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Abstract. The main purpose of this paper is to develop a duality of Mond-
Weir type for a vector mathematical program on a differentiable manifold.
The components of the program objective are ρ-pseudoinvex functions
and the constraint functions are ρ-quasiconvex and ρ-inquasimonotonic
all defined on a differential manifold. The developed duality in this paper
is based on weak, direct and converse duality theorems.
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1 Introduction

Let M be a differentiable manifold. We denote by TpM the tangent space to M at p.
Let also

TM = ∪
p∈M

TpM

be the tangent bundle of M .
Let N be another differentiable manifold and ϕ : M −→ N a differentiable appli-

cation.

Definition 1.1.[5, 10] The linear application defined by dϕ(v) = ϕ′(p)v is called
the differential of ϕ at the point p.

We consider now an application η : M ×M −→ TM such that η(p, q) ∈ TqM for
every q ∈ M , where p ∈ M .

Let F : M → R be a differentiable function. The differential of F at p, namely
dFp : TpM → TF (p)R ≡ R, is introduced by

∗Balkan Journal of Geometry and Its Applications, Vol.11, No.1, 2006, pp. 80-87.
c© Balkan Society of Geometers, Geometry Balkan Press 2006.



Mond-Weir duality in vector programming 81

dFp(v) = dF (p)v, v ∈ TpM

and for the Riemannian manifold (M, g) by

dFp(v) = gp(dF (p), v) v ∈ TpM,

where g is the Riemannian metric.
Let ρ ∈ R and d a distance function on M . If (M, g) is a Riemannian manifold,

then d is the distance induced by the metric g.

Definition 1.2. The differentiable function F is said to be ρ - invex at u ∈ M if
there exists an application η such that (shortly F is called (ρ, η)−invex)

∀x ∈ M : F (x)− F (u) = dF (u)(η(x, u)) + ρd2(x, u).

Definition 1.3. The differentiable function F is said to be ρ− pseudoinvex at
u ∈ M if there exists an application η such that (shortly F is (ρ, η)-pseudo-invex)

∀x ∈ M : dF (u)(η(x, u)) + ρd2(x, u) = 0 =⇒ F (x) = F (u).

Definition 1.4. The differentiable function F is said to be ρ−quasiinvex at u ∈ M
if there exists an application η such that (shortly F is named (ρ, η)− quasiinvex)

∀x ∈ M : F (x) 5 F (u) =⇒ dF (u)(η(x, u)) + ρd2(x, u) 5 0.

Definition 1.5. [8] The differentiable function F is said to be ρ− inquasi-
monotonic at u ∈ M if there exists an application η such that (shortly F is (ρ, η)−
inquasimonotonic)

∀x ∈ M : F (x) = F (u) =⇒ dF (u)(η(x, u)) + ρd2(x, u) = 0.

The invex and generalized invex functions have the property that every local
minimum point is a global minimum point [4].

Everywhere in this paper the relations u = v, u < v, u 5 v, u ≤ v etc between two
vectors u = (u1, ..., un)′ and v = (v1, ..., vn)′ are equivalent to

u = v ⇐⇒ ui = vi, i = 1, n;
u < v ⇐⇒ ui < vi, i = 1, n;
u 5 v ⇐⇒ ui 5 vi, i = 1, n;
u ≤ v ⇐⇒ u 5 v, u 6= v,

respectively, where we denoted by ′ the transposition sign.



82 Massimiliano Ferrara and Ştefan Mititelu

The paper is divided in three sections. Sections 1 is an introduction. Section 2
presents the study object of the paper that is the multiobjective mathematical pro-
gram (PV ) on a differentiable manifold. An efficiency solution is defined and efficiency
conditions for the program (PV ) are given. Section 3 contains the main result of the
paper. Here is developed a duality of Mond-Weir-type through weak, direct and con-
verse duality theorems.

2 Main results: efficiency conditions on
manifolds

Let us consider the vector functions f = (f1, ..., fp)′ : M → Rp, g = (g1, ..., gm)′ :
M → Rm and h = (h1, ..., hq)′ : M → Rq, all differentiable on M . A minimization
vector program on M is the following Pareto extremum problem:

(V P )
{

Minimize f(x) = (f1(x), ..., fp(x))′

subject to g(x) 5 0, h(x) = 0, x ∈ M.

The domain of this program is the set

DV P = {x ∈ M | g(x) 5 0, h(x) = 0} .

Definition 2.1. [2] A feasible point x0 ∈ DV P is said to be a Pareto minimum
point, or an efficiency solution (minimum) of (VP) if there exists no other point
x ∈ DV P such that f(x) ≤ f(x0).

In this paper we develop a Mond-Weir duality [8] for the program (VP). In order to
achieve this aim necessary efficiency conditions of Kuhn-Tucker type relative la (PV),
are used. Mititelu established necessary efficiency conditions for vector programs in a
locally convex space [6]. But the manifold M can be organized as a particular locally
convex space as follows. First, using the distance d, the pair (M,d) is a metric space
(M, d). We endow this space with the topology τ which is generated by open balls
with respect to d. It follows a topological space that is Hausdorff separated. Now, we
define on this space an algebraic structure of linear space that is compatible to τ and
then the manifold M becomes locally a local convex space. Within this mathematical
framework we consider the program (V P ) and for a point x0 ∈ DV P we define the
set J0 =

{{1, ..., m} | gj(x0) = 0
}
.

Definition 2.2. The point x0 is regular for (V P ) if the domain DV P verifies at
x0 the constraint

R(x0) : d(gj0)x0(v) 5 0, dhx0(v) = 0, ∀j ∈ J0.

Here d(gJ0)x0(v) is the vector of components d(gj)x0(v),∀j ∈ J0, taken in the
increasing order of j and dhx0(v) = (d(h1)x0(v), ..., d(hq)x0(v))′.

Now we can introduce necessary efficiency conditions for (V P ) at x0, above an-
nounced:
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Theorem 2.1.(Corollary 2.2.[6]). Let x0 ∈ DV P be an efficient solution of (V P ),
where the functions f, g and h are differentiable.

We also suppose that the constraint qualification R(x0) is satisfied.
Then there are vectors t0 = (t01, ..., t0p)′ ∈ Rp, y0 = (y01, ..., y0m)′ ∈ Rm and

z0 = (z01, ..., z0q)′ ∈ Rq such that the following efficiency conditions of Kuhn-Tucker
type at x0 are satisfied by (V P ):

(KT )





t0
i

dfi(x0) + y0jdgj(x0) + z0kdhk(x0) = 0
y0jgj(x0) = 0, y0 = 0

t0 ≥ 0, e′t0 = 1, e = (1, ..., 1)′ ∈ Rp.

3 A Mond-Weir duality for the program (VP)

We define the sets P = {1, ..., p} , S = {1, ..., m} and Q = {1, ..., q}. Let {S0, S1, ..., Sr}
be a partition of S, that is

Sα ⊆ S, Sα ∩ Sβ = ∅ if α 6= β,

r⋃
α=0

Sα = S

and {Q0, Q1, ..., Qr} be a similar defined partition of Q.
We remind that all the functions of the program (V P ) are differentiable on M .

The generalized Mond-Weir dual program associated to (V P ) is the following Pareto
extremum problem on manifold M :

(WMD)





Maximize L(u, y, z) = f(u) +
[
y′S0

gS0 + z′Q0
hQ0

]
e

subject to tidfi(u) + yjdgj(u) + zkdhk(u) = 0
y′Sα

gSα(u) + z′Qα
hQα(u) = 0, α = 1, r

u ∈ M, t ≥ 0, e′t = 1, y = 0.

where for α = 1, r we introduce the notations:

y′Sα
gSα(u) =

∑

j∈Sα

yjgj(u) , z′Qα
hQα(u) =

∑

k∈Qα

zkhk(u).

We denote by DWMD the domain of dual program (WMD). For the pair of vector
programs (V P ) and (WMD) we develop a duality theory through weak, direct and
converse duality theorems.

Theorem 3.1. (Weak duality). Let x and (u, t, y, z) be arbitrary feasible solutions
of the dual programs (VP) and (WMD).

Assume that following conditions are satisfied:
a) for each i ∈ P, fi is (ρ′i, η)− pseudoinvex at u;
b) for each j ∈ S, gj is (ρ′′j , η)−quasiinvex at u;
c) for each k ∈ Q, hk is (ρ′′′k , η)−inquasimonotonic at u;
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d) tiρ′i + yjρ′′j + zkρ′′′k = 0.
Then the relation f(x) ≤ L(u, y, z) is false.
Proof. We suppose, by absurdum, that the relation f(x) ≤ L(u, y, z) is true. Then

it follows

tifi(x) 5 tifi(u) + y′S0
gS0(u) + z′Q0

hQ0(u).

From this inequality and x ∈ DV P and (u, t, y, z) ∈ DWMD, we obtain

tifi(x) + yjgj(x) + zkhk(x) 5 tifi(u) + yjgj(u) + zkhk(u).

From a), b) and c) we obtain, respectively:

dfi(u)(η(x, u)) + ρd2(x, u) = 0 =⇒ f(x) = f(u),

or equivalently,

(3.2) fi(x) < fi(u) =⇒ dfi(u)(η(x, u)) + ρ′id
2(x, u) < 0,

(3.3) gj(x) 5 gj(u) =⇒ dgj(u)(η(x, u)) + ρ′′j d2(x, u) 5 0,

(3.4) hk(x) = hk(u) =⇒ dhk(u)(η(x, u)) + ρ′′′k d2(x, u) = 0.

Multiplying now (3.2), (3.3) and (3.4) by ti, yj and zk respectively, summing by
i, j and k and then, summing side by side the obtained relations, it results

(3.5) tifi(x) + yjgj(x) + zk ≤ tifi(u) + yjgj(u) + zkhk(u) =⇒
=⇒ (tidfi(u) + yjdgj(u) + zkdhk(u))(η(x, u)) + (tiρ′i + yjρ′′j + zkρ′′′k )d2(x, u) < 0

Taking into account the first constraint of (WMD) and of the condition d) of the
theorem, we infer that (3.5) implies 0 < 0, that is a contradiction.

It follows that the supposition, above made, is false. 2

Corollary 3.1. (Weak duality). Let x and (u, t, y, z) be arbitrary feasible solutions
of the dual programs (VP) and (WMD).

Assume that the following conditions are satisfied:
a) for each i ∈ P, fi is (ρ′i, η)−pseudoinvex at u;
b) for each α ∈ 1, r, y′Sα

gSα + z′Qα
hQα is (ρα, η)−quasiinvex at u;

c) tiρ′i +
r∑

α=1

ρα = 0.

Then the relation f(x) ≤ L(u, y, z) is false.

Theorem 3.2. (Direct duality). Let x0be a regular efficient solution of (VP) and
suppose satisfied the hypotheses of Theorem 3.1. Then there are vectors t0 ∈ Rp, y0 ∈
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Rm and z0 ∈ Rq such that (x0, t0, y0, z0) is an efficient solution for the dual (WMD)
and moreover, f(x0) = L(x0, y0, z0).

Proof. Because x0 is a regular efficient solution of (VP) then, according to Theorem
2.1, there are vectors t0 ∈ Rp, y0 ∈ Rm and z0 ∈ Rq such that the following efficiency
conditions of Kuhn-Tucker type are satisfied:





t0idf(x0) + y0jdg(x0) + z0kdh(x0) = 0
y0jgj(x0) = 0, y0 ≥ 0

t0 = 0, e′t0 = 1.

From the relations y0jgj(x0) = 0 and z0khk(x0) = 0 it follows

y0jgj(x0) + z0khk(x0) = 0, ∀j ∈ Sα,∀k ∈ Qα,

or equivalently,

y0
Sα

’gSα(x0) + z0
Qα

’hQα(x0) = 0.

Therefore (x0, t0, y0z0) ∈ DWMD and moreover, f(x0) = L(x0, y0, z0).
By using the hypotheses of Theorem 3.1 it results that the relation f(x0) ≤

L(u, y, z),∀(u, t, y, z) ∈ DWMD is false. Since y0
Sα

’gSα(x0) 5 0, z0
Qα

’hQα(x0) = 0
we infer that doesn’t exist (u, t, y, z) ∈ DWMD such that L(x0, y0, z0) ≤ L(u, y, z).
Therefore (x0, t0y0z0) is a (maximally) efficient solution for the dual program (WMD).
2

Corollary 3.2. (Direct duality). Let x0be a regular efficient solution of (VP) and
suppose satisfied the hypotheses of Corollary 3.1. Then there are vectors t0 ∈ Rp, y0 ∈
Rm and z0 ∈ Rq such that (x0, t0, y0, z0) is an efficient solution for the dual (WMD)
and moreover, f(x0) = L(x0, y0z0).

Theorem 3.3. (Converse duality). Let (x0, t0, y0, z0) be an efficient solution of
(WMD). We suppose that the following conditions are satisfied:

(i) x is a regular efficient solution of (VP);
(a0) for each i ∈ P , the function fi is (ρ′i, η)−pseudoinvex at x0;
(b0) for each j ∈ S, the function gj is (ρ′′j , η)−quasiinvex at x0;
(c0) for each k ∈ Q, the function hk is (ρ′′′k , η)−inquasimonotonic at x0;
(d0) t0

i

ρ′i + y0jρ′′j + z0kρ′′′k = 0.
Then x = x0 and moreover, f(x0) = L(x0, y0z0).

Proof. We suppose, by absurdum, that x 6= x0. Because x is a regular efficient
function of (VP), according to Theorem 2.1, there are vectors t ∈ Rp, y ∈ Rm and
z ∈ Rq such that the following efficiency conditions of Kuhn-Tucker type are satisfied:





tdfi(x) + yjdgj(x) + zkdhk(x) = 0
yjgj(x) = 0, y = 0

t ≥ 0, e′t = 1.
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From these conditions we obtain

(3.6) y′Sα
gSα

(x) + z′Qα
hQα

(x) = 0, α = 1, r.

Therefore (x, t, y, z) ∈ DWMD and moreover,

(3.7) f(x) = L(x, y, z).

According to Theorem 3.1 it follows that the relation

(3.8) f(x) ≤ L(x0, y0, z0)

is false.
Multiplying (3.6) by e and summing side by side the obtained relations and then,

summing side by side the obtained relation with (3.8), it results that the following
relation

(3.9) L(x, y, z) ≤ L(x0, y0, z0)

is false.
But (x0, t0, y0, z0) is a (maximally) efficient solution of (WMD) and then, the

relation

(3.10) L(x, y, z) ≥ L(x0, y0, z0)

is false, too.
We remark that relations (3.9) and (3.10) are contradictory. Consequently, x = x0

and in addition, L(x, y, z) = L(x0, y0, z0). By using now relation (3.7) we obtain

f(x0) = L(x0, y0, z0).

2

Corollary 3.3. (Converse duality). Let (x0, t0, y0z,0 ) be an efficient solution of
(WMD). We suppose that the next conditions are satisfied:

(i) x is a regular efficient solution of (VP);
(a0) for each i ∈ P, fi is (ρ′i, η)−pseudoinvex at x0;
(b0) for each α = 1, r, y0

Sα
’gSα + z0

Qα
’hQα is (ρα, η)−quasiinvex at x0;

(c0) t0
i

ρ′i +
r∑

α=1

ρα = 0.

Then x = x0 and f(x0) = L(x0, y0, z0).
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