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Abstract. We construct an explicit action of a rational map with two
simple poles on the space of solutions of the O(n —j + 1,574+ 1)/O(n —
J,7) X O(1,1)-system which is associated with time-like isothermic sur-
faces in R" 77 whose second fundamental forms are diagonalizable over
C. We show that these actions correspond to the Ribaucour and Darboux
transformations for these surfaces.
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1 Introduction

It is well known that there exists a connection between submanifold theory and in-
tegrable systems. Perhaps the most famous example of this is the relation between
the pseudo-spherical surface, their Biacklund transformations and the integrable Sin-
Gordon equation.

Several papers study this connection for particular submanifolds which have an
integrable system description. Recently, a new integrable system was defined, the
U/K-system, and a systematic study of the submanifold geometry associated to it
was begun. The concept of U/K-system, for U/K a symmetric space, was introduced
by Terng in [12] and comes from putting the n first flows of ZS-AKNS together.
Terng started the project of finding submanifolds in certain symmetric space whose
Gauss-Codazzi-Ricci equations are equivalent to the U/K-system and indentifying
the geometric transformations corresponding to the dressing action of certain simple
element in the loop group formalism.

This project has been carried out for some symmetric spaces. For instance, isother-
mic surfaces in R, submanifolds with constant sectional curvatures and submanifolds
admitting special principal curvature coordinates are associated to O(m+mn)/O(m) x
O(n) and O(m + n,1)/0(m) x O(n,1)-systems (see [3]). Similarly, the flat timelike
submanifolds in Sg;‘_l(l) are associated to O(2n — 2¢,2q)/O(n — q,q) x O(n — q, q)-
system (see [14]). Moreover in these cases, the dressing actions of simple elements on
the space of solutions of those U/K-systems correspond to Ribaucour, Darboux and
Backlund transformations of these submanifolds.
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Isothermic surfaces in R? and their geometric transforms were the objects of inten-
sive research at the end of the nineteenth century. Recently there has been a resurgence
of interest in isothermic surfaces because of their integrable system description, initi-
ated by Cieslinski-Goldstein-Sym in [4]. In this work, Cieslinski-Goldstein-Sym write
down a zero-curvature formulation of the Gauss-Codazzi equations of an isothermic
surface in R?, and so the methods of integrable systems theory can be applied to
them and their geometric transformations. The work begun in [4] is taken up in [1],
[2], [10] which emphasize the relation between isothermic surfaces and the theory of
curved flats. In addition [3] establishes that isothermic surfaces in R3 are also associ-
ated to the Grassmanian system O(4,1)/0(3) x O(1, 1)-system and that in the loop
group formalism, the dressing action of certain simple elements on the space of solu-
tions of the O(4,1)/0(3) x O(1, 1)-system, corresponds to Darboux transformations of
isothermic surfaces. On other hand, from another point of view, the non-linear system
associated to isothermic surfaces is interesting in its own right, because it displays
some unconventional soliton features and, physically, could be applied in the theory
of infinitesimal deformations of membranes (see [4]).

Changing the ambient space to the pseudo-riemannian space R”~7J for any sig-
nature j, recent works of the authors treat spacelike isothermic surfaces and timelike
isothermic surfaces in R™~7J ([7], [8]). In these works, it is established that these
surfaces are also associated with integrable systems, just as is the case with isother-
mic surfaces in R™. In particular, in [7], [8], it is shown that the spacelike isothermic
surfaces and timelike isothermic surfaces are associated to O(n—j+1,j4+1)/O(n —
j,7) x O(1, 1)-system, depending on a choice one of three different maximal abelian
subalgebras. These correspond to the three distinct geometries: spacelike isothermic
surfaces, timelike isothermic surface whose second fundamental forms are all diago-
nalizable over R (referred to as real timelike isothermic surface), and the last one,
corresponding to the timelike isothermic surfaces all of whose second fundamental
forms are diagonalizable over C (called complex timelike isothermic surface).

The aim of this paper is the study of Ribaucour and Darboux transformations
for complex timelike isothermic surfaces in R” =7/ with the loop group formalism,
using the O(n—j5+1,54+1)/0O(n—j,7) x O(1,1)-system. We show in this note that
the dressing action of certain simple elements, correspond to Ribaucour and Darboux
transformations, correctly defined, for complex timelike isothermic surfaces in R? =77,
The paper is organized as follows: First we construct a dressing action on the space
of solutions of the complex O(n—j+ 1,54+ 1)/O(n—j,j) x O(1,1)-system. Next, we
establish the definition of Ribaucour and Darboux transforms for complex timelike
isothermic surfaces in R"~77. Finally, we show that the dressing action gives rise
to Ribaucour and Darboux transforms for complex timelike isothermic surfaces. The
result has been proved for timelike real isothermic surfaces in ([15]).

2 Preliminaries

We define the (indefinite) inner product in R™~%* to be

<’J, U> =ULVL + - Um—kUm—k — Um—k+1Vm—k+1 — " — UmUm
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for @ = (u1,...up) and T = (vy,...,vy). A surface M1 immersed R" 77 is called
time-like if each tangent plane inherits an inner product from R™~7J which is equiv-
alent to the standard inner product on R!.

Timelike surfaces have symmetric shape operators which can be put into one of
three canonical forms on a fixed tangent space with respect to an orthonormal basis:

o5 n) 05 a) (s i)

We allow with b = 0 in the second case and a = 0 in the third, so that umbilic points
fall into all three categories. In the first case the shape operator is diagonalized over
R, in the second over C with conjugate eigenvalues a£b. In this paper we are working
locally and assume that, in a neighborhood of a point, each shape operator falls into
the second case.

There are many equivalent definitions of isothermic for positive definite surfaces.
One is that there is an isothermal coordinate system which diagonalizes all the shape
operators. The corresponding definition of isothermic for timelike surfaces must take
into account the algebraic type of the shape operator. In the case where all shape
operators are diagonalizable over C, we need the appropriate definition of a complex
isothermic surface, i.e., one that has an isothermal coordinate system with respect to
which all the shape operators are diagonalized over C, ([8]).

Definition 1. (Complex isothermic surface) Let O be a domain in R, An
immersion X : O — R" 77 is called a complex timelike isothermic surface if it has
flat normal bundle and the two fundamental forms are:

n—1
I = +e*(—dx? +dx3), II = Z ¥ (gi1(dai — dx?) — 2gipdridas)e;,
i=2

with respect to some parallel normal frame {e;}.

It is known that given any complex isothermic surface there is a dual isothermic
surface with parallel normal space([11]), hence we establish the following definition:

Definition 2. (Complex isothermic timelike dual pair in R" 77 of type
O(1,1)). Let O be a domain in R and X; : O — R an immersion with flat and
non-degenerate normal bundle for i = 1,2. (X1, Xs) is called a complex isothermic
time-like dual pair in R™"7J of type O(1,1) if:

(i) The normal plane of X1(x) is parallel to the normal plane of X(x) and x € O,

(ii) there exists a common parallel normal frame {ea, ..., e,_1}, where {e;}5 7 and
{ei}Z:;H are space-like and time-like vectors resp.

(iii) © € O is a isothermal coordinate system with respect to {ea,...,en_1}, for
each Xy, such that the fundamental forms of Xy are diagonalizable over C. Namely,

I = b=%(dz? — dz3),

I = =b=' 307 gi o (dad — dad) + 29 1dwrdas]ei,
I = b?(—da? + dx2),

ITy = b3 " Plgin(dal — da?) — 2g; pdxidaa)e;ty,

(2.1)

where B = (b 0 ) is in O(1,1) and a M,—9)x2-valued map G = (gi;).

0 bt
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A result established in [8] and which we will use henceforth, shows that there is
a correspondence between the solutions (F, G, B) of the complex O(n — j + 1,5 +
1)/O(n — j,7) x O(1,1)-system II (see below) and a dual pair of complex isothermic
timelike surfaces in R"~9J of type O(1,1). This makes clear that they should be
considered essentially as a single unit. An example which shows this correspondence
is the Lorenztian helicoid and the Lorenztian sphere in R%!, which by the results in
[8], is a solution of the complex O(n —j + 1,54+ 1)/O(n — j,j) x O(1,1)-system 1L

We finish this section establishing the complex systems:
The PDE for the complex O(n—j + 1,54+ 1)/O(n — j,5) x O(1, 1)-system for

&1 &
T1,1 T1,2
=1 P R = Ma,
Tn—2,1 Tn-22
&2 —&1
is given by
T2, ~ Tily, =2(ri2&1 —rinke), t=1,..,n—-2
(2.2) —Ti,, T T2, = —271(?2,151 -4;7’1‘,2522)7 i=1..,n-2
(—2&1) 2, +(282)2, = Zz’:l Ji(ri,l + Tz',z)
(252)362 - (251)% =0,
where o, =1fori=1,...n—j—1and o; = —1 for i = n —j,...,n — 2. This complex
system comes from calculating df) = —60\ A 6y, where 0, is the Lax connection

obtained using the maximal subalgebra A = span{a,as} with
a1 = €1,n+1 + €n,n+2 + €nt1n — En42.1

a2 = —€1 42+ €nnt1 + E€nt1,1 + Enian-

Here e, ; is the matrix with 1 in the ij" place. More explicitly 0, = (JU\J] ]\]/;[>, where

wE Muxn, M € Mo, N € May,, and P € Msyo. They being resp.

o dry —dzx
0 . (_7: b Ct 01 0 2
—a* 0 0 d

23 = — M = )\ .
(2:3) “Tler o0 o0 et o

c d —€ 0 dry  dr,
(2.4)
N =\ dJZQ 0o ... 0 dil?l P 2(€2d$1 + fldl‘g) 0

7d$1 0 ... 0 d$2 ’ 0 72(§1d1‘2 + fgdl?l)

with
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= (a1,...,0n—j—1) and ap =rp1dre —rpodzy, for 1<k<n—j—1,
= (bn—j,---sbn—2) and by = —rg1dxs +rgodxy, for n—j<qg<n-2,
—2§1d.’£1 — 2£2dx2

= (dl, .. -adn—j—l) and dk = —Tdexl — Tk»,QdIQ’ for 1 S k S n —j — 1,

(eqs---sen—2) and ey = —rg1dry —rgadry, for n—j<g<n-—2.

o o oy 8
I

Finally, the PDE for a solution to the complex O(n —j + 1,54+ 1)/O(n — j,7) x

O(1,1)-system II (u,71,1,71,2,-.-,Tn—21,Tn—2,2) becomes:
—Ti2,, ~ Tily, = 2(7ri2Uzy — T,1Us, ),
(2.5) “Tidg, T T2y, = —2(riite, +1igus,),
_\\n—2 2 2
72Uz2$2 + 2u£1z1 - Zi:l Ji(ri,l + Ti,2)7

where 0; = 1 fori =1,..n—j—-1, 0, = —=1fori =n—j,...n—2 and B =

2u
(eo 6_02“>' Specifically, complex system II (2.5), comes from setting d61/ = —017 A

011 where 61! is the connection associated to system (2.5).

3 The explicit action

In this section we establish the explicit action of a certain simple element on the space
of local solutions of the complex systems.
Let On—j3+1,7+1)®@C=0(n—j+1,j+ 1;C) = Uc be defined by

On—j+1,j+1;C) = {X € GL(n+2,C) | X' (Inam 3,) X = (Inam f]),)},
01
10
space O(n—j+1,7+1)/0(n—j, j) x O(1, 1), the O(n—j+1,j+1)/0(n—j, j) x O(1, 1)-
reality condition is:

where J' = . From the two involutions 7,0 which determined the symmetric

I, A Ina =g\
(3.1) 29 h ) In2 ) g(N) . ;
\)E [ i \) = [ fndi ’
9(N) ( o )9 o
for amap g: C — Ug.
We recall that a frame for a solution & of the U/K-system (II) is a trivialization of

the corresponding Lax connection 6y ( 047) that satisfies the U/K-reality condition.
Let

G4+ ={9:C — Uc|gis holomorphic and satisfies (3.1)}

G_ =1{g: 8% = Uc | g is meromorphic, g(co) = I and satisfies(3.1)}.
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Next we find certain simple elements in G_ explicitly. Let W = (wy,...,w,)t €
R Z = (21,22)" € RYL be unit vectors. In RV we use the inner product
(u1,u2) - (v1,v2) = uve + usv; which is equivalent to the standard one. Let C**2 be
equipped with the bi-linear form:

n— n
(U, V)2 = U;v; — Z WiV + Upt1VUn42 + Ung2Uni1-
1 i=n—j+1

.

i

Let 7 the orthogonal projection of C**2 onto the span of (g) with respect to (, )a,

i.e,
L (WWE =Wzt (L, 0
(3:2) 7T‘2(izwt A )( 0o J)

Then 7 is the projection onto C <_ZE/>, which is perpendicular to (zMZ/> So T =
77w = 0. Let s € R, s # 0, and define g, (\) = (7 + 2=2(I — 7))(7 + 3 (I — 7).

Atis A—is
Substituting (3.2) in gs », we get
(3.3)
1 9 o (I —2WW',_;; 0 0 wzty
gor(A) = A2 + g2 NI+ ( 0 1—222t5) " 2sA —ZW'IL,_; 0 )

One can see that g, ~(A\) (3.3) satisfies the reality condition (3.1), so that g, ~ €
G_.

Following the ideas from [3], we can get an explicit construction of the action of
gs,» on the space of solutions of the complex O(n—j+1,7+1)/0O(n—j,7) x O(1,1)-
system.

Theorem 1. Let & : R?2 — M, x5 be a solution of the O(n—j+1,j+1)/O(n—j,j) x
O(1,1)-system (2.2), and E(xz,\) a frame of £ such that E(xz, ) is holomorphic for
A€ C. Let W and Z be unit vectors in R, RV respectively, m the orthogonal

projection onto C (g) with respect to (,)2 and gs r the map defined by (3.3). Let

7

(3.4) @) (@) = E(z, —is)~" @) .

7(x) denotes the orthogonal projection onto C (g) (x) with respect to {, )2, where

W _ W 7_ _Z _ ~ -1
Let W = — and Z = gz, E(2,A) = g5,x (V) E(2, ) s 71y (M)

(3.5) E=¢—2s(WZ'T),,

where (¥,) is the projection onto the span of {ay,as}*. Then
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(1) € is a solution of system (2.2), E is a frame for & and E(x, ) is holomorphic
inAeC._ _
(2) W (x),Z(x)) is a solution of the system:

(W1)g, =T1,2Wa — woo.. — Ty—2,20Wp—1 + 2§3W,, — $21

(W1)gy = —T1,1W2 — wove + Tp—21Wn—1 + 2&2Wy, + S22

(Wn)gy =T1,1W2 — «oo. — T2 1Wp—1 + 2§1W1 — SZ2
(3.6) (Wn)gy = T1,2Wa = oo = Ty 2Wpn_1 + 252W1 — 521

(Wj)e, = —€iTj—1 W1 + Tj_1,iWy,

(Zi)a: = sWn — 2667

(Zz)zk = 61(8@1 - 251'51')7

DI
Il
—_

forj=2,..,n—1 i=12wheree,=1ifi=1,¢=—-1ifi=2, and1=2,
In the last equation i # k.

We note that for

ut = Uyp U221 - Up—11 Uni
U2 U222 -+ Up—12 Up2
. u115un2 Uy -+ Up—11 un142ru12
* — | upi1Fu —uiitu .
n12 12 U9 ... Uy 12 112 n2

The proof of Theorem 1 uses the following lemma.

Lemma 1. With the same conditions as in Theorem 1 above, we get

(z)W( ) e R4, Z(z) e RLL,

(ii) |W (x Ninesi = |1 Z(@)|11 Vo and gs5 satisfies the reality conditions (3.1),
i.e. gox € G_.

(iii) E(z,\) is holomorphic in X € C.

The statement and proof are similar to the Lemma (9.4) of [3] and we omit it,
with the following comment. We need to know that we can choose W and Z which
are not null vectors. Since ||W( Nin—j.; = | Z (= 1,1, we want z325 # 0. We only need
to do this locally. Fix z, and look at E(z,, fiso)*l This is a matrix whose last two
rows we denote by 7,41 and 7, 12. We must pick a real vector

= (W,iZ) € (Fy1)" N (Fgn)* N (87777110 50,

where SP~LF C RP* is the set of unit vectors. We see that this is a non-empty
intersection, since the complement of two hyperplanes must intersect the product.
In the course of the proof we find the following expression for E(z, A):

Bl ) = (r+ - M) 3= ma oy (7 )

~ )\725 ~ =7 >\+ZS =7 If" 0
t o~ I = n—j,j
RS e ARG et ”)( 0 J’>'

Using this expression one can show the holomorphicity of E(z,\) for A € C.
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Proof of Theorem 1:
We find that

(3.7) E~YE = gsﬁE_ldEgs_% — dgs’;gs_%.

But 0, = E~'dE = Z?Zl(a,;)\ + [ai,v))dz;, E(z,\) is holomorphic in A € C and
gs.7(A) is holomorphic at A = co. So E~'dE must be of the form: Zle(ai/\+ui)dxi.
Now we write

ma(z) | ma(x)

- =74+ 2\
9s5(N) =T+ ——=+ —5

0 wZztJ
—ZW',_; 0
by g, on the right side and equating the constant terms, we have

so that my(z) = 2s and mq(z) € P. Now multiplying (3.7)

pi = [ai, v —mq] = [ag, v — po(m1)],
where p, is the projection from P onto PN.A*. Therefore © = v —p,(m;) is a solution
of the complex O(n—j+1,7+1)/0O(n—j,j) x O(1,1)-system (2.2). More specifically,
0 ¢ ~ 0 § e 7ot 7!
e, 0) and v = CPEL L, 0) E=E—2s(WZLT).
is a new solution of O(n —j+ 1,57 +1)/0(n — 4,7) x O(1,1)-system (2.2).
(2) follows from taking the differential of (3.4), that is

w W
(o (D)o

if we write v = <

Now let
(3.8) Ef(2,)) = B(z,\)g; 2,
i.e.,
(3.9)
N I_.. 0 1 I—2I,_; ;WW! 0
" B n—j,j Nt 2 n—j,j N
E(I,A)E(sz)( 0 J/> )\2+82[>\I+5 ( 0 I—2J/ZZt>+

0 I, ;;WZ'\, (I,_;; 0
2sA (J’Z/Wt 0 " o)

A direct computation gives E? is a frame for £ and E*(z,.)is not in G4 The reality
condition (3.1) implies that both E(z,0) and E*(x,0) are in O(n — 7, 5) x O(1,1), so

we write
Az) 0 ~ Af(z) 0

for some A, B, A%(z), B¥(z). Then taking A = 0 in (3.8), one gets
(3.10) At = A(I —2WW'I,_,,;), B'=BI-2Z7'J").
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Corollary 1. Suppose E is a frame of the solution & of the system (2.2) such that
E(z,\) is holomorphic for A € C.

(i) If E(0,\) = I, then 5 obtained in Theorem 1, is the dressing action g, 4§, and
E is the frame ofg with E(O,)\) =1.

(ii) Let g (\) = E(0,)\) and € the new solution of (2.2) obtained in Theorem 1.
Then g4 € G4 and € = §_t¢, where §_ is obtained by factoring 9o ng+ = g+g— with
g+ € Gi.

Denoting the entries of € by: F = (? 52 ) and G = : : , the
2 —&1 ‘ :

new solution E given by Theorem 1 is :

(3.11) (g) - (g) —2s(WZ'J"),..

The *x denotes the projection as above, with the last row moved to the second row.
So (F,G,B) and (F,G, B*) are solutions of the complex O(n —j + 1,7+ 1)/O(n —

J,4) x O(1,1)-system II (2.5). In components F' = (fij)ax2, G = (7ij)(n—2)x2, F =
(fij)2x2, G= (T4j) (n—2)x2, the formula (3.11) for £ is

fiir=—fo=fu— 5(713122 - @n%),

fiz = fo1 = fi2 — s( 21 + WpZ2),

(3.12) . e
Ti1 = T31 — 258W14422

Tio = Ti9 — 25w1+iz1.

~ . —II -
Let E* frame of &, B! of (F,G,B) and Ef of (F,G, BY). Then they are related by:
~1I — I .. 0 I 0 I .. 0
i _ T n—j,j o n—j,j
Ef (x,\) = Ef(z, \) ( 0 J’) (O Bﬁt> ( 0 J’) ,

2 <S2WWtIn_j,j sAWEtBtJ’>

~1II
3.13) Ef (z,)) =E" (@, - 5 Al 77
(3.13) (x,A) (z, )] A2+ 52 \ —sABZW'I,,_;; XNBZZ'B'.J’

Henceforth we use the following notation:

~ ~ ~ ~ ~ o~ ~, —~II
(gaEﬁ) = gs,‘n’-(é-uE)7 An = gs,ﬂ'~A7 Bﬁ = gs,‘n'-Bv (FaGaBu7Eu ) = gs,ﬂ~(F7G7B7Ell)-

4 Ribaucour Transformation

Now our interest is to show that the action of the element g, . on the space of local
solutions of the complex O(n—j+1,j4+1)/0O(n—j,7) x O(1,1)-system II (2.5), which
was established in Section 3, corresponds to Ribaucour and Darboux transformations
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correctly defined. To do this, we must adjust the definition of Ribaucour transforma-
tion given in [6], and the definition of Darboux transformation for surfaces in euclidean
space R™ for our time-like surfaces in R® 7 whose shape operators have conjugate
eigenvalues. We start this section with the definition of Ribaucour transformation.

For x € R"79J and v € (TR"™7J),, where let v, (t) = z + tv denote the geodesic
starting at x in the direction of v.

Definition 3. Let M™ and M™ be Lorentzian submanifolds whose shape operators
are all diagonalizable over R or C immersed in the pseudo-riemannian space R"‘ﬂ,
0 < j <n. A sphere congruence is a vector bundle isomorphism P : V(M) — V(M)
that covers a diffeomorphism ¢ : M — M with the following conditions:

(1) If ¢ is a parallel normal vector field of M, then Po&o ¢~ is a parallel normal
field of M.

(2) For any nonzero vector £ € V,(M), the geodesics Vze and Yg(a),p(¢) intersect
at a point that is the same parameter value t away from x and ¢(x).

For the following definition we assume that each shape operator is diagonalized
over the real or complex numbers. We note that there are submanifolds for which this
does not hold.

Definition 4. A sphere congruence P : V(M) — V(M) that covers a diffeomorphism
¢: M — M s called a Ribaucour transformation if it satisfies the following additional
properties:

(1) If e is an eigenvector of the shape operator As of M, corresponding to a real
eigenvalue then ¢.(e) is an eigenvector of the shape operator Ap e ofM corresponding
to a real eigenvalue.

If e1 +iea is an eigenvector of A¢ on (TM)C corresponding to the complex eigen-
value a+1ib (so that ey —iey corresponds to the eigenvalue a—ib), then ¢, (e1)+ids«(es)
is an eigenvector corresponding to a complex eigenvalue for Ap ).

(2) The geodesics Yz.e and Ye(z),p.(c) intersect at a point that is equidistant to
x and ¢(x) for real eigenvectors e and 7g; and Ye(x),p.(c;) Meel for the real and
imaginary parts of complex eigenvectors ey + ies, i.e., for j =1,2.

solution of (2.2), E frame of £, E(x,0) = <A($) 0 >7

(¢) 2

(F,G, B) a solution corresponding to complez O(n—j+1,j+1)/0O(n—3j,7) x O(1,1)-
system II, and

Theorem 2. Leté =

~ e~y ~II ~
(F,G,B* E* ) =g,..(F,G,B,E"T), A% =g, . A
Let e;, e; denote the i-th column of A and At resp. Then we have
(i)
OF B 0 X\ OBt~ 0 X
- E! = — Ef = ~
EN (I,O) (.I,O) <—J/Xt_[n]j O) ’ BN (9370) (I,O) <_J/thn—j,j 0)

for some X and X. B o
(i) X = (X1, X2) and X = (X1, X2) are complex isothermic time-like dual pairs
in R"™77 of type O(1, 1) such that {ea, ...en_1} and {€a, ...,€,—1} are parallel normal
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frames for X; and )~(j respectively for j = 1,2, where {ea}g;g and {ea}z;iﬁ]ﬁrl are
space-like and time-like vectors resp.

(i1i) The solutions of the complex O(n—j+1,7+1)/O(n—j,j) x O(1,1)-system
11 corresponding to X and X are (F,G,B) and (ﬁ,é,gﬁ) resp.

(iv) The bundle morphism P(er(x)) = ex(x) k = 2,...,n — 1, is a Ribaucour
Transformation covering the map X;(z) — )~(j (x) for each j =1,2.

(v) There exist smooth functions v, such that X; + Ve = )N(i + Yper for
1<i<2and1<k<n.

For the proof we will need the following result which can be proved as Corollary
(6.11) in ([3]).

Proposition 1. Let E(x,\) be a frame for the solution & of system (2.2), andY (z) =
%—f(m,O)E‘l(x,O). Then we have

()

X
Y = <—J’X9]n g 0> for some X € M, «o.
—3.j

(i) X = (X1, X2) is complex isothermic time-like dual pair in R"=5J of type
O(1,1)

(iii)

t
. dacl 0 ... 0 d$2 1
(41) X =4 (—dwg 0o ... 0 dml) B

Proof of Theorem 2:
Following the same lines as that of Theorem 10.6 in [3], we arrive at the formula
X =X+ 2AWZ'B'J'. Letting n = > j—1 Wjej, we see that the i-th column of X is
given by
2
(4.2) Xi=Xi+ S Zl(gjsz)n7where 1=2 and 2=1.
j=

Next from the relation Af = A(I - 2WWtIn_j7j) we get €; = e; — 2Ww;ne; with

e=1,1=1,...,n—jand ¢ =—1, 1=n— 7+ 1,...,n. Now using this last relation,
we have
(4.3) X, + Yirer = Xi + Yuer,

where

2
€ ~ )
ik = ﬁ ;Zjbij, for i=1,2 k=1,2,..,n
To see that the condition on the eigenvectors holds, we note that the shape opera-
tors can be calculated using the 7;; and the algebraic form is preserved. In our case
both shape operators are diagonalized over C. So we conclude that P is a Ribaucour
transformation. B
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5 Darboux Transformations for complex timelike
isothermic surfaces in R"77>

Here, we are interested in considering Darboux transformations for timelike isother-
mic surfaces in R?~9J. In fact, in our next result we show that the transformation
constructed in Theorem 2 is a Darboux transformation.

Let M, M be two time-like surfaces in R” 7 with flat and non-degenerate normal
bundle, shape operators that are diagonalizable over C and P : V(M) — V(M) a
Ribaucour transformation that covers the map ¢ : M — M. If, in addition, ¢ is a
sign-reversing conformal diffeomorphism then P is called a Darboux transformation.
By a sign-reversing conformal diffeomorphism we mean that the time-like and space
like vectors are interchanged and the conformal coordinates remain conformal. With
this, we have:

Theorem 3. Let (X1, X3) be a complex isothermic time-like dual pair in R"=9J of
type O(1, 1) corresponding to the solution (u, G) of the system (2.5), and let £ = (g)

the corresponding solution of the system (2.2), where

2u
Uz, Ugy (e 0
F B (uxl _ux2> 7B B ( O e2u> .

Let also s € R be different of zero, m a projection on C (g) , gs,x the rational element

defined in (3.3), and W, Z as in Theorem 1, for the solution & of the system (2.2).
~IT ~, ~ -
Let (Bf | A% B¥) = g, ..(ET, A, B). Write A = (e, ...,e,) and A* = (é1,...,¢,). Set

(5.1) %1 =X+ %32672" S Wies,
Xo = X5+ %2162“ Z'?:l iDiei,
Then

(i) (a, é) is the solution of system (2.5), corresponding to ()}1,)?2), where e*t =
=4 ~
1% and G = (735) is defined by (3.12).

edu

(i) The fundamental forms of pair ()?1,)?2) are respectively
I = ¥ (—da? + da?)
IIl = 6217 E?z_lz[ﬁyl(dl‘% — d%‘%) — 2?i72d1:1dx2]€i+1.
I = e 4(da? — da?)
IIQ = 76725 Z?;f FZ72(d$% — dﬁC%) -+ 2E,1d1’1d1’2]’€2‘+1.

(iii) The bundle morphism P(er(x)) = ex(z), k = 2,...,n — 1 covering the map
X; — X, is a Darboux transformation for each i =1, 2.

Proof. For (i) and (ii) we just observe that

t
5 [ dx 0 ... 0 dx 1
= t 1 2 Ii
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and calculate. _

For (iii) we observe that the map ¢ : X; — X is sign-reversing conformal because
the coordinates (x1,x2) are isothermic for X; and X’z but time-like and space-like
vectors are interchanged. The rest of the properties of Darboux transformation were
proved above. B

Example 1. Let n =3,j = 1, so that we have the O(3,2)/0(2,1) x O(1,1)-system.
Let (u,r11,7m12) = (0,0,0) be a trivial solution of (2.5), then F = 0,G = 0,B = 1.
So a complex isothermic time-like dual pair in R%! of type O(1,1) corresponding to
trivial solution is:

The frame E(x,y, \) is the following, where we let

—rty _aty

and write the columns of E(x,y,\) as ¢1,...¢s5

(5.2)
cos(u ) cosh(v \) 0 — (sin(u A) sinh(v \))
0 . 0
_ sin(u A) sinh(v \) —1lo _ cos(u A) cosh(v \)
a cosh(v A) sin(u A)+cos(uN) sinh(v ) |’ €z 0 €3 —(cosh(v \) sin(u )\\)}Jrcos(u A) sinh(v A)
2 2
cosh(v \) sin(u A\)—cos(u A) sinh(v \) 0 cosh(v A\) sin(u A)+cos(u A) sinh(v \)
V2 V2
(5.3)
—(cosh(v X) sin(u X\))+cos(u \) sinh(v \) _ (cosh(v ) sin(u A)+cos(u A) sinh(v A) )
V2 V2
0 0
— cosh(v ) sin(u X)+cos(u A) sinh(v A) — —(cosh(v A\) sin(u \))+cos(u A) sinh(v A
o 5 ,C5 (cosh(v A) sin( \)/)5 () (CRY)
cos(u\) cosh(v ) — (sin(u A) sinh(v X))
sin(u \) sinh(v \) cos(u A) cosh(v )

Then from Theorem 1, we obtain

cosh(su) (2 wy cos(sv)+v2 (—z1+22) sin(s v))+(\/§ (21+22) cos(sv)+2ws sin(s v)) sinh(s u)

wq 2

s 2

ﬁ),g | cosh(su) (2w3 cos(sv)—V/2 (z1+22) sin(s U))+(—(\/§(zl—22) cos(s v))—2 w1 sin(s v)) sinh(sw)
- 2

Zl cosh(su) (2 21 cos(sv)+v/2 (w1 +ws) sin(s 1)))+(\/§(w1—w3) cos(sv)+2 z2 sin(s v)) sinh(s u)

> 2

2 cosh(su) (2 22 cos(sv)+v2 (—w1+ws) sin(s 'u))+<\/§(w1+w3) cos(sv)—2 2z sin(s v)) sinh(s w)

2

From equation (5.1), we get that the isothermic timelike dual pair in R*>! of type
O(1,1) constructed by applying the Darboux transformation to the trivial solution is:
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2 2
X1 = X1 + *22 E @Z—ei, X2 = X2 + *21 E ’1/177;61',
S S
i=1 i=1

If we make the choice wy = 1/\/5 = wy = 21 = 29,w3 = 0 we get:

—udtv 4 2 cos(v) (\/5 cosh(u)+2 sinh(u)) (Cosh(u) (\/5 cos('u)fsin(v))jt(cos(v)fﬁ sin(v)) sinh(u))
V2 143 cos(2v) cosh(2u)+2 V2 cos(2v) sinh(2u)
oyl 2 (cosh(u) (2 cos(v)—v2 sin(v))—&-(\/i cos(v)—2 sin(v)) sinh(u))

X1 = 143 cos(2v) cosh(2u)+2 V2 cos(2v) sinh(2u)
utv n 2 sin(v) (2 cosh(u)++2 sinh(u)) (cosh(u) (—(\/5 Cos(v))—l—sin(v))—i—(— cos(v)+v2 sin(v)) sinh(u))
V2 143 cos(2v) cosh(2u)+2+/2 cos(2v) sinh(2u)
_ (quv) i 2 cos(v) (\/5 cosh(u)+2 sinh(u)) (Cosh(u) (\/ﬁ cos(v)+sin(v))+(cos(v)+\/§ sin('u)) sinh(u))
V2 143 cos(2v) cosh(2u)+2 V2 cos(2v) sinh(2u)
)’22 _ 2 (cosh(u) (2 cos(v)+v2 sin(v))+(\/§ cos(v)+2 sin(v)) sinh(u))

143 cos(2v) cosh(2u)4+2+/2 cos(2v) sinh(2u)
—utv 2 sin(v) (2 cosh(u)+v2 sinh(u)) (Cosh(u) (\/5 cos(v)+sin(v))+(cos(v)+\/§ sin(v)) sinh(u))

V2 143 cos(2v) cosh(2u)+2+/2 cos(2v) sinh(2u)

Using the equation (4.1) for X1, Xo we see that

~ —932 ~
dX1 = bZQ (7d.’732’€v1 + d$1g3), dX2 = 72()2%((1%151 —+ d.%ggg)

so that
T 423 2 2 T 224 2 2
L= 45 (dey —day), Iz = 402 (da] — dr3).
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