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Abstract. We construct an explicit action of a rational map with two
simple poles on the space of solutions of the O(n − j + 1, j + 1)/O(n −
j, j) × O(1, 1)-system which is associated with time-like isothermic sur-
faces in Rn−j,j whose second fundamental forms are diagonalizable over
C. We show that these actions correspond to the Ribaucour and Darboux
transformations for these surfaces.
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1 Introduction

It is well known that there exists a connection between submanifold theory and in-
tegrable systems. Perhaps the most famous example of this is the relation between
the pseudo-spherical surface, their Bäcklund transformations and the integrable Sin-
Gordon equation.

Several papers study this connection for particular submanifolds which have an
integrable system description. Recently, a new integrable system was defined, the
U/K-system, and a systematic study of the submanifold geometry associated to it
was begun. The concept of U/K-system, for U/K a symmetric space, was introduced
by Terng in [12] and comes from putting the n first flows of ZS-AKNS together.
Terng started the project of finding submanifolds in certain symmetric space whose
Gauss-Codazzi-Ricci equations are equivalent to the U/K-system and indentifying
the geometric transformations corresponding to the dressing action of certain simple
element in the loop group formalism.

This project has been carried out for some symmetric spaces. For instance, isother-
mic surfaces in Rm, submanifolds with constant sectional curvatures and submanifolds
admitting special principal curvature coordinates are associated to O(m+n)/O(m)×
O(n) and O(m + n, 1)/O(m) × O(n, 1)-systems (see [3]). Similarly, the flat timelike
submanifolds in S2n−1

2q (1) are associated to O(2n− 2q, 2q)/O(n− q, q)×O(n− q, q)-
system (see [14]). Moreover in these cases, the dressing actions of simple elements on
the space of solutions of those U/K-systems correspond to Ribaucour, Darboux and
Backlund transformations of these submanifolds.
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Isothermic surfaces in R3 and their geometric transforms were the objects of inten-
sive research at the end of the nineteenth century. Recently there has been a resurgence
of interest in isothermic surfaces because of their integrable system description, initi-
ated by Cieslinski-Goldstein-Sym in [4]. In this work, Cieslinski-Goldstein-Sym write
down a zero-curvature formulation of the Gauss-Codazzi equations of an isothermic
surface in R3, and so the methods of integrable systems theory can be applied to
them and their geometric transformations. The work begun in [4] is taken up in [1],
[2], [10] which emphasize the relation between isothermic surfaces and the theory of
curved flats. In addition [3] establishes that isothermic surfaces in R3 are also associ-
ated to the Grassmanian system O(4, 1)/O(3)× O(1, 1)-system and that in the loop
group formalism, the dressing action of certain simple elements on the space of solu-
tions of the O(4, 1)/O(3)×O(1, 1)-system, corresponds to Darboux transformations of
isothermic surfaces. On other hand, from another point of view, the non-linear system
associated to isothermic surfaces is interesting in its own right, because it displays
some unconventional soliton features and, physically, could be applied in the theory
of infinitesimal deformations of membranes (see [4]).

Changing the ambient space to the pseudo-riemannian space Rn−j,j for any sig-
nature j, recent works of the authors treat spacelike isothermic surfaces and timelike
isothermic surfaces in Rn−j,j ([7], [8]). In these works, it is established that these
surfaces are also associated with integrable systems, just as is the case with isother-
mic surfaces in Rm. In particular, in [7], [8], it is shown that the spacelike isothermic
surfaces and timelike isothermic surfaces are associated to O(n− j + 1, j + 1)/O(n−
j, j) × O(1, 1)-system, depending on a choice one of three different maximal abelian
subalgebras. These correspond to the three distinct geometries: spacelike isothermic
surfaces, timelike isothermic surface whose second fundamental forms are all diago-
nalizable over R (referred to as real timelike isothermic surface), and the last one,
corresponding to the timelike isothermic surfaces all of whose second fundamental
forms are diagonalizable over C (called complex timelike isothermic surface).

The aim of this paper is the study of Ribaucour and Darboux transformations
for complex timelike isothermic surfaces in Rn−j,j with the loop group formalism,
using the O(n− j + 1, j + 1)/O(n− j, j)×O(1, 1)-system. We show in this note that
the dressing action of certain simple elements, correspond to Ribaucour and Darboux
transformations, correctly defined, for complex timelike isothermic surfaces in Rn−j,j .
The paper is organized as follows: First we construct a dressing action on the space
of solutions of the complex O(n− j + 1, j + 1)/O(n− j, j)×O(1, 1)-system. Next, we
establish the definition of Ribaucour and Darboux transforms for complex timelike
isothermic surfaces in Rn−j,j . Finally, we show that the dressing action gives rise
to Ribaucour and Darboux transforms for complex timelike isothermic surfaces. The
result has been proved for timelike real isothermic surfaces in ([15]).

2 Preliminaries

We define the (indefinite) inner product in Rm−k,k to be

〈~u,~v〉 = u1v1 + . . . um−kvm−k − um−k+1vm−k+1 − · · · − umvm
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for ~u = (u1, . . . um) and ~v = (v1, . . . , vm). A surface M1,1 immersed Rn−j,j is called
time-like if each tangent plane inherits an inner product from Rn−j,j which is equiv-
alent to the standard inner product on R1,1.

Timelike surfaces have symmetric shape operators which can be put into one of
three canonical forms on a fixed tangent space with respect to an orthonormal basis:

a)
(

λ1 0
0 λ2

)
b)

(
a b
−b a

)
c)

(
ν ± a/2 −a/2

a/2 ν ∓ a/2

)
.

We allow with b = 0 in the second case and a = 0 in the third, so that umbilic points
fall into all three categories. In the first case the shape operator is diagonalized over
R, in the second over C with conjugate eigenvalues a±ib. In this paper we are working
locally and assume that, in a neighborhood of a point, each shape operator falls into
the second case.

There are many equivalent definitions of isothermic for positive definite surfaces.
One is that there is an isothermal coordinate system which diagonalizes all the shape
operators. The corresponding definition of isothermic for timelike surfaces must take
into account the algebraic type of the shape operator. In the case where all shape
operators are diagonalizable over C, we need the appropriate definition of a complex
isothermic surface, i.e., one that has an isothermal coordinate system with respect to
which all the shape operators are diagonalized over C, ([8]).

Definition 1. (Complex isothermic surface) Let O be a domain in R1,1. An
immersion X : O → Rn−j,j is called a complex timelike isothermic surface if it has
flat normal bundle and the two fundamental forms are:

I = ±e2v(−dx2
1 + dx2

2), II =
n−1∑

i=2

ev(gi1(dx2
2 − dx2

1)− 2gi2dx1dx2)ei,

with respect to some parallel normal frame {ei}.
It is known that given any complex isothermic surface there is a dual isothermic

surface with parallel normal space([11]), hence we establish the following definition:

Definition 2. (Complex isothermic timelike dual pair in Rn−j,j of type
O(1, 1)). Let O be a domain in R1,1 and Xi : O → Rn−j,j an immersion with flat and
non-degenerate normal bundle for i = 1, 2. (X1, X2) is called a complex isothermic
time-like dual pair in Rn−j,j of type O(1, 1) if:

(i) The normal plane of X1(x) is parallel to the normal plane of X2(x) and x ∈ O,
(ii) there exists a common parallel normal frame {e2, ..., en−1}, where {ei}n−j

2 and
{ei}n−1

n−j+1 are space-like and time-like vectors resp.
(iii) x ∈ O is a isothermal coordinate system with respect to {e2, ..., en−1}, for

each Xk, such that the fundamental forms of Xk are diagonalizable over C. Namely,




I1 = b−2(dx2
1 − dx2

2),
II1 = −b−1

∑n−2
i=1 [gi,2(dx2

2 − dx2
1) + 2gi,1dx1dx2]ei+1,

I2 = b2(−dx2
1 + dx2

2),
II2 = b

∑n−2
i=1 [gi,1(dx2

2 − dx2
1)− 2gi,2dx1dx2]ei+1,

(2.1)

where B =
(

b 0
0 b−1

)
is in O(1, 1) and a M(n−2)×2-valued map G = (gij).
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A result established in [8] and which we will use henceforth, shows that there is
a correspondence between the solutions (F,G, B) of the complex O(n − j + 1, j +
1)/O(n− j, j)×O(1, 1)-system II (see below) and a dual pair of complex isothermic
timelike surfaces in Rn−j,j of type O(1, 1). This makes clear that they should be
considered essentially as a single unit. An example which shows this correspondence
is the Lorenztian helicoid and the Lorenztian sphere in R2,1, which by the results in
[8], is a solution of the complex O(n− j + 1, j + 1)/O(n− j, j)×O(1, 1)-system II.

We finish this section establishing the complex systems:
The PDE for the complex O(n− j + 1, j + 1)/O(n− j, j)×O(1, 1)-system for

ξ =




ξ1 ξ2

r1,1 r1,2

...
...

rn−2,1 rn−2,2

ξ2 −ξ1




: R2 →Mn×2,

is given by




−ri,2x2
− ri,1x1

= 2(ri,2ξ1 − ri,1ξ2), i = 1, ..., n− 2
−ri,1x2

+ ri,2x1
= −2(ri,1ξ1 + ri,2ξ2), i = 1, ..., n− 2

(−2ξ1)x2 + (2ξ2)x1 =
∑n−2

i=1 σi(r2
i,1 + r2

i,2)
(2ξ2)x2 − (2ξ1)x1 = 0,

(2.2)

where σi = 1 for i = 1, ..., n− j − 1 and σi = −1 for i = n− j, ..., n− 2. This complex
system comes from calculating dθλ = −θλ ∧ θλ, where θλ is the Lax connection
obtained using the maximal subalgebra A = span{a1, a2} with

a1 = e1,n+1 + en,n+2 + en+1,n − en+2,1

a2 = −e1,n+2 + en,n+1 + en+1,1 + en+2,n.

Here ei,j is the matrix with 1 in the ijth place. More explicitly θλ =
(

ω M
N P

)
, where

ω ∈Mn×n,M ∈Mn×2, N ∈M2×n and P ∈M2×2. They being resp.

ω =




0 ~a ~b c

−~a t 0 0 ~d t

~b t 0 0 ~e t

c ~d −~e 0


 , M = λ




dx1 −dx2

0 0
...

...
0 0

dx2 dx1




(2.3)

N = λ

(
dx2 0 . . . 0 dx1

−dx1 0 . . . 0 dx2

)
, P =

(
2(ξ2dx1 + ξ1dx2) 0

0 −2(ξ1dx2 + ξ2dx1)

)(2.4)

with
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~a = (a1, . . . , an−j−1) and ak = rk,1dx2 − rk,2dx1, for 1 ≤ k ≤ n− j − 1,

~b = (bn−j , . . . , bn−2) and bq = −rq,1dx2 + rq,2dx1, for n− j ≤ q ≤ n− 2,

c = −2ξ1dx1 − 2ξ2dx2

~d = (d1, . . . , dn−j−1) and dk = −rk,1dx1 − rk,2dx2, for 1 ≤ k ≤ n− j − 1,

~e = (eq, . . . , en−2) and eq = −rq,1dx1 − rq,2dx2, for n− j ≤ q ≤ n− 2.

Finally, the PDE for a solution to the complex O(n − j + 1, j + 1)/O(n − j, j) ×
O(1, 1)-system II (u, r1,1, r1,2, . . . , rn−2,1, rn−2,2) becomes:





−ri,2x2
− ri,1x1

= 2(ri,2ux2 − ri,1ux1),
−ri,1x2

+ ri,2x1
= −2(ri,1ux2 + ri,2ux1),

−2ux2x2 + 2ux1x1 =
∑n−2

i=1 σi(r2
i,1 + r2

i,2),
(2.5)

where σi = 1 for i = 1, ..., n − j − 1, σi = −1 for i = n − j, ..., n − 2 and B =(
e2u 0
0 e−2u

)
. Specifically, complex system II (2.5), comes from setting dθII

λ = −θII
λ ∧

θII
λ , where θII

λ is the connection associated to system (2.5).

3 The explicit action

In this section we establish the explicit action of a certain simple element on the space
of local solutions of the complex systems.

Let O(n− j + 1, j + 1)⊗ C = O(n− j + 1, j + 1;C) = UC be defined by

O(n− j + 1, j + 1;C) = {X ∈ GL(n + 2,C) | Xt

(
In−j,j 0

0 J ′

)
X =

(
In−j,j 0

0 J ′

)
},

where J ′ =
(

0 1
1 0

)
. From the two involutions τ, σ which determined the symmetric

space O(n−j+1, j+1)/O(n−j, j)×O(1, 1), the O(n−j+1, j+1)/O(n−j, j)×O(1, 1)-
reality condition is:





g(λ) = g(λ)
In,2 g(−λ) In,2 = g(λ)

g(λ)t

(
In−j,j 0

0 J ′

)
g(λ) =

(
In−j,j 0

0 J ′

)
,

(3.1)

for a map g : C→ UC.
We recall that a frame for a solution ξ of the U/K-system (II) is a trivialization of

the corresponding Lax connection θλ ( θII
λ ) that satisfies the U/K-reality condition.

Let
G+ = {g : C→ UC | g is holomorphic and satisfies (3.1)}

G− = {g : S2 → UC | g is meromorphic, g(∞) = I and satisfies(3.1)}.
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Next we find certain simple elements in G− explicitly. Let W = (w1, ..., wn)t ∈
Rn−j,j , Z = (z1, z2)t ∈ R1,1 be unit vectors. In R1,1 we use the inner product
(u1, u2) · (v1, v2) = u1v2 + u2v1 which is equivalent to the standard one. Let Cn+2 be
equipped with the bi-linear form:

〈U, V 〉2 =
n−j∑

i=1

uivi −
n∑

i=n−j+1

uivi + un+1vn+2 + un+2vn+1.

Let π the orthogonal projection of Cn+2 onto the span of
(

W
iZ

)
with respect to 〈, 〉2,

i.e,

π =
1
2

(
WW t −iWZt

iZW t ZZt

)(
In−j,j 0

0 J ′

)
.(3.2)

Then π is the projection onto C
(−W

iZ

)
, which is perpendicular to

(
W
iZ

)
. So ππ =

ππ = 0. Let s ∈ R, s 6= 0, and define gs,π(λ) = (π + λ−is
λ+is (I − π))(π + λ+is

λ−is (I − π)).
Substituting (3.2) in gs,π, we get

gs,π(λ) =
1

λ2 + s2
[λ2I + s2

(
I − 2WW tIn−j,j 0

0 I − 2ZZtJ ′

)
+ 2sλ

(
0 WZtJ ′

−ZW tIn−j,j 0

)
].

(3.3)

One can see that gs,π(λ) (3.3) satisfies the reality condition (3.1), so that gs,π ∈
G−.

Following the ideas from [3], we can get an explicit construction of the action of
gs,π on the space of solutions of the complex O(n− j +1, j +1)/O(n− j, j)×O(1, 1)-
system.

Theorem 1. Let ξ : R2 →Mn×2 be a solution of the O(n−j +1, j +1)/O(n−j, j)×
O(1, 1)-system (2.2), and E(x, λ) a frame of ξ such that E(x, λ) is holomorphic for
λ ∈ C. Let W and Z be unit vectors in Rn−j,j , R1,1 respectively, π the orthogonal

projection onto C
(

W
iZ

)
with respect to 〈, 〉2 and gs,π the map defined by (3.3). Let

π̃(x) denotes the orthogonal projection onto C

(
W̃

iZ̃

)
(x) with respect to 〈, 〉2, where

(
W̃

iZ̃

)
(x) = E(x,−is)−1

(
W
iZ

)
.(3.4)

Let Ŵ = W̃

‖W̃‖n−j,j
and Ẑ = Z̃

‖Z̃‖1,1
, Ẽ(x, λ) = gs,π(λ)E(x, λ)gs,π̃(x)(λ)−1,

ξ̃ = ξ − 2s(Ŵ ẐtJ ′)∗,(3.5)

where (ϑ∗) is the projection onto the span of {a1, a2}⊥. Then
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(1) ξ̃ is a solution of system (2.2), Ẽ is a frame for ξ̃ and Ẽ(x, λ) is holomorphic
in λ ∈ C.

(2) (W̃ (x), Z̃(x)) is a solution of the system:




(w̃1)x1 = r1,2w̃2 − ....− rn−2,2w̃n−1 + 2ξ1w̃n − sz̃1

(w̃1)x2 = −r1,1w̃2 − .... + rn−2,1w̃n−1 + 2ξ2w̃n + sz̃2

(w̃n)x1 = r1,1w̃2 − ....− rn−2,1w̃n−1 + 2ξ1w̃1 − sz̃2

(w̃n)x2 = r1,2w̃2 − ....− rn−2,2w̃n−1 + 2ξ2w̃1 − sz̃1

(w̃j)xi
= −εirj−1,̄iw̃1 + rj−1,iw̃n

(z̃i)xi = sw̃n − 2εiξīz̃i

(z̃i)xk
= εi(sw̃1 − 2ξiz̃i),

(3.6)

for j = 2, ..., n− 1, i = 1, 2 where εi = 1 if i = 1, εi = −1 if i = 2, and 1̄ = 2, 2̄ = 1
In the last equation i 6= k.

We note that for

ut =
(

u11 u21 · · · un−11 un1

u12 u22 · · · un−12 un2

)

ut
∗ =

(
u11−un2

2 u21 · · · un−11
un1+u12

2
un1+u12

2 u22 · · · un−12
−u11+un2

2

)
.

The proof of Theorem 1 uses the following lemma.

Lemma 1. With the same conditions as in Theorem 1 above, we get
(i) W̃ (x) ∈ Rn−j,j , Z̃(x) ∈ R1,1.
(ii) ‖W̃ (x)‖n−j,j = ‖Z̃(x)‖1,1 ∀x and gs,π̃ satisfies the reality conditions (3.1),

i.e. gs,π̃ ∈ G−.
(iii) Ẽ(x, λ) is holomorphic in λ ∈ C.

The statement and proof are similar to the Lemma (9.4) of [3] and we omit it,
with the following comment. We need to know that we can choose W̃ and Z̃ which
are not null vectors. Since ‖W̃ (x)‖n−j,j = ‖Z̃(x)‖1,1, we want z̃1z̃2 6= 0. We only need
to do this locally. Fix xo and look at E(xo,−iso)−1 This is a matrix whose last two
rows we denote by ~rn+1 and ~rn+2. We must pick a real vector

~s = ( ~W, ~iZ) ∈ (~r⊥n+1)
c ∩ (~r⊥n+2)

c ∩ (Sn−j−1,j+1 × S0,1),

where Sp−1,k ⊂ Rp,k is the set of unit vectors. We see that this is a non-empty
intersection, since the complement of two hyperplanes must intersect the product.

In the course of the proof we find the following expression for Ẽ(x, λ):

Ẽ(x, λ) = (π +
λ− is

λ + is
(I − π))(π +

λ + is

λ− is
(I − π))E(x, λ)

(
In−j,j 0

0 J ′

)

(π̃t +
λ− is

λ + is
(I − π̃t))(π̃t +

λ + is

λ− is
(I − π̃t)

(
In−j,j 0

0 J ′

)
.

Using this expression one can show the holomorphicity of Ẽ(x, λ) for λ ∈ C.
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Proof of Theorem 1:
We find that

Ẽ−1dẼ = gs,π̃E−1dEg−1
s,π̃ − dgs,π̃g−1

s,π̃.(3.7)

But θλ = E−1dE =
∑2

i=1(aiλ + [ai, v])dxi, Ẽ(x, λ) is holomorphic in λ ∈ C and
gs,π̃(λ) is holomorphic at λ = ∞. So Ẽ−1dẼ must be of the form:

∑2
i=1(aiλ+µi)dxi.

Now we write

gs,π̃(λ) = I +
m1(x)

λ
+

m2(x)
λ2

+ .....

so that m1(x) = 2s

(
0 Ŵ ẐtJ ′

−ẐŴ tIn−j,j 0

)
and m1(x) ∈ P. Now multiplying (3.7)

by gs,π̃ on the right side and equating the constant terms, we have

µi = [ai, v −m1] = [ai, v − po(m1)],

where po is the projection from P onto P∩A⊥. Therefore ṽ = v−po(m1) is a solution
of the complex O(n−j +1, j +1)/O(n− j, j)×O(1, 1)-system (2.2). More specifically,

if we write v =
(

0 ξ
−J ′ξtIn−j,j 0

)
and ṽ =

(
0 ξ̃

−J ′ξ̃tIn−j,j 0

)
, ξ̃ = ξ − 2s(Ŵ ẐtJ ′)∗

is a new solution of O(n− j + 1, j + 1)/O(n− j, j)×O(1, 1)-system (2.2).
(2) follows from taking the differential of (3.4), that is

d

(
W̃

iZ̃

)
(x) = −θ−is

(
W̃

iZ̃

)
(x). ¥

Now let

Ẽ](x, λ) = E(x, λ)g−1
s,π̃,(3.8)

i.e.,

Ẽ](x, λ) = E(x, λ)
(

In−j,j 0
0 J ′

)
1

λ2 + s2
[λ2I + s2

(
I − 2In−j,jŴŴ t 0

0 I − 2J ′ẐẐt

)
+

(3.9)

+2sλ

(
0 −In−j,jŴ Ẑt

J ′ẐŴ t 0

)
]
(

In−j,j 0
0 J ′

)
.

A direct computation gives Ẽ] is a frame for ξ̃ and Ẽ](x, .) is not in G+. The reality
condition (3.1) implies that both E(x, 0) and Ẽ](x, 0) are in O(n− j, j)×O(1, 1), so
we write

E(x, 0) =
(

A(x) 0
0 B(x)

)
, Ẽ](x, 0) =

(
Ã](x) 0

0 B̃](x)

)
,

for some A,B, Ã](x), B̃](x). Then taking λ = 0 in (3.8), one gets

Ã] = A(I − 2ŴŴ tIn−j,j), B̃] = B(I − 2ẐẐtJ ′).(3.10)



Complex timelike isothermic surfaces 47

Corollary 1. Suppose E is a frame of the solution ξ of the system (2.2) such that
E(x, λ) is holomorphic for λ ∈ C.

(i) If E(0, λ) = I, then ξ̃ obtained in Theorem 1, is the dressing action gs,π]ξ, and
Ẽ is the frame of ξ̃ with Ẽ(0, λ) = I.

(ii) Let g+(λ) = E(0, λ) and ξ̃ the new solution of (2.2) obtained in Theorem 1.
Then g+ ∈ G+ and ξ̃ = g̃−]ξ, where g̃− is obtained by factoring gs,πg+ = g̃+g̃− with
g̃± ∈ G±.

Denoting the entries of ξ by: F =
(

ξ1 ξ2

ξ2 −ξ1

)
and G =




r1,1 r1,2

...
...

rn−2,1 rn−2,2


, the

new solution ξ̃ given by Theorem 1 is :
(

F̃

G̃

)
=

(
F
G

)
− 2s(Ŵ ẐtJ ′)∗∗.(3.11)

The ∗∗ denotes the projection as above, with the last row moved to the second row.
So (F, G, B) and (F̃ , G̃, B̃]) are solutions of the complex O(n − j + 1, j + 1)/O(n −
j, j) × O(1, 1)-system II (2.5). In components F = (fij)2×2, G = (rij)(n−2)×2, F̃ =
(f̃ij)2×2, G̃ = (r̃ij)(n−2)×2, the formula (3.11) for ξ̃ is





f̃11 = −f̃22 = f11 − s(ŵ1ẑ2 − ŵnẑ1),
f̃12 = f̃21 = f12 − s(ŵ1ẑ1 + ŵnẑ2),
r̃i1 = ri1 − 2sŵ1+iẑ2

r̃i2 = ri2 − 2sŵ1+iẑ1.

(3.12)

Let Ẽ] frame of ξ̃, EII of (F,G, B) and Ẽ]
II

of (F̃ , G̃, B̃]). Then they are related by:

Ẽ]
II

(x, λ) = Ẽ](x, λ)
(

In−j,j 0
0 J ′

) (
I 0

0 B̃]
t

)(
In−j,j 0

0 J ′

)
,

Ẽ]
II

(x, λ) = EII(x, λ)[I − 2
λ2 + s2

(
s2ŴŴ tIn−j,j −sλŴ ẐtBtJ ′

−sλBẐŴ tIn−j,j λ2BẐẐtBtJ ′

)
].(3.13)

Henceforth we use the following notation:

(ξ̃, Ẽ]) = gs,π.(ξ, E), Ã] = gs,π.A, B̃] = gs,π.B, (F̃ , G̃, B̃], Ẽ]
II

) = gs,π.(F, G, B,EII).

4 Ribaucour Transformation

Now our interest is to show that the action of the element gs,π on the space of local
solutions of the complex O(n−j+1, j+1)/O(n−j, j)×O(1, 1)-system II (2.5), which
was established in Section 3, corresponds to Ribaucour and Darboux transformations
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correctly defined. To do this, we must adjust the definition of Ribaucour transforma-
tion given in [6], and the definition of Darboux transformation for surfaces in euclidean
space Rn for our time-like surfaces in Rn−j,j whose shape operators have conjugate
eigenvalues. We start this section with the definition of Ribaucour transformation.

For x ∈ Rn−j,j and v ∈ (TRn−j,j)x, where let γx,v(t) = x+ tv denote the geodesic
starting at x in the direction of v.

Definition 3. Let Mm and M̃m be Lorentzian submanifolds whose shape operators
are all diagonalizable over R or C immersed in the pseudo-riemannian space Rn−j,j,
0 < j < n. A sphere congruence is a vector bundle isomorphism P : V(M) → V(M̃)
that covers a diffeomorphism φ : M → M̃ with the following conditions:

(1) If ξ is a parallel normal vector field of M , then P ◦ ξ ◦φ−1 is a parallel normal
field of M̃ .

(2) For any nonzero vector ξ ∈ Vx(M), the geodesics γx,ξ and γφ(x),P (ξ) intersect
at a point that is the same parameter value t away from x and φ(x).

For the following definition we assume that each shape operator is diagonalized
over the real or complex numbers. We note that there are submanifolds for which this
does not hold.

Definition 4. A sphere congruence P : V(M) → V(M̃) that covers a diffeomorphism
φ : M → M̃ is called a Ribaucour transformation if it satisfies the following additional
properties:

(1) If e is an eigenvector of the shape operator Aξ of M , corresponding to a real
eigenvalue then φ∗(e) is an eigenvector of the shape operator AP (ξ) of M̃ corresponding
to a real eigenvalue.

If e1 + ie2 is an eigenvector of Aξ on (TM)C corresponding to the complex eigen-
value a+ib (so that e1−ie2 corresponds to the eigenvalue a−ib), then φ∗(e1)+iφ∗(e2)
is an eigenvector corresponding to a complex eigenvalue for AP (ξ).

(2) The geodesics γx,e and γφ(x),φ∗(e) intersect at a point that is equidistant to
x and φ(x) for real eigenvectors e and γx,ej and γφ(x),φ∗(ej) meet for the real and
imaginary parts of complex eigenvectors e1 + ie2, i.e., for j = 1, 2.

Theorem 2. Let ξ =
(

F
G

)
solution of (2.2), E frame of ξ, E(x, 0) =

(
A(x) 0

0 B(x)

)
,

(F, G, B) a solution corresponding to complex O(n−j +1, j +1)/O(n−j, j)×O(1, 1)-
system II, and

(F̃ , G̃, B̃], Ẽ]
II

) = gs,π.(F,G, B, EII), Ã] = gs,π.A.

Let ei, ẽi denote the i-th column of A and Ã] resp. Then we have
(i)

∂E

∂λ
(x, 0)E−1(x, 0) =

(
0 X

−J ′XtIn−j,j 0

)
,

∂Ẽ]

∂λ
(x, 0)Ẽ]

−1
(x, 0) =

(
0 X̃

−J ′X̃tIn−j,j 0

)

for some X and X̃.
(ii) X = (X1, X2) and X̃ = (X̃1, X̃2) are complex isothermic time-like dual pairs

in Rn−j,j of type O(1, 1) such that {e2, ...en−1} and {ẽ2, ..., ẽn−1} are parallel normal
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frames for Xj and X̃j respectively for j = 1, 2, where {eα}n−j
α=2 and {eα}n−1

α=n−j+1 are
space-like and time-like vectors resp.

(iii) The solutions of the complex O(n− j + 1, j + 1)/O(n− j, j)×O(1, 1)-system
II corresponding to X and X̃ are (F, G,B) and (F̃ , G̃, B̃]) resp.

(iv) The bundle morphism P (ek(x)) = ẽk(x) k = 2, ..., n − 1, is a Ribaucour
Transformation covering the map Xj(x) 7→ X̃j(x) for each j = 1, 2.

(v) There exist smooth functions ψik such that Xi + ψikek = X̃i + ψikẽk for
1 ≤ i ≤ 2 and 1 ≤ k ≤ n.

For the proof we will need the following result which can be proved as Corollary
(6.11) in ([3]).

Proposition 1. Let E(x, λ) be a frame for the solution ξ of system (2.2), and Y (x) =
∂E
∂λ (x, 0)E−1(x, 0). Then we have

(i)

Y =
(

0 X
−J ′XtIn−j,j 0

)
for some X ∈Mn×2.

(ii) X = (X1, X2) is complex isothermic time-like dual pair in Rn−j,j of type
O(1, 1)

(iii)

dX = A

(
dx1 0 . . . 0 dx2

−dx2 0 . . . 0 dx1

)t

B−1.(4.1)

Proof of Theorem 2:
Following the same lines as that of Theorem 10.6 in [3], we arrive at the formula

X̃ = X + 2
sAŴẐtBtJ ′. Letting η =

∑n
j=1 ŵjej , we see that the i-th column of X̃ is

given by

X̃i = Xi +
2
s

2∑

j=1

(ẑjbīj)η, where 1̄ = 2 and 2̄ = 1.(4.2)

Next from the relation Ã] = A(I − 2ŴŴ tIn−j,j) we get ẽi = ei − 2ŵiηεi with
εi = 1, i = 1, ..., n− j and εi = −1, i = n− j + 1, ..., n. Now using this last relation,
we have

Xi + ψikek = X̃i + ψikẽk,(4.3)

where

ψik =
εk

sŵk

2∑

j=1

ẑjbī,j , for i = 1, 2, k = 1, 2, ..., n.

To see that the condition on the eigenvectors holds, we note that the shape opera-
tors can be calculated using the rij and the algebraic form is preserved. In our case
both shape operators are diagonalized over C. So we conclude that P is a Ribaucour
transformation. ¥
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5 Darboux Transformations for complex timelike
isothermic surfaces in Rn−j,j

Here, we are interested in considering Darboux transformations for timelike isother-
mic surfaces in Rn−j,j . In fact, in our next result we show that the transformation
constructed in Theorem 2 is a Darboux transformation.

Let M, M̃ be two time-like surfaces in Rn−j,j with flat and non-degenerate normal
bundle, shape operators that are diagonalizable over C and P : V(M) → V(M̃) a
Ribaucour transformation that covers the map φ : M → M̃ . If, in addition, φ is a
sign-reversing conformal diffeomorphism then P is called a Darboux transformation.
By a sign-reversing conformal diffeomorphism we mean that the time-like and space
like vectors are interchanged and the conformal coordinates remain conformal. With
this, we have:

Theorem 3. Let (X1, X2) be a complex isothermic time-like dual pair in Rn−j,j of

type O(1, 1) corresponding to the solution (u,G) of the system (2.5), and let ξ =
(

F
G

)

the corresponding solution of the system (2.2), where

F =
(

ux2 ux1

ux1 −ux2

)
, B =

(
e2u 0
0 e−2u

)
.

Let also s ∈ R be different of zero, π a projection on C
(

W
iZ

)
, gs,π the rational element

defined in (3.3), and Ŵ , Ẑ as in Theorem 1, for the solution ξ of the system (2.2).

Let (Ẽ]
II

, Ã], B̃]) = gs,π.(EII , A, B). Write A = (e1, ..., en) and Ã] = (ẽ1, ..., ẽn). Set
{

X̃1 = X1 + 2
s ẑ2e

−2u
∑n

i=1 ŵiei,

X̃2 = X2 + 2
s ẑ1e

2u
∑n

i=1 ŵiei,
(5.1)

Then
(i) (ũ, G̃) is the solution of system (2.5), corresponding to (X̃1, X̃2), where e4ũ =

4ẑ4
2

e4u and G̃ = (r̃ij) is defined by (3.12).
(ii) The fundamental forms of pair (X̃1, X̃2) are respectively





Ĩ1 = e4ũ(−dx2
1 + dx2

2)
ĨI1 = e2ũ

∑n−2
i=1 [r̃i,1(dx2

2 − dx2
1)− 2r̃i,2dx1dx2]ẽi+1.

Ĩ2 = e−4ũ(dx2
1 − dx2

2)
ĨI2 = −e−2ũ

∑n−2
i=1 r̃i,2(dx2

2 − dx2
1) + 2r̃i,1dx1dx2]ẽi+1.

(iii) The bundle morphism P (ek(x)) = ẽk(x), k = 2, ..., n − 1 covering the map
Xi → X̃i is a Darboux transformation for each i = 1, 2.

Proof. For (i) and (ii) we just observe that

dX̃ = Ã]

(
dx1 0 . . . 0 dx2

−dx2 0 . . . 0 dx1

)t

B̃]
−1

,
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and calculate.
For (iii) we observe that the map φ : Xi → X̃i is sign-reversing conformal because

the coordinates (x1, x2) are isothermic for Xi and X̃i but time-like and space-like
vectors are interchanged. The rest of the properties of Darboux transformation were
proved above. ¥

Example 1. Let n = 3, j = 1, so that we have the O(3, 2)/O(2, 1)× O(1, 1)-system.
Let (u, r11, r12) = (0, 0, 0) be a trivial solution of (2.5), then F = 0, G = 0, B = I.
So a complex isothermic time-like dual pair in R2,1 of type O(1, 1) corresponding to
trivial solution is:

X =




x −y
0 0
y x




The frame E(x, y, λ) is the following, where we let

u =
−x + y√

2
, v =

x + y√
2

:

and write the columns of E(x, y, λ) as c1, . . . c5

c1 =




cos(uλ) cosh(v λ)
0

sin(uλ) sinh(v λ)
cosh(v λ) sin(u λ)+cos(u λ) sinh(v λ)√

2
cosh(v λ) sin(u λ)−cos(u λ) sinh(v λ)√

2




, c2 =




0
1
0
0
0




, c3 =




− (sin(uλ) sinh(v λ))
0

cos(uλ) cosh(v λ)
−(cosh(v λ) sin(u λ))+cos(u λ) sinh(v λ)√

2
cosh(v λ) sin(u λ)+cos(u λ) sinh(v λ)√

2




(5.2)

c4 =




−(cosh(v λ) sin(u λ))+cos(u λ) sinh(v λ)√
2

0
cosh(v λ) sin(u λ)+cos(u λ) sinh(v λ)√

2

cos(uλ) cosh(v λ)
sin(uλ) sinh(v λ)




, c5 =




−
(

cosh(v λ) sin(u λ)+cos(u λ) sinh(v λ)√
2

)

0
−(cosh(v λ) sin(u λ))+cos(u λ) sinh(v λ)√

2

− (sin(u λ) sinh(v λ))
cos(uλ) cosh(v λ)




(5.3)

Then from Theorem 1, we obtain




w̃1

w̃2

w̃3

z̃1

z̃2




=




cosh(s u) (2 w1 cos(s v)+
√

2 (−z1+z2) sin(s v))+(
√

2 (z1+z2) cos(s v)+2 w3 sin(s v)) sinh(s u)

2
w2

cosh(s u) (2 w3 cos(s v)−√2 (z1+z2) sin(s v))+(−(
√

2 (z1−z2) cos(s v))−2 w1 sin(s v)) sinh(s u)

2
cosh(s u) (2 z1 cos(s v)+

√
2 (w1+w3) sin(s v))+(

√
2 (w1−w3) cos(s v)+2 z2 sin(s v)) sinh(s u)

2
cosh(s u) (2 z2 cos(s v)+

√
2 (−w1+w3) sin(s v))+(

√
2 (w1+w3) cos(s v)−2 z1 sin(s v)) sinh(s u)

2




.

From equation (5.1), we get that the isothermic timelike dual pair in R2,1 of type
O(1, 1) constructed by applying the Darboux transformation to the trivial solution is:
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X̃1 = X1 +
2
s
ẑ2

3∑

i=1

ŵiei, X̃2 = X2 +
2
s
ẑ1

3∑

i=1

ŵiei,

If we make the choice w1 = 1/
√

2 = w2 = z1 = z2, w3 = 0 we get:

X̃1 =




−u+v√
2

+
2 cos(v) (

√
2 cosh(u)+2 sinh(u)) (cosh(u) (

√
2 cos(v)−sin(v))+(cos(v)−√2 sin(v)) sinh(u))

1+3 cos(2 v) cosh(2 u)+2
√

2 cos(2 v) sinh(2 u)
2 (cosh(u) (2 cos(v)−√2 sin(v))+(

√
2 cos(v)−2 sin(v)) sinh(u))

1+3 cos(2 v) cosh(2 u)+2
√

2 cos(2 v) sinh(2 u)

u+v√
2

+
2 sin(v) (2 cosh(u)+

√
2 sinh(u)) (cosh(u) (−(

√
2 cos(v))+sin(v))+(− cos(v)+

√
2 sin(v)) sinh(u))

1+3 cos(2 v) cosh(2 u)+2
√

2 cos(2 v) sinh(2 u)




X̃2 =




−
(

u+v√
2

)
+

2 cos(v) (
√

2 cosh(u)+2 sinh(u)) (cosh(u) (
√

2 cos(v)+sin(v))+(cos(v)+
√

2 sin(v)) sinh(u))
1+3 cos(2 v) cosh(2 u)+2

√
2 cos(2 v) sinh(2 u)

2 (cosh(u) (2 cos(v)+
√

2 sin(v))+(
√

2 cos(v)+2 sin(v)) sinh(u))
1+3 cos(2 v) cosh(2 u)+2

√
2 cos(2 v) sinh(2 u)

−u+v√
2
− 2 sin(v) (2 cosh(u)+

√
2 sinh(u)) (cosh(u) (

√
2 cos(v)+sin(v))+(cos(v)+

√
2 sin(v)) sinh(u))

1+3 cos(2 v) cosh(2 u)+2
√

2 cos(2 v) sinh(2 u)




Using the equation (4.1) for X̃1, X̃2 we see that

dX̃1 =
−2ẑ2

2

b
(−dx2ẽ1 + dx1ẽ3), dX̃2 = −2bẑ2

1(dx1ẽ1 + dx2ẽ3)

so that

Ĩ1 =
4ẑ4

2

b2
(dx2

2 − dx2
1), Ĩ2 = 4b2ẑ4

1(dx2
1 − dx2

2).
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