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Abstract. The aim of this paper is to study some geometrical objects in
the deformation algebra associated to a linear family of affine connections.
It is pointed out the parallelism between certain algebraic and geometric
properties.
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1 Preliminaries

Let M be a n - dimensional (n > 3) differentiable manifold. One denotes by F(M) the
ring of real valued functions, defined on M and by T r

s (M) the F(M)-module of tensor
fields of type (r, s) on M. Particularly, one denotes T 1

0 (M), respectively T 0
1 (M), by

X (M), respectively Λ1(M).
The differentiable manifolds, the differentiable mappings, the tensor fields and the

linear connections are supposed to be of class C∞.
Let A ∈ T 1

2 (M). If one defines the product of two vector fields X and Y by

(∗) X ◦ Y = A(X,Y ),

the F(M)-module X (M) becomes an F(M)-algebra. This algebra is called the algebra
associated to A and it is denoted by U(M, A). If A = ∇ − ∇, where ∇ and ∇ are
two affine connections on M, then U(M,∇ − ∇) is called the deformation algebra
associated to the pair of connections (∇,∇).

Definition 1.1 An element X ∈ U(M,A) is called an almost principal vector field
if there exist f ∈ F(M) and a 1-form ω ∈ Λ1(M) such that

A(Z,X) = fZ + ω(Z)X, ∀Z ∈ X (M).

Remark 1.1 i) If f = 0, then X becomes a principal vector field;
ii) If ω = 0, then X is an almost special vector field;
iii) If f = 0 and ω = 0, then X is a special vector field;
iv) If A(X,X) = 0, then X is a 2-nilpotent vector field.
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2 Main result

Let (M,
◦
g) be a conex, n - dimensional (n > 3) Riemannian manifold. One denotes by

◦
∇, respectively

1

∇, the Levi-Civita connection associated to
◦
g, respectively

1
g= e2u

◦
g,

where u ∈ F(M). One gets the linear family of connections

(∗∗) { ◦∇ +λ(
1

∇ − ◦
∇)|λ ∈ R}.

Theorem 2.1 Let
λ

∇be an affine connection from the linear family (∗∗). We denote

by
λ

R, respectively
◦
R, the curvature tensor field of the linear connection

λ

∇, respectively
◦
∇ . Let TpM be the tangent vector space in an arbitrary point p ∈ M. The following
assertions are equivalent:

(i)
λ

∇=
◦
∇;

(ii)
λ

R=
◦
R, if

◦
Rp: TpM × TpM × TpM 7→ TpM is a surjective mapping, ∀p ∈ M ;

(iii)
λ

∇
λ

R=
λ

∇
◦
R, if

◦
Rp: TpM×TpM×TpM 7→ TpM is a surjective mapping, ∀p ∈ M ;

(iv) The deformation algebra U(M,
λ

∇ − ◦
∇) is associative;

(v)
λ

∇ and
◦
∇ have the same geodesics;

(vi) All the elements of the algebra U(M,
λ

∇ − ◦
∇) are almost principal vector fields;

(vii) All the elements of the algebra U(M,
λ

∇ − ◦
∇) are almost special vector fields;

(viii) All the elements of the algebra U(M,
λ

∇ − ◦
∇) are principal vector fields;

(ix) All the elements of the algebra U(M,
λ

∇ − ◦
∇) are special vector fields;

(x) All the elements of the algebra U(M,
λ

∇ − ◦
∇) are 2-nilpotent vector fields.

Proof. (i) ⇒ (ii) ⇒ (iii), (i) ⇒ (iv), (i) ⇒ (v), (i) ⇒ (vi), (i) ⇒ (vii), (i) ⇒ (viii),
(i) ⇒ (ix), (i) ⇒ (x) are obvious.

(iii) ⇒ (i) From (iii) one gets

(
λ

∇X

λ

R)(Y, Z, V ) = (
λ

∇X

◦
R)(Y, Z, V ),∀X, Y, Z, V ∈ X (M).

Moreover

(
λ

∇X

◦
R)(Y,Z, V ) = (

◦
∇X

◦
R)(Y, Z, V ) + λ{A(X,

◦
R (Y, Z)V )−

− ◦
R (A(X,Y ), Z)V− ◦

R (Y,A(X, Z))V− ◦
R (Y, Z)A(X, V )},

where A =
1

∇ − ◦
∇ . The last two formulae imply

(2.1) (
λ

∇X

λ

R)(Y,Z, V ) = (
◦
∇X

◦
R)(Y, Z, V ) + λ{A(X,

◦
R (Y, Z)V )−

− ◦
R (A(X,Y ), Z)V− ◦

R (Y,A(X, Z))V− ◦
R (Y, Z)A(X, V )}.

Permuting circular X, Y, Z one gets another two analogous relations
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(2.1′) (
λ

∇Y

λ

R)(Z, X, V ) = (
◦
∇Y

◦
R)(Z, X, V ) + λ{A(Y,

◦
R (Z,X)V )−

− ◦
R (A(Y, Z), X)V− ◦

R (Z, A(Y,X))V− ◦
R (Z,X)A(Y, V )},

(2.1”) (
λ

∇Z

λ

R)(X,Y, V ) = (
◦
∇Z

◦
R)(X, Y, V ) + λ{A(Z,

◦
R (X,Y )V )−

− ◦
R (A(Z, X), Y )V− ◦

R (X, A(Z, Y ))V− ◦
R (X,Y )A(Z, V )}.

The second Bianchi identities, the relations (2.1), (2.1’) and (2.1”) lead to

(2.2) λ{A(X,
◦
R (Y, Z)V ) + A(Y,

◦
R (Z,X)V ) + A(Z,

◦
R (X, Y )V )−

− ◦
R (Y, Z)A(X,V )− ◦

R (Z, X)A(Y, V )− ◦
R (X,Y )A(Z, V )} = 0.

From (2.2) we obtain λ = 0, so (i) or

(2.2′)
A(X,

◦
R (Y, Z)V ) + A(Y,

◦
R (Z,X)V ) + A(Z,

◦
R (X, Y )V ) =

=
◦
R (Y, Z)A(X, V )− ◦

R (Z, X)A(Y, V )− ◦
R (X, Y )A(Z, V ).

Let
◦
gij , A

k
ij , respectively

◦
R

i

jkl be the components of
◦
g,A, respectively

◦
R, in a local

system of coordinates (x1, x2, . . . , xn). In local coordinates (2.2’) becomes

(2.2”)
As

il

◦
R

r

sjk +As
jl

◦
R

r

ski +As
kl

◦
R

r

sij=

Ar
js

◦
R

s

lki +Ar
ks

◦
R

s

lij +Ar
is

◦
R

s

ljk .

From
1
g= e2u

◦
g and A =

1

∇ − ◦
∇ one has

(2.3) Ai
jk = δi

juk + δi
kuj−

◦
gjk ui,

where ui = ∂u
∂xi , u

i =
◦
g

ik

uk,
◦
g

ik ◦
gij= δk

j . Relations (2.2’) and (2.3) imply

(δr
i

◦
R

s

ljk +δr
j

◦
R

s

lki +δr
k

◦
R

s

lij)us + (
◦
gil

◦
R

r

sjk +
◦
gjl

◦
R

r

ski +
◦
gkl

◦
R

r

sij)u
s = 0.

Considering r = j and summing, one gets

(2.4) (n− 2)
◦
R

s

lki us + (
◦
Rlski +

◦
gil

◦
Rsk −

◦
gkl

◦
Ris)us = 0,

where
◦
Rijkl=

◦
gis

◦
R

s

jkl,
◦
Rij=

◦
R

k

ikj . Multiplying (2.4) by
◦
g

il

and summing, we obtain

(2.4′) (n− 2)Rskus = 0.

From (2.4’) and (2.4) one has

(2.4”) (n− 3)
◦
R

s

lki us = 0.

Since n > 3, from (2.4”) we get

(2.5) ω(
◦
R (X, Y )Z) = 0, ∀X, Y, Z ∈ X (M),
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where ω is the 1-form having the components u1, u2, . . . , un. ∀p ∈ M, the relation
(2.5) implies

(2.5′) ωp(
◦
Rp (Xp, Yp)Zp) = 0, ∀Xp, Yp, Zp ∈ TpM.

Since
◦
Rp: TpM × TpM × TpM 7→ TpM is a surjective mapping, ∀p ∈ M, from (2.5’)

one has ωp(TpM) = 0, ∀p ∈ M, i.e. ωp = 0,∀p ∈ M, so ω = 0. Therefore u1 = u2 =

. . . = un = 0 and u =constant. Hence
1

∇=
◦
∇ .

(iv)⇒ (i) Since the algebra U(M,
λ

∇ − ◦
∇) is abelian, then this algebra is associative

if and only if

(2.6) λ[A(X, A(Y, Z))−A(Y,A(X, Z))] = 0, ∀X,Y, Z ∈ X (M).

From (2.6) we get λ = 0, so (i) or

(2.6′) A(X, A(Y, Z)) = A(Y, A(X, Z)), ∀X,Y, Z ∈ X (M).

In local coordinates (2.6’) becomes

(2.6”) Ai
skAs

jl = Ai
slA

s
jk.

Taking into account (2.6”) and (2.3) one has

(2.6′′′) δi
kuluj − δi

lukuj − gilu
iuk + gjkuiul + (δi

kgjl − δi
lgjk)usu

s = 0.

Considering i = k and summing, one gets

(2.6iv) nujul + (n− 2)gjlusu
s = 0.

Multiplying the previous relation by gjl, we have usu
s = 0 and also ujul = 0. There-

fore u1 = u2 = . . . = un = 0 and hence
λ

∇=
◦
∇ .

(v) ⇒ (i) The symmetric linear connections
λ

∇ and
◦
∇ have the same geodesics if

and only if there exists a 1-form
λ
ω∈ Λ1(M) such that

(2.7)
λ

∇X Y =
◦
∇X Y +

λ
ω (X)Y +

λ
ω (Y )X, ∀X, Y ∈ X (M).

Since
1
g= e2u

◦
g, the deformation tensor

λ

A=
λ

∇ − ◦
∇ is given by

(2.8)
◦
g (

λ

A (X,Y ), Z) = λ{X(u)
◦
g (Y, Z) + Y (u)

◦
g (X,Z)− Z(u)

◦
g (Y, X)}.

The relations (2.7) and (2.8) lead to

(2.9)
◦
g (Y, Z)[

λ
ω (X)−λX(u)]+

◦
g (X, Z)[

λ
ω (Y )− λY (u)]− ◦

g (Y,X)Z(u)= 0.

For Y = X, from (2.9) one has

(2.10) 2
◦
g (X, Z)[

λ
ω (X)− λX(u)] = Z(u)

◦
g (X, X),∀X, Z ∈ X (M).
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From (2.10) we get

(2.10′) 2
◦
gp (Xp, Zp)[

λ
ωp (Xp)− λXp(u)] =

= Zp(u)
◦
gp (Xp, Xp), ∀Xp, Zp ∈ TpM \ {0}.

Since n > 3, ∀p ∈ M and Zp ∈ TpM \ {0} there exists a vector

Xp ∈ TpM \ {0} such that
◦
gp (Xp, Zp) = 0. From (2.10’) one has Zp(u) = 0,

∀p ∈ M, ∀Zp ∈ TpM \ {0}. Therefore u = constant and from (2.8) we get
◦
g (

λ

A (X,Y ), Z) = 0,∀X, Y, Z ∈ X (M). Hence
λ

∇=
◦
∇ .

vi) ⇒ v) All the elements of the deformation algebra U(M,
λ

∇ − ◦
∇) are almost

special vector fields if and only if there exist two 1-forms ω and η on M such that

(2.11)
λ

∇X Y =
◦
∇X Y + ω(X)Y + η(Y )X, ∀X, Y ∈ X (M).

The linear connections
λ

∇ and
◦
∇ are symmetric, so from (2.11) one has ω = η, i.e.

(v).

vii) ⇒ i), viii) ⇒ i), ix) ⇒ i), x) ⇒ i) (it is used the fact that U(M,
λ

∇ − ◦
∇) is an

abelian algebra).
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