, ξi]]) =
r∑

i=1

2dηi (X ′, [X, ξi]) =

2g
([

ξ, X
]
, φ (X ′)

)
and, using this formula, it is easy to check that Π is a symmetric

bilinear form on L.
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Π is an invariant of the Legendrian foliation F and it can be used for classifying
Legendrian foliations on almost S-manifolds in the following way:

Definition 3.3. A Legendrian foliation on the almost S-manifold M2n+r is called:

(i) flat if and only if Π = 0;

(i) degenerate if and only if Π is degenerate;

(iii) non-degenerate if and only if Π is non-degenerate;

(iv) positive definite if and only if Π is positive definite.

Proposition 3.2 and Proposition 2.4 enable us to give a geometrical meaning of
the previous classification:

Proposition 3.4. Let F be a Legendrian foliation on the almost S-manifold(
M2n+r, φ, ξi, ηi, g

)
. Then,

(i) F is flat if and only if ξ is a projectable (or foliate) vector field for the foliation
F , i.e.

[
ξ, X

] ∈ ΓL for all X ∈ ΓL;

(ii) F is degenerate if and only if there exists X ∈ ΓL, X 6= 0, such that pQ

([
ξ, X

])
=

0;

(iii) F is non-degenerate if and only if pQ

([
ξ, X

]) 6= 0 for all X ∈ ΓL;

(iv) F positive definite if and only if g
([

ξ, X
]
, φ (X)

)
> 0 for all X ∈ ΓL, X 6= 0.

Proof. First of all note that, Lemma 2.3 implies
[
ξ, Z

] ∈ ΓH for all Z ∈ ΓH. So, in
order to prove (i), it is sufficient to prove that Π ≡ 0 if and only if

[
ξ, X

] ∈ ΓQ⊥ for
all X ∈ ΓL, but this is a consequence of Proposition 3.2 and Proposition 2.4. Now we
prove (ii). Suppose that there exists X ∈ ΓL, X 6= 0, such that pQ

([
ξ, X

])
= 0. Then,

for such X ∈ ΓL, we have Π (X,X) = 2g
([

ξ, X
]
, φ (X)

)
= 0, that is Π is degenerate.

Vice versa, suppose that F is degenerate. Then there exists 0 6= X ∈ ΓL such that
Π (X, X ′) = 0 for all X ′ ∈ ΓL. Hence, using again Proposition 3.2, we have that, for
all X ′ ∈ ΓL, g

([
ξ, X

]
, φ (X ′)

)
= 0 and so, applying Proposition 2.4, pQ

([
ξ,X

])
= 0.

Similarly one can prove (iii) and (iv).

Corollary 3.5. If ξ1, . . . , ξr are foliate vector fields, then F is flat.

The previous corollary justifies the

Definition 3.6. A Legendrian foliation on an almost S-manifold (M, φ, ξi, ηi, g) is
called strongly flat if ξ1, . . . , ξr are foliate vector fields.

Now we introduce a second invariant trilinear form on L, which is very useful in
the study of Riemannian Legendrian foliations.

Definition 3.7. For all X,X ′, X ′′ ∈ ΓL we define

G (X,X ′, X ′′) =
1
2

(X (Π (X ′, X ′′)) + X ′ (Π (X,X ′′)) + X ′′ (Π (X,X ′)))

+
1
2

(
r∑

i=1

(LX′LXLX′′ηi + LX′′LXLX′ηi) (ξi)

)
.
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We prove some lemmas in order to find a more convenient expression for G.

Lemma 3.8. For any X, X ′, X ′′ ∈ ΓL we have:

G (X, X ′, X ′′) = −1
2

(X (Π (X ′, X ′′)) + X ′ (Π (X, X ′′)) + X ′′ (Π (X, X ′)))

−1
2

r∑

i=1

ηi ([X ′, [X, [X ′′, ξi]]] + [X ′′, [X, [X ′, ξi]]]) .

Proof. Indeed we have, for each i ∈ {1, . . . , r},
(LX′LXLX′′ηi) (ξi) = X ′ (LXLX′′ηi (ξi))−X ((LX′′ηi) ([X ′, ξi]))

+ (LX′′ηi) ([X, [X ′, ξi]]) = X ′ (LXLX′′ηi (ξi)) + X (ηi ([X ′′, [X ′, ξi]]))
+X ′′ (ηi ([X, [X ′, ξi]]))− ηi ([X ′′, [X, [X ′, ξi]]]) ,

so, taking the sum over all i,
r∑

i=1

(LX′LXLX′′ηi) (ξi) = −X ′ (Π (X,X ′′))−X (Π (X ′, X ′′))

−X ′′ (Π (X,X ′))−
r∑

i=1

ηi ([X ′′, [X, [X ′, ξi]]]) .

Hence, applying the definition of G we get the result.

Using Proposition 3.2 and the symmetry of Π, an easy computation allows us to
state the following

Lemma 3.9. For any X, X ′, X ′′ ∈ ΓL we have

G (X, X ′, X ′′) = −X
(
g

([
ξ,X ′] , φ (X ′′)

))
+ g

([
X,

[
ξ, X ′′]] , φ (X ′)

)

+g
([

X,
[
ξ, X ′]] , φ (X ′′)

)
.

4 Non-degenerate Legendrian foliations on almost
S-manifolds

For a non-degenerate Legendrian foliation on a contact manifold Liebermann showed
in [7] the existence of a tensor field which is very useful in the study of this type of
the Legendrian foliations. Now we want to generalize this construction to the case of
almost S-manifolds.

Proposition 4.1. Let F be a non-degenerate Legendrian foliation on an almost S-
manifold

(
M2n+r, φ, ξi, ηi, g

)
. Then there exists a tensor field λ of type (1, 1) such

that

Π(λ (W ) , X) = 4rΦ(W,X)

for any X ∈ ΓL, W ∈ ΓTM . Moreover λ satisfies the relation

λ
([

ξ,X
])

= 2rX(4.6)

for all X ∈ ΓL.
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Proof. Consider the isomorphism υ : H −→ H∗, X 7→ 2riXΦ and let π denote the
projection of TM onto H. Since L is a subbundle of H, there exists a surjective
morphism p : H∗ −→ L∗. Let Π] : L∗ −→ L be the inverse of the morphism Π[ :
L −→ L∗ associated with the non-degenerate bilinear form Π. Then we can put
λ := Π] ◦ p ◦ υ ◦ π. Note that, for all W ∈ TM ,

Π (λ (W ) , X) = Π
(
Π] (p (υ (π (W )))) , X

)
= Π[

(
Π] (p (υ (π (W ))))

)
(X)

= (p (υ (π (W )))) (X) = 2r
(
iπ(W )Φ

)
(X) = 4rΦ(π (W ) , X) = 4rΦ(W,X) .

Moreover we have, for all X, X ′ ∈ ΓL,

Π (X, X ′) = 2g
([

ξ, X
]
, φ (X ′)

)
=

1
2r

Π
(
λ

([
ξ,X

])
, X ′)

and so λ
[
ξ,X

]
= 2rX.

Remark 4.2. By the definition of λ, L ⊂ ker (λ) and λ2 = 0.

Corollary 4.3. Let F be a non-degenerate Legendrian foliation on the almost S-
manifold

(
M2n+r, φ, ξi, ηi, g

)
. If {X1, . . . , Xn} is a local frame for L in an open subset

U on M , then {X1, . . . , Xn,
[
ξ,X1

]
, . . . ,

[
ξ, Xn

]} is a local frame for H in U .

Proof. The previous proposition shows that λ maps, except for some multiplicative
constants,

[
ξ, X1

]
, . . . ,

[
ξ, Xn

]
onto the linearly independent vector fields X1, . . . , Xn,

hence the vector fields
[
ξ,X1

]
, . . . ,

[
ξ,Xn

]
are linearly independent in U . More-

over, by Proposition 3.4, for all i ∈ {1, . . . , r}, [
ξ,Xi

]
does not belong to L, so{

X1, . . . , Xn,
[
ξ, X1

]
, . . . ,

[
ξ,Xn

]}
generate H in U .

For a non-degenerate Legendrian foliation, the tensor field λ enables us to extend
the invariant Π to a symmetric, bilinear form Π on TM , as follows:

Π (W,W ′) = Π (λ (W ) , λ (W ′)) ,

and to introduce a family of almost S-structures (φ, ξi, ηi, g) as shown in the following

Lemma 4.4. Let F be a non-degenerate Legendrian foliation on the almost S-
manifold

(
M2n+r, φ, ξi, ηi, g

)
. Then there exists an almost S-structure (φ′, ξi, ηi, g

′)
on M , where g′ is a semi-Riemannian metric, such that

g′|L =
1
4r

Π.

Proof. Let {X1, . . . , Xn} be a local orthonormal frame for L with respect to 1
4r Π and

{Y1, . . . , Yn} be a local frame of H∩L′ such that λ (Yα) = Xα for all α ∈ {1, . . . , n},
where L′ is the complement set of L in TM . Put Q′ = span {Y1, . . . , Yn}, so that
λ|Q′ : Q′ −→ L is an isomorphism, and define the tensor field φ′ of type (1,1) as
follows:

φ′|L = (λ|Q′)−1
, φ′|Q′ = −λ|Q′ , φ′|Rξ1 = · · · = φ′|Rξr = 0.

By definition φ′ satisfies the following relations:
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φ′ (Xα) = Yα, φ′ (Yα) = −Xα, φ′ (ξ1) = · · · = φ′ (ξr) = 0.

Finally we define a semi-Riemannian metric g′ on M by setting

g′|L =
1
4r

Π, g′|Q′ =
1
4r

(λ∗Π) |Q′ , g′|Rξi = ηi ⊗ ηi, g′ = 0 otherwise.

It is easy to verify that (φ′, ξi, ηi, g
′) is a metric f · pk-structure for M , so we check

only that Φ′ = dηi for all i ∈ {1, . . . , r}. Indeed, for X ∈ ΓL and Y ∈ ΓQ′, we
have Φ′ (X, Y ) = g′ (X,φ′ (Y )) = 1

4r Π(X,φ′ (Y )) = − 1
4r Π(λ (Y ) , X) = dηi (X,Y ) =

Φ (X,Y ). The other cases are obvious.

It is clear that the almost S-structure on M considered in Lemma 4.4 is not unique.
In analogy to [5] we call the family of all almost S-structures such that g|L = 1

4r Π
the canonical family of almost S-structures for (M, L). Moreover the given structure
(φ, ξi, ηi, g) in Lemma 4.4 does not belong necessarily to the canonical family. In fact
we have

Lemma 4.5. Let F be a Legendrian foliation on the almost S-manifold(
M2n+r, φ, ξi, ηi, g

)
. Then the following statements are equivalent:

(i) g|L = 1
4r Π;

(ii) pL⊥
([

ξ, X
])

= pQ

([
ξ, X

])
= 2rφ (X) for all X ∈ ΓL.

Proof. The proof follows directly by Proposition 3.2.

Lemma 4.6. Let F be a Legendrian foliation on the almost S-manifold M2n+r. If
(φ, ξi, ηi, g) and (φ′, ξi, ηi, g

′) are two almost S-structures on M such that g|L = 1
4r Π =

g′|L, then there exist smooth functions cαβ such that

φ′ (Xα) = φ (Xα) +
n∑

β=1

cαβXβ ,

where {X1, . . . , Xn} is a local orthonormal frame for L with respect to 1
4rΠ.

Proof. Since {X1, . . . , Xn, φ (X1) , . . . , φ (Xn)} is a local frame for H and, for all
α ∈ {1, . . . , n}, φ′Xα ∈ ΓH, there exist smooth functions bαβ and cαβ such that

φ′ (Xα) =
n∑

β=1

(bαβφ (Xβ) + cαβXβ) .

Thus, for all α, β ∈ {1, . . . , n} we have

Π (λ (φ′ (Xα)) , Xβ) = 4rΦ(φ′ (Xα) , Xβ) = 4rg (Xα, Xβ) = Π (Xα, Xβ)

and, in the same way,

Π (λ (φ (Xα)) , Xβ) = Π (Xα, Xβ) ,

from which we obtain that λ (φ′ (Xα)) = Xα = λ (φ (Xα)) for all α ∈ {1, . . . , n}. So,
for all α, β ∈ {1, . . . , n}, since L ⊂ ker (λ),
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Xα = λ (φ′ (Xα)) = λ




n∑

β=1

(bαβφ (Xβ) + cαβXβ)




=
n∑

β=1

bαβλ (φ (Xβ)) =
n∑

β=1

bαβXβ

and this implies that bαβ = δαβ .

In Section 2 we have considered the tensor field h = 1
2Lξφ. It is clear that, in

general, h does not transform vectors tangent to F into vectors tangent to F . However,
if F is non-degenerate, we can find an almost S-structure in the canonical family such
that h sends L into itself, as the following theorem shows.

Theorem 4.7. Let F be a non-degenerate Legendrian foliation on an almost S-
manifold M2n+r with structure (φ0, ξi, ηi, g0). Then there exists a unique almost S-
structure (φ, ξi, ηi, g) such that

(i) g|L = 1
4r Π,

(ii) h : L −→ L,

Proof. Following [7] we consider the tensor field S : H −→ H such that

S (X) = 0,

S
([

ξ,X
])

=
1
2r

([
ξ, X

]− 1
4r

λ
([

ξ,
[
ξ,X

]]))
,

for all X ∈ ΓL. The definition is well posed in view of Corollary 4.3. Moreover, for all
X ∈ ΓL, we get

λ
(
S

[
ξ,X

])
=

1
2r

(
λ

([
ξ, X

])− 1
4r

λ2
([

ξ,
[
ξ, X

]]))
=

1
2r

λ
([

ξ, X
])

= X.

Now let {X1, . . . , Xn} be a local orthonormal frame for L with respect to 1
4r Π and,

with the notation of Lemma 4.4, choose a Q ⊂ H∩L′ such that Q = span {Y1, . . . , Yn},
where Yα = S

([
ξ,Xα

])
. Since, for all α ∈ {1, . . . , n}, λ (Yα) = λ

(
S

((
[ξ, Xα

]))
= Xα,

following the proof of Lemma 4.4, we can define φ and g as follows:

φ|L = (λ|Q)−1
, φ|Q = −λ|Q, φ|Rξ1 = · · · = φ|Rξr = 0

and

g|L =
1
4r

Π, g|Q =
1
4r

(λ∗Π) |Q, g|Rξi = ηi ⊗ ηi, g = 0 otherwise,

i ∈ {1, . . . , r}. Thus we obtain an almost S-structure (φ, ξi, ηi, g) such that the con-
dition (i) of the theorem is satisfied. Now we have to verify (ii). First of all note that
from (2.3) it follows that, for all X ∈ ΓL,
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hi (X) =
1
2
φ (N (ξi, X)) ,

for all i ∈ {1, . . . , r}. So it is sufficient to show that φ
(
N

(
ξ, X

)) ∈ L. Lemma 4.5
implies

pQ

([
ξ, Xα

])
= 2rφ (Xα) = 2rYα,

from which we have

λ
([

ξ, Yα

])
= λ

([
ξ, S

([
ξ, Xα

])])

=
1
2r

λ

([
ξ,

[
ξ,Xα

]]− 1
4r

[
ξ, λ

([
ξ,

[
ξ, Xα

]])])

=
1
2r

λ

([
ξ,

[
ξ, Xα

]]− 1
2

[
ξ,

[
ξ,Xα

]])

=
1
4r

λ
([

ξ, pL

([
ξ,Xα

])]
+

[
ξ, pQ

([
ξ, Xα

])])
=

1
2

(
pL

([
ξ, Xα

])
+ λ

([
ξ, Yα

]))

so that

λ
([

ξ, Yα

])
= pL

([
ξ, Xα

])
.

Thus, for all α ∈ {1, . . . , n}, since L ⊂ ker (λ) we have

φ
(
N

(
ξ, Xα

))
= −φ

([
ξ,Xα

])
+

[
ξ, φ (Xα)

]
= −φ

([
ξ, Xα

])
+

[
ξ, Yα

]

= − (λ|Q)−1 (
λ

([
ξ, Yα

]))− φ
(
pQ

([
ξ, Xα

]))
+

[
ξ, Yα

]

= − (λ|Q)−1 (
λ

(
pQ

([
ξ, Yα

])))− φ
(
λ

(
pL

([
ξ, Yα

])))− φ
(
pQ

([
ξ,Xα

]))

+pQ

([
ξ, Yα

])
+ pL

([
ξ, Yα

])
,

and we can conclude that

h (Xα) =
1
2
φ

(
N

(
ξ,Xα

))
=

1
2
φ

(
pQ

([
ξ, Xα

]))
+

1
2
pL

([
ξ, Yα

]) ∈ L.

It remains to prove the uniqueness of such a structure. For this purpose, let (φ′, ξi, ηi, g
′)

denote any almost S-structure satisfying (i) and (ii). By Lemma 4.6 there exist smooth

functions cαβ such that φ′ (Xα) = φ (Xα) +
n∑

β=1

cαβXβ . ¿From the relations

pQ

([
ξ, Xα

])
= 2rφ (Xα) and pQ′

([
ξ, Xα

])
= 2rφ′ (Xα)

we deduce that there exist functions aαβ such that

[
ξ,Xα

]
=

n∑

β=1

aαβXβ + 2rφ′ (Xα) =
n∑

β=1

aαβXβ + 2rφ (Xα) + 2r

n∑

β=1

cαβXβ =

=
n∑

β=1

(aαβ + 2rcαβ)Xβ + 2rφ (Xα) .
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Moreover, the condition (ii) of the theorem implies that

0 = pQ (h (Xα)) =
1
2

(
pQ

([
ξ, φ (Xα)

])− pQ

(
φ

([
ξ,Xα

])))

and so

pQ

([
ξ, φ (Xα)

])
= pQ

(
φ

([
ξ, Xα

]))
=

n∑

β=1

(aαβ + 2rcαβ) φ (Xβ) .

Also h′ : L −→ L, then:

0 = g′ (h′ (Xα) , φ′ (Xβ)) = Φ′ (h′ (Xα) , Xβ)
= Φ (h′ (Xα) , Xβ) = g (h′ (Xα) , φ (Xβ))

which, together Lemma 4.6 and the previous formula, implies

0 = pQ (h′ (Xα)) =
1
2
pQ

([
ξ, φ′ (Xα)

]− φ′
([

ξ, Xα

]))

=
1
2
pQ


[

ξ, φ (Xα)
]
+

n∑

β=1

cαβ

[
ξ, Xβ

]− φ′
([

ξ,Xα

])

 =

1
2

n∑

β=1

((aαβ + 2rcαβ)φ (Xβ) + 2rcαβφ (Xβ)− aαβφ (Xβ)) = 2r

n∑

β=1

cαβφ (Xβ) .

Hence, for all α, β ∈ {1, . . . , n}, cαβ = 0 and φ = φ′. Finally, from Φ = Φ′ and φ = φ′

we deduce that g = g′.

5 Riemannian Legendrian foliations

A Legendrian foliation F on an almost S-manifold
(
M2n+r, φ, ξi, ηi, g

)
is called a

Riemannian Legendrian foliation if the metric g is bundle-like with respect to F , that
is

LXg|L⊥ = 0

for all X ∈ ΓL.

Theorem 5.1. Let F be a Riemannian Legendrian foliation on the almost S-manifold(
M2n+r, φ, ξi, ηi, g

)
. Then we have:

(i) F is a non-degenerate Legendrian foliation;

(ii) g|L = 1
4r Π.

Proof. (i). Suppose by absurd that F is degenerate. Then there exists X ∈ ΓL, X 6= 0,
such that Π (X, X) = 0. Then:
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0 = (LXg)
(
φ (X) , ξ

)
=

r∑

i=1

X (g (φ (X) , ξi))−
r∑

i=1

g ([X, φ (X)] , ξi)

−g
([

X, ξ
]
, φ (X)

)
= −

r∑

i=1

ηi ([X, φ (X)]) +
1
2
Π (X, X)

=
r∑

i=1

2dηi (X, φ (X)) = −2rg (X, X)

and this leads to a contradiction.
(ii) For all X ∈ ΓL and Y ∈ ΓQ we have:

0 = (LXg)
(
Y, ξ

)
= −

r∑

i=1

g ([X,Y ] , ξi) + g
([

ξ,X
]
, Y

)

= −
r∑

i=1

ηi ([X, Y ])− 1
2
Π (X, φ (Y )) =

r∑

i=1

2dηi (X, Y )− 1
2
Π (X, φ (Y ))

= 2rg (X, φ (Y ))− 1
2
Π (X, φ (Y )) ,

so g|L = 1
4rΠ.

Corollary 5.2. Any Riemannian Legendrian foliation on an almost S-manifold M
is positive definite.

Now we deal with the problem of finding an obstruction to the fact that a Legendrian
foliation is Riemannian. First we need the following

Lemma 5.3. Let F be a non-degenerate Legendrian foliation on an almost S-
manifold

(
M2n+r, φ, ξi, ηi, g

)
with g|L = 1

4r Π. Then, for all X,X ′, X ′′ ∈ ΓL,

G (X, X ′, X ′′) = 2rg
(∇φ(X′)φ (X ′′) +∇φ(X′′)φ (X ′) , X

)

where ∇ is the Levi Civita connection of (M, g).

Proof. By Lemma 3.9, for all X, X ′, X ′′ ∈ ΓL,

G (X, X ′, X ′′) = −X
(
g

(
pQ

[
ξ,X ′] , φ (X ′′)

))

+g
(
pQ

([
X,

[
ξ,X ′′]]) , φ (X ′)

)
+ g

(
pQ

([
X,

[
ξ, X ′]]) , φ (X ′′)

)
.

Now,

pQ

([
X,

[
ξ, X ′′]]) = pQ

([
X, pQ

([
ξ,X ′′])]) + pQ

([
X, pL

([
ξ,X ′′])]) =

= pQ ([X, 2rφ (X ′′)])

and, in the same way, pQ

([
X,

[
ξ, X ′]]) = pQ ([X, 2rφ (X ′)]). So

G (X, X ′, X ′′) = −2rX (g (φ (X ′) , φ (X ′′))) + 2rg ([X, φ (X ′′)] , φ (X ′))
+2rg ([X,φ (X ′)] , φ (X ′′)) = −2rX (g (φ (X ′) , φ (X ′′)))

+2rg (∇Xφ (X ′′) , φ (X ′))− 2rg
(∇φ(X′′)X, φ (X ′)

)
+ 2rg (∇Xφ (X ′) , φ (X ′′))

−2rg
(∇φ(X′)X, φ (X ′′)

)
= 2rg

(∇φ(X′)φ (X ′′) +∇φ(X′′)φ (X ′) , X
)

and the lemma is proved.
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Theorem 5.4. If F is a Riemannian Legendrian foliation on the almost S-manifold(
M2n+r, φ, ξi, ηi, g

)
, then G ≡ 0.

Proof. Indeed, we know that, for all X ∈ ΓL, LXg|L⊥ = 0. In particular this condition
implies that

(LXg) (Y, Y ′) = 0

for all X ∈ ΓL and Y, Y ′ ∈ ΓQ. The previous formula is equivalent to

g (∇Y Y ′ +∇Y ′Y, X) = 0,

where ∇ denotes the Levi Civita connection on (M, g). Therefore, applying the pre-
vious lemma, we get G ≡ 0.

Remark 5.5. In general for r > 1 the converse in the statement of Theorem 5.4 is
not true. Indeed a simple computation shows that, for each i ∈ {1, . . . , r} and for all
X ∈ ΓL, Y ∈ ΓQ,

(LXg) (Y, ξi) = g

(
Y,

1
r

[
X, ξ

]− [X, ξi]
)

which is zero if and only if r = 1.

6 Bott connection on Legendrian foliations

Consider the Bott connection on L⊥ = Q⊕ Rξ1 ⊕ . . .⊕ Rξr, given by

∇L⊥
X Y := pL⊥ ([X, Y ]) ,

for all X ∈ ΓL, Y ∈ ΓL⊥. Then ∇L⊥ determines a Bott partial connection ∇L⊥
∗

on
the dual bundle L⊥

∗
by

(
∇L⊥

∗

X v
)

Y = X (v (Y ))− v (pL⊥ ([X,Y ])) = (LXv)Y = 2dv (X, Y )

for X ∈ ΓL, Y ∈ ΓL⊥, v ∈ ΓL⊥
∗
. Now, if F is a Legendrian foliation, then ∇L⊥

∗

induces a partial connection ∇Q∗ defined by

∇Q∗

X v := pQ∗
(
∇L⊥

∗

X v
)

,

for X ∈ ΓL, v ∈ ΓQ∗. Note that, as the Bott connection ∇L⊥ is flat, also the
curvature of ∇L⊥

∗
vanishes. Let {X1, . . . , Xn, φ (X1) , . . . , φ (Xn) , ξ1, . . . , ξr} be a

local orthonormal frame for M as in Proposition 2.5 and evaluate the Bott partial
connection on the local orthonormal frame {X1, . . . , Xn} of L and the corresponding
coframe {θ1, . . . , θn, η1, . . . , ηr}

(
∇L⊥

∗

Xα
ηi

)
(φ (Xβ)) = 2dηi (Xα, φ (Xβ)) = −2θα (φ (Xβ)) ,
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(
∇L⊥

∗

Xα
ηi

)
(ξj) = 2dηi (Xα, ξj) = 0 = −2θα (ξj) ,

and
(
∇L⊥

∗

Xα
θβ

)
(φ (Xγ)) = Xα (θβ (φ (Xγ)))− θβ ([Xα, φ (Xγ)])

= −θβ ([Xα, φ (Xγ)]) ,

(
∇L⊥

∗

Xα
θβ

)
(ξi) = Xα (θβ (ξi))− θβ ([Xα, ξi]) = −θβ ([Xα, ξi]) .

¿From these relations it follows that

∇L⊥
∗

Xα
ηi = −2θα,(6.7)

∇L⊥
∗

Xα
θβ = −

n∑
γ=1

θβ ([Xα, φ (Xγ)]) θγ −
r∑

j=1

θβ ([Xα, ξj ]) ηj ,(6.8)

for any α, β ∈ {1, . . . , n} and i ∈ {1, . . . , r}. In particular, (6.8) implies

∇Q∗

Xα
θβ = pQ∗

(
∇L⊥

∗

Xα
θβ

)
= −

n∑
γ=1

θβ ([Xα, φ (Xγ)]) θγ .

Then the partial connection 1-form of ∇L⊥
∗

corresponds to the (n + r) × (n + r)
matrix form ω = (ωhk) determined by the relation

∇L⊥
∗

(
θα

ηi

)
= −

(
ωαβ ωαn+j

ωn+iβ 0

)
⊗

(
θβ

ηj

)
.

Hence (ωαβ)1≤α,β≤n is the relative partial connection form for ∇Q∗ . Comparing the
last equation with (6.7) and (6.8) we get:

ωβγ (Xα) = θβ ([Xα, φ (Xγ)]) ,(6.9)

ωβn+j (Xα) = θβ ([Xα, ξj ]) = g (φ (Xβ) , [Xα, ξj ]) ,(6.10)

ωn+iγ (Xα) = 2δγα.(6.11)

As the Bott connection is flat along L, we have dω+ω∧ω = 0, from which we deduce
the equations:

dωαβ +
n∑

γ=1

ωαγ ∧ ωγβ +
n∑

l=1

ωαn+l ∧ ωn+lβ = 0,(6.12)

dωαn+j +
n∑

γ=1

ωαγ ∧ ωγn+j = 0,(6.13)
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dωn+iβ +
n∑

γ=1

ωn+iγ ∧ ωγβ = 0,(6.14)

n∑
γ=1

ωn+iγ ∧ ωγn+j = 0.(6.15)

Now we are going to define a partial connection on L whose curvature is related, as
we will see, to the invariant Π. First consider the isomorphism Ψ : L −→ Q∗ given by
Ψ (X) = 1

2 iXΦ, for any X ∈ ΓL. We define, for all X, X ′ ∈ ΓL,

∇̃L
XX ′ := Ψ−1

(
∇Q∗

X Ψ(X ′)
)

.

∇̃L is a partial connection along L. Note that in the local orthonormal frame
{X1, . . . , Xn} of L one has Ψ (Xα) = −θα and, using (6.8),

∇̃L
Xα

Xβ = Ψ−1
(
∇Q∗

Xα
(Ψ (Xβ))

)
= −Ψ−1

(
∇Q∗

Xα
θβ

)

= Ψ−1

(
n∑

δ=1

θβ ([Xα, φ (Xδ)]) θδ

)
= −

n∑

δ=1

θβ ([Xα, φ (Xδ)])Xδ.

Proposition 6.1. ∇̃L is torsion free and has curvature given by:

R̃L (X,X ′)X ′′ =
1
2

(Π (X,X ′′)X ′ −Π (X ′, X ′′)X)

for all X, X ′, X ′′ ∈ ΓL.

Proof. Indeed, to compute the torsion and the curvature of ∇̃L it is sufficient to
evaluate them on a local orthonormal frame {X1, . . . , Xn} for L.

Ψ
(
T̃L (Xα, Xβ)

)
= −∇Q∗

Xα
θβ +∇Q∗

Xβ
θα −Ψ([Xα, Xβ ])

=
1
2

(
∇Q∗

Xα
∇L⊥

∗

Xβ
ηi −∇Q∗

Xβ
∇L⊥

∗

Xα
ηi

)
−Ψ([Xα, Xβ ])

=
1
2
pQ∗

(
∇L⊥

∗

Xα
∇L⊥

∗

Xβ
ηi −∇L⊥

∗

Xβ
∇L⊥

∗

Xα
ηi

)
−Ψ([Xα, Xβ ])

=
1
2
pQ∗

(
∇L⊥

∗

Xα
∇L⊥

∗

Xβ
ηi −∇L⊥

∗

Xβ
∇L⊥

∗

Xα
ηi −∇L⊥

∗

[Xα,Xβ ]ηi

)

=
1
2
pQ∗

(
RL⊥

∗
(Xα, Xβ)

)
= 0,

since ∇L⊥
∗

is flat. As Ψ is an isomorphism we get T̃L (Xα, Xβ) = 0 for any α, β ∈
{1, . . . , n}. Now we compute the curvature.

Ψ
(
R̃L (Xα, Xβ)Xγ

)
= ∇Q∗

Xα
Ψ

(
∇̃L

Xβ
Xγ

)
−∇Q∗

Xβ
Ψ

(
∇̃L

Xα
Xγ

)
−∇Q∗

[Xα,Xβ ]Ψ(Xγ)

= ∇Q∗

Xα
∇Q∗

Xβ
Ψ(Xγ)−∇Q∗

Xβ
∇Q∗

Xα
Ψ(Xγ)−∇Q∗

[Xα,Xβ ]Ψ(Xγ)

= ∇Q∗

Xα
∇Q∗

Xβ
θγ −∇Q∗

Xβ
∇Q∗

Xα
θγ −∇Q∗

[Xα,Xβ ]θγ = −RQ∗ (Xα, Xβ) θγ
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So we have obtained

Ψ
(
R̃L (Xα, Xβ)Xγ

)
= −RQ∗ (Xα, Xβ) θγ .(6.16)

Using this formula and equation (6.12) we have:

R̃L (Xα, Xβ)Xγ = Ψ−1

(
n∑

σ=1

Ωσγ (Xα, Xβ) θσ

)

=
n∑

σ=1

(
dωγσ +

n∑
ρ=1

ωγρ ∧ ωρσ

)
(Xα, Xβ)Xσ

= −
n∑

σ=1

r∑

l=1

(ωγn+l ∧ ωn+lσ) (Xα, Xβ)Xσ

= −1
2

n∑
σ=1

r∑

l=1

(ωγn+l (Xα) ωn+lσ (Xβ)− ωγn+l (Xβ) ωn+lσ (Xα))Xσ

= −
n∑

σ=1

r∑

l=1

(θγ ([Xα, ξl]) δβσ − θγ ([Xβ , ξl]) δασ) Xσ =

=
r∑

l=1

Φ(Xγ , [Xα, ξl]) Xβ −
r∑

l=1

Φ(Xγ , [Xβ , ξl]) Xα =

=
1
2

(Π (Xα, Xγ)Xβ −Π(Xβ , Xγ)Xα)

and so we get the result.

Corollary 6.2. If F is a flat Legendrian foliation on an almost S-manifold M2n+r

then R̃L ≡ 0.

So the last corollary justifies the name ”flat” for a Legendrian foliation characterized
by the vanishing of Π.

7 Bi-Legendrian structures

By a bi-Legendrian structure on the almost S-manifold
(
M2n+r, φ, ηi, ξi, g

)
we mean

a couple (F ,G) of two complementary Legendrian foliations of M . In this section we
examine an important class of examples of bi-Legendrian structures. More precisely,
we know that, as φ|H is an isomorphism, Q = φ (L) is a n-dimensional subbundle of
H, so if it is involutive it defines a Legendrian foliation which, in analogy with [5], we
will call the conjugate Legendrian foliation of F . In this section we deal with this very
particular situation and give conditions which ensure the integrability of Q, involving
the tensor field N defined in (2.1).

Theorem 7.1. Let F be a non-degenerate Legendrian foliation on an almost S-
manifold

(
M2n+r, φ, ξi, ηi, g

)
with g|L = 1

4r Π. Then the bundle Q is integrable if
and only if pL (N (X, X ′)) = 0 for all X, X ′ ∈ ΓL. Moreover, if ξ is a Killing vector
field and Q is integrable, then g|Q = 1

4r Π|Q = 1
4r (φ∗Π) |Q and N (X,X ′) = 0 for all

X, X ′ ∈ ΓL.
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Proof. Firstly observe that, for any X, X ′ ∈ ΓL, N (X, X ′) = [φ (X) , φ (X ′)] −
[X,X ′] − φ ([φ (X) , X ′]) − φ ([X, φ (X ′)]). Let {X1, . . . , Xn} be a local orthonor-
mal frame for L. Then from (6.13) and (6.9), (6.10), (6.11) we have, for any
α, β ∈ {1, . . . , n}, j ∈ {1, . . . , r},

0 = 2

(
dωρn+j +

n∑
γ=1

ωργ ∧ ωγn+j

)
(Xα, Xβ)

= Xα (ωρn+j (Xβ))−Xβ (ωρn+j (Xα))− ωρn+j ([Xα, Xβ ])

+
n∑

γ=1

(ωργ (Xα) ωγn+j (Xβ)− ωργ (Xβ)ωγn+j (Xα))

= Xα (θρ ([Xβ , ξj ]))−Xβ (θρ ([Xα, ξj ]))− θρ ([[Xα, Xβ ] , ξj ])

+
n∑

γ=1

(θρ ([Xα, φ (Xρ)]) θγ ([Xβ , ξj ])− θρ ([Xβ , φ (Xγ)]) θγ ([Xα, ξj ])) .

Now, taking the sum over all j we have,

0 =
r∑

j=1

2

(
dωρn+j +

n∑
γ=1

ωργ ∧ ωγn+j

)
(Xα, Xβ)

= Xα

(
θρ

([
Xβ , ξ

]))−Xβ

(
θρ

([
Xα, ξ

]))− θρ

([
[Xα, Xβ ] , ξ

])

+
n∑

γ=1

(
θρ ([Xα, φ (Xγ)]) θγ

([
Xβ , ξ

])− θρ ([Xβ , φ (Xγ)]) θγ

([
Xα, ξ

]))
.

Note that, using Lemma 4.5, we see that θβ

([
Xα, ξ

])
= g

(
φ (Xβ) ,

[
Xα, ξ

])
=

2rg (φ (Xβ) , φ (Xα)) = 2rg (Xα, Xβ) = 2rδαβ . So the last equation becomes:

0 = −2rg ([Xα, Xβ ] , Xρ)

+2r

n∑
γ=1

(g ([Xα, φ (Xγ)] , φ (Xδ)) δγβ − g ([Xβ , φ (Xρ)] , φ (Xρ)) δγα)

= −2r (g ([Xα, Xβ ] , Xρ)− g (φ ([Xα, φ (Xβ)]) , Xδ) + g (φ ([Xβ , φ (Xα)]) , Xρ))

that is

g ([Xα, Xβ ] + φ ([Xα, φ (Xβ)]) + φ ([φ (Xα) , Xβ ]) , Xρ) = 0

for all α, β, δ ∈ {1, . . . , n}. In particular it follows that, for all X, X ′ ∈ ΓL,

pL ([X, X ′] + φ ([X,φ (X ′)]) + φ ([φ (X) , X ′])) = 0,

and so pL (N (X, X ′)) = pL ([φ (X) , φ (X ′)]). Therefore Q is integrable if and only if
pL (N (X, X ′)) = 0.
Now we pass to the second part of the theorem. First of all note that, since ξ is Killing
we have h = 0, hence, for all X ∈ ΓL,

[
ξ, φ (X)

]
= φ

([
ξ, X

])
and then

pL

([
ξ, φ (X)

])
= pL

(
φ

([
ξ, X

]))
= φ

(
pQ

([
ξ, X

]))
.(7.17)
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Now suppose that Q is integrable and take Y ∈ ΓQ. There exists a unique X ∈
ΓL such that Y = φ (X). Thus, by Lemma 4.5, pL

([
ξ, Y

])
= pL

([
ξ, φ (X)

])
=

φ (2rφ (X)) = −2rX = 2rφ (Y ) and so, using again Lemma 4.5, g|Q = 1
4rΠQ, where

ΠQ is the invariant of the Legendrian foliation Q defined in Section 3. But in this
case we can prove that, for all X, X ′ ∈ ΓL, ΠQ (φ (X) , φ (X ′)) = Π (X, X ′). Indeed,
since ξ is Killing,

ΠQ (φ (X) , φ (X ′)) = 2g
([

ξ, φ (X)
]
, φ2 (X ′)

)
= −2g

([
ξ, φ (X)

]
, X ′)

= −2g
(
φ

([
ξ,X

])
, X ′) = 2g

([
ξ,X

]
, φ (X ′)

)
= Π(X,X ′) .

Moreover ΠQ coincides also with Π|Q, because, using equation (4.6)

Π (φ (X) , φ (X ′)) = Π (λ (φ (X)) , λ (φ (X ′)))

= Π
(

1
2r

λ
([

ξ,X
]
Q

)
,

1
2r

λ
([

ξ,X ′]
Q

))
= Π

(
1
2r

λ
([

ξ, X
])

,
1
2r

λ
([

ξ, X ′])
)

= Π(X, X ′) = ΠQ (φ (X) , φ (X ′)) .

It remains to prove that N (X,X ′) = 0 for all X, X ′ ∈ ΓL. The first part of
the theorem implies that pL (N (X, X ′)) = 0 and pQ (N (φ (X) , φ (X ′))) = 0.
But, N (φ (X) , φ (X ′)) =

[
φ2 (X) , φ2 (X ′)

]− [φ (X) , φ (X ′)]−φ
([

φ2 (X) , φ (X ′)
])−

φ
([

φ (X) , φ2 (X ′)
])

= [X,X ′] − [φ (X) , φ (X ′)] + φ ([X, φ (X ′)]) + φ ([φ (X) , X ′]) =
−N (X, X ′), from which we conclude that N (X, X ′) = 0 because for all i ∈ {1, . . . , r},
g (N (X, X ′) , ξi) = 0.

Remark 7.2. Let F be a Legendrian foliation such that its conjugate exists. Then,
applying twice the last theorem, we conclude that N (X,X ′) = 0 for all X, X ′ ∈ ΓL
and N (Y, Y ′) = 0 for all Y, Y ′ ∈ ΓQ. In particular we can prove the following

Theorem 7.3. Let F be a non-degenerate Legendrian foliation on the almost S-
manifold (M, ηi, ξi, φ, g) with g|L = 1

4r Π. Then (M, ηi, ξi, φ, g) is an S-manifold, i.e.
N ≡ 0, if and only if each ξi is a Killing vector field and Q is integrable.

Proof. Suppose that Q is integrable and, for all i ∈ {1, . . . , r}, ξi is a Killing vector
field. In particular ξ is a Killing vector field and we can apply Theorem 7.1, obtain-
ing N (X,X ′) = 0 and N (Y, Y ′) = 0 for all X,X ′ ∈ ΓL, Y, Y ′ ∈ ΓQ. Moreover,
since each ξi is Killing we have hi = 0 for all i ∈ {1, . . . , r}. So, applying (2.3), we
get φ (N (X, X ′)) + N (φ (X) , X ′) = 0 for all X, X ′ ∈ ΓL, from which we deduce
N (X, Y ) = 0 for all X ∈ ΓL and Y ∈ ΓQ and we can conclude that N (Z,Z ′) = 0
for all Z,Z ′ ∈ ΓH. Finally, from (2.4) we deduce that g (N (Z, ξj) , ξi) = 0 and, from
(2.3), φ (N (Z, ξj)) = 0 for all Z ∈ ΓH. Thus N (Z, ξj) ∈ H∩ span {ξ1, . . . , ξr} and so
vanishes. Since, obviously, N (ξi, ξj) = 0 we conclude that N ≡ 0 and (M,ηi, ξi, φ, g)
is an S-manifold. On the contrary, if the tensor field N vanishes identically, then each
ξi is Killing and, applying Theorem 7.1, we deduce that Q is integrable.

Directly by (7.17) and by Proposition 3.4 we deduce the following theorem, which
elucidates relations between a Legendrian foliation and its conjugate.

Theorem 7.4. Let
(
M2n+r, φ, ξi, ηi, g

)
be an almost S-manifold such that ξ is a

Killing vector field and F a Legendrian foliation on M such that the conjugate Leg-
endrian foliation exists. Then the conjugate belongs to the same class of F as in
Proposition 3.4.
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Remark 7.5. Assuming that each ξi is a Killing vector field, the statement of The-
orem 7.4 applies also to strongly flat Legendrian foliations.

The last theorem enables us to define a connection adapted to a bi-Legendrian
structure (F ,G) on an almost S-manifold M . Let L and Q denote the tangent bundles

of F and G, respectively, and E =
r⊕

i=1

Rξi. Consider the connection ∇̃L introduced in

Section 6 and let ∇′ be the partial connection along L defined by:

∇′XV :=

{
∇̃L

XV, if V ∈ ΓL

∇L⊥
X V, if V ∈ ΓL⊥

for all X ∈ ΓL. The same construction can be repeated for Q, so we have a partial
connection ∇′′ along Q, given by

∇′′Y Z :=

{
∇̃Q

Y V, if V ∈ ΓQ

∇Q⊥

Y V, if V ∈ ΓQ⊥

for all Y ∈ ΓQ. Finally we define a partial connection ∇′′′ along E setting

∇′′′Z V :=





pL ([Z, V ]) , if V ∈ ΓL
pQ ([Z, V ]) , if V ∈ ΓQ

r∑
j=1

Z (ηj (V )) ξj , if V ∈ ΓE

for all Z ∈ ΓE. So we can define a global connection ∇ on M putting, for all V, W ∈
ΓTM ,

∇W V := ∇′WL
V +∇′′WQ

V +∇′′′WE
V,(7.18)

where we have decomposed W as W = WL + WQ + WE , using the decomposition
TM = L⊕Q⊕ E. This construction can be done without any hypothesis on the bi-
Legendrian structure (F ,G). In particular, it is very interesting the case of strongly
flat bi-Legendrian structures. Indeed we have

Theorem 7.6. Let (F ,G) be a bi-Legendrian structure on an almost S-manifold M
such that both F and G are strongly flat. Then for the connection ∇ adapted to (F ,G)
we have

(i) R (X, X ′) = 0 for all X, X ′ ∈ ΓL, R (Y, Y ′) = 0 for all Y, Y ′ ∈ ΓQ;

(ii) T (V,W ) = −2Φ (V, W ) ξ.

Proof. The flatness of F and of G implies R̃L ≡ 0 and R̃Q ≡ 0. Then, since also the
Bott connection is flat, it follows that ∇′ and ∇′′ are flat connections along L and Q,
respectively, so the curvature of ∇ vanishes along the leaves of the foliations F and
G and (i) is proved. Now we prove (ii). Take X ∈ ΓL and Y ∈ ΓQ. Then, with the
above notations,
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T (X, Y ) = ∇′XY −∇′′Y X − [X, Y ] = ∇L⊥
X Y −∇Q⊥

Y X − [X, Y ]
= pL⊥ ([X, Y ])− pQ⊥ ([Y, X])− [X, Y ]

= [X, Y ]Q + [X, Y ]E − [Y, X]L − [Y,X]E − [X, Y ]

=
r∑

i=1

ηi ([X, Y ]) ξi = −
r∑

i=1

2dηi (X,Y ) ξi = −2Φ (X,Y ) ξ.

The same formula holds in the other cases. Indeed first of all note that, for all V ∈
ΓTM , ∇V ξi = pL⊥ ([VL, ξi]) + pQ⊥ ([VQ, ξi]) = 0, as L and Q are strongly flat. Hence

T (V, ξi) = ∇V ξi −∇ξi
V − [V, ξi] = −∇′′′ξi

V − [V, ξi] = − [ξi, VL]L − [ξi, VQ]Q

−
r∑

j=1

ξi (ηj (V )) ξj − [VL, ξi]− [VQ, ξi]−
r∑

j=1

[ηj (V ) ξj , ξi] = 0

and also −2Φ (V, ξi) ξ = 0. Finally, if X, X ′ ∈ ΓL then T (X, X ′) = ∇̃L
XX ′− ∇̃L

X′X −
[X,X ′] = T̃ (X, X ′) = 0, because ∇̃L is torsion free. Note that also Φ (X,X ′) = 0, so
T (X,X ′) = −2Φ (X,X ′) ξ. Similarly, for any Y, Y ′ ∈ ΓQ, T (Y, Y ′) = −2Φ (Y, Y ′) ξ =
0.

Corollary 7.7. Let F a strongly flat Legendrian foliation on an almost S-manifold
(M, ηi, ξi, φ, g) such that each ξi is a Killing vector field, and suppose that Q = φ (L)
is integrable. Then the connection ∇ adapted to the bi-Legendrian structure (L,Q)
satisfies properties (i) and (ii) of Theorem 7.6.

Remark 7.8. From the proof of Theorem 7.6 it follows that for any bi-Legendrian
structure, without the hypothesis of strongly flatness, the relations
T (X,Y ) = −2Φ (X, Y ) ξ, T (X, X ′) = 0 and T (Y, Y ′) = 0, for all X, X ′ ∈ ΓL,
Y, Y ′ ∈ ΓQ, are still true.

Example 7.9. Consider R2n+r with coordinates x1, . . . , xr, y1, . . . , yn, z1, . . . , zr and
its standard almost S-structure (φ, ηi, ξi, g) where

ηi = dzi −
n∑

j=1

yjdxj , ξi =
∂

∂zi

g =
r∑

i=1

ηi ⊗ ηi +
1
2

n∑

j=1

(
(dxj)

2 + (dyj)
2
)

and φ is represented by the matrix



0 In 0
−In 0 0
0 Y 0




where Y is the (r × n)-matrix given by
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


y1 · · · yn

...
. . .

...
y1 · · · yn




It is not difficult to check that Φ = dη1 = · · · = dηr =
n∑

i=1

dxi ∧ dyi. Set, for each

k ∈ {1, . . . , n}, Xk := ∂
∂yk

and Yk := ∂
∂xk

+ yk

r∑
α=1

∂
∂zα

. Note that φ (Xk) = Yk. Now

define L := span {X1, . . . , Xn}, Q := span {Y1, . . . , Yn}, obtaining in this way two
strongly flat Legendrian foliations on R2n+r such that φ (L) = Q. Let ∇ denote the
connection associated to (L,Q) as in (7.18). Then the curvature tensor of ∇ vanishes
identically. Indeed by a straightforward computation one has∇ ∂

∂yi

∂
∂yj

= ∇̃L
∂

∂yi

∂
∂yj

= 0,

∇ ∂
∂xi

∂
∂xj

= 0, ∇ ∂
∂yi

∂
∂xj

= 0, ∇ ∂
∂zα

∂
∂yi

=
[

∂
∂zα

, ∂
∂yi

]
L

= 0 and ∇ ∂
∂zα

∂
∂xi

= 0, from

which R ≡ 0.
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