Mond-Weir duality in vector programming
with generalized invex functions
on differentiable manifolds
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Abstract. The main purpose of this paper is to develop a duality of Mond-
Weir type for a vector mathematical program on a differentiable manifold.
The components of the program objective are p-pseudoinvex functions
and the constraint functions are p-quasiconvex and p-inquasimonotonic
all defined on a differential manifold. The developed duality in this paper
is based on weak, direct and converse duality theorems.

Mathematics Subject Classification: 26B25, 58A05, 58B20, 90C29, 90C46.
Key words: manifold, vector optimization, duality, generalized invexity.

1 Introduction

Let M be a differentiable manifold. We denote by T}, M the tangent space to M at p.
Let also

™ = U T,M
peEM
be the tangent bundle of M.
Let N be another differentiable manifold and ¢ : M — N a differentiable appli-
cation.

Definition 1.1.[5,10] The linear application defined by dy(v) = ¢'(p)v is called
the differential of ¢ at the point p.

We consider now an application ) : M x M — TM such that n(p, q) € T,;M for
every ¢ € M, where p € M.

Let F: M — R be a differentiable function. The differential of F' at p, namely
dFy, : T,M — Tpp,R =R, is introduced by
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dF,(v) = dF(p)v, veT,M

and for the Riemannian manifold (M, g) by

dF,(v) = gp(dF(p),v) v e T,M,

where ¢ is the Riemannian metric.
Let p € R and d a distance function on M. If (M, g) is a Riemannian manifold,
then d is the distance induced by the metric g.

Definition 1.2. The differentiable function F is said to be p - inver at uw € M if
there exists an application 1 such that (shortly F is called (p,n)—invex)

Vo € M : F(z) — F(u) 2 dF(u)(n(z,u)) + pd?(x,u).

Definition 1.3. The differentiable function F' is said to be p— pseudoinvex at
u € M if there exists an application 7 such that (shortly F' is (p, n)-pseudo-invez)

Vo € M : dF(u)(n(x,u)) + pd*(z,u) 2 0= F(x) = F(u).

Definition 1.4. The differentiable function F' is said to be p—quasiinver at v € M
if there exists an application n such that (shortly F' is named (p,n)— quasiinver)

Vo e M: F(x) £ F(u) = dF(u)(n(z,v)) + pd*(z,u) < 0.

Definition 1.5. [8] The differentiable function F is said to be p— inquasi-
monotonic at u € M if there exists an application n such that (shortly F' is (p,n)—
inquasimonotonic)

Vo € M : F(z) = F(u) = dF (u)(n(z,u)) + pd*(x,u) = 0.

The invex and generalized invex functions have the property that every local
minimum point is a global minimum point [4].

Everywhere in this paper the relations v = v,u < v,u < v,u < v etc between two
vectors u = (uq, ..., u,)" and v = (vy,...,v,)" are equivalent to

V<= u; =v;,1 = 1,n;

V<= u; < v,1=1,n;

v <= u; Sv;,1 = 1,n;

g & & &
VAN 7ANVAN

v<=uSvu# v,

respectively, where we denoted by ’ the transposition sign.
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The paper is divided in three sections. Sections 1 is an introduction. Section 2
presents the study object of the paper that is the multiobjective mathematical pro-
gram (PV) on a differentiable manifold. An efficiency solution is defined and efficiency
conditions for the program (PV) are given. Section 3 contains the main result of the
paper. Here is developed a duality of Mond-Weir-type through weak, direct and con-
verse duality theorems.

2 Main results: efficiency conditions on
manifolds

Let us consider the vector functions f = (f1,....,fp) : M — RP,g = (g1, ..., 9m)" :
M — R™ and h = (h1,...,hq)’ : M — R, all differentiable on M. A minimization
vector program on M is the following Pareto extremum problem:

Minimize f(z) = (f1(x),..., fp(x))
(VP) { subject to g(z) 6, h(x) :pO,I € M.

The domain of this program is the set
Dyp={z e M|g(z) =0,h(z)=0}.

Definition 2.1. [2] A feasible point 2° € Dy p is said to be a Pareto minimum
point, or an efficiency solution (minimum) of (VP) if there exists no other point
x € Dy p such that f(x) < f(20).

In this paper we develop a Mond-Weir duality [8] for the program ( VP). In order to
achieve this aim necessary efficiency conditions of Kuhn-Tucker type relative la (PV),
are used. Mititelu established necessary efficiency conditions for vector programs in a
locally convex space [6]. But the manifold M can be organized as a particular locally
convex space as follows. First, using the distance d, the pair (M, d) is a metric space
(M,d). We endow this space with the topology 7 which is generated by open balls
with respect to d. It follows a topological space that is Hausdorff separated. Now, we
define on this space an algebraic structure of linear space that is compatible to 7 and
then the manifold M becomes locally a local convex space. Within this mathematical
framework we consider the program (V P) and for a point 2° € Dy p we define the
set JO = {{1,...,m} | g;(z°) = 0}.

Definition 2.2. The point z° is regular for (V P) if the domain Dy p verifies at
20 the constraint

R(2°) : d(gj0) 0 (v) £ 0,dhg0(v) =0, Vje JO

Here d(gjo).o0(v) is the vector of components d(g;)z0(v),Vj € JY, taken in the
increasing order of j and dh,o(v) = (d(h1)0(v), ..., d(hg)zo (V)"

Now we can introduce necessary efficiency conditions for (V P) at 2%, above an-
nounced:
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Theorem 2.1.(Corollary 2.2.[6]). Let 2° € Dy p be an efficient solution of (V P),
where the functions f,g and h are differentiable.

We also suppose that the constraint qualification R(z) is satisfied.

Then there are vectors t° = (t°%,...,t%?) € RP,3° = (y°,...,4"™) € R™ and
20 = (291 ..., 299) € RY such that the following efficiency conditions of Kuhn-Tucker
type at 2° are satisfied by (V P):

t()idfi(fvo) Jr‘yojdgj(xo) + zOkdhk(xO) =0
(KT) y¥g;(2°) =0, y* 20
t0>0,t" =1, e=(1,..,1

3 A Mond-Weir duality for the program (VP)

We define the sets P = {1,...,p},S ={1,...,m} and Q = {1, ..., ¢}. Let {So, S1, ..., Sr }
be a partition of S, that is

S0 €8, 8uNSg=aifa#p, | JY%=>5

a=0

and {Qo, @1, ..., Qr} be a similar defined partition of Q.

We remind that all the functions of the program (V P) are differentiable on M.
The generalized Mond-Weir dual program associated to (V P) is the following Pareto
extremum problem on manifold M:

Mazimize L(u,y,z)= f(u)+ [yi%gso + Z’QUhQO} e

subject to  t'dfi(u) + yidg;(u) + 2"dhy(u) = 0
Ys,95. (W) + 2 ho.(u) 2 0,a =17
uveM, t>0, et=1, y=0.

(WMD)

where for o = 1,7 we introduce the notations:

Ys.95. (W) = D ylgi(w) 2 ha(u) =) 2Fhi(u).

JESa k€Qa

We denote by Dy arp the domain of dual program (WM D). For the pair of vector
programs (V P) and (WMD) we develop a duality theory through weak, direct and
converse duality theorems.

Theorem 3.1. (Weak duality). Let = and (u,t,y, z) be arbitrary feasible solutions
of the dual programs (VP) and (WMD).

Assume that following conditions are satisfied:

a) foreachi€ P, f;is (p},n) — pseudoinvex at u;

b) foreachj€ S, gjis(p},n)—quasiinvex at u;

c) foreach ke @, hyis(p)',n)—inquasimonotonic at u;
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d) tpi+yip] +2Fpl 2 0.
Then the relation f(x) < L(u,y, 2) is false.
Proof. We suppose, by absurdum, that the relation f(x) < L(u,y, z) is true. Then
it follows
tlfl(x) = tzfl(u) + y,/s‘ogso (u) + ZlQtho (u)

From this inequality and z € Dy p and (u,t,y,2) € Dwup, we obtain

tfi(x) + g (@) + 2 he(z) S fi(uw) + o gj(u) + 27y (u).

From a), b) and ¢) we obtain, respectively:

dfi(u)(n(w, w)) + pd®(w,u) 2 0 = f(z) 2 f(u),

or equivalently,

(3.2) fi(z) < fi(u) = dfi(u)(n(z,u)) + pid*(z,u) <0,
(3.3) 9j(x) < g;(u) = dg;(u)(n(z, u)) + pfjd*(z,u) 0,
(3.4) hi(z) = hi(u) = dhy(w)(n(z,w)) + p}d?(z,u) = 0.

Multiplying now (3.2), (3.3) and (3.4) by t,3’ and z* respectively, summing by
i,7 and k and then, summing side by side the obtained relations, it results

(3.5) tfi(2) +yl g (@) + 25 <t fi(u) + vl gj(u) + 27hy(u) =

= (t'dfi(u) + v’ dg; () + 2 dhy,(w)) (n(x,w)) + ('} + ¢ pf + 2"p{")d* (x,u) < 0

Taking into account the first constraint of (WMD) and of the condition d) of the
theorem, we infer that (3.5) implies 0 < 0, that is a contradiction.
It follows that the supposition, above made, is false. O

Corollary 3.1. (Weak duality). Let x and (u,t,y, z) be arbitrary feasible solutions
of the dual programs (VP) and (WMD).
Assume that the following conditions are satisfied:
a) for each i € P, f; is (p},n)—pseudoinvex at wu;
b) for each a € 1,7,yg gs. + 2, hq. 18 (Pa,n)—quasiinver at u;

¢) Fpi+ Pa20.
a=1
Then the relation f(x) < L(u,y, ) is false.

Theorem 3.2. (Direct duality). Let 2°be a regular efficient solution of (VP) and
suppose satisfied the hypotheses of Theorem 3.1. Then there are vectors t° € RP,y° €
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R™ and 2° € R? such that (20,1940, 20) is an efficient solution for the dual (WMD)
and moreover, f(z°) = L(x%,4°, 20).

Proof. Because x¥ is a regular efficient solution of (VP) then, according to Theorem
2.1, there are vectors t° € R?, 4% € R™ and 2° € R such that the following efficiency
conditions of Kuhn-Tucker type are satisfied:

t0%df (2°) 4 y* dg(a°) + 2% dh(2°) =0
y%7g;(2°) =0,4° >0
t0>0,et0 =1.

From the relations y%g;(2°) = 0 and 2%hy(2°) = 0 it follows

Y% g;(a°) + 2%hy,(2°) = 0, Vj € Sa,Vk € Qa,

or equivalently,

Y8, 95, (2°) + 20, "hq. (z°) = 0.

Therefore (2°,t°,4°2°) € Dy prp and moreover, f(2°) = L(2°,yY, 2°).

By using the hypotheses of Theorem 3.1 it results that the relation ( 0) <
L(u,y,2),9(u,t,y,z) € Dwyp is false. Since y§ "gs, (z°) = 0, ZQ "hg, () =0
we infer that doesn’t exist (u,t,y,2) € Dwap such that L(z% 4°,2%) < L(u,

Y, 2)
Therefore (20, t%9°2%) is a (maximally) efficient solution for the dual program (WMD).
O

Corollary 3.2. (Direct duality). Let 2°be a regular efficient solution of (VP) and
suppose satisfied the hypotheses of Corollary 3.1. Then there are vectors t° € RP,y° €
R™ and z° € RY such that (z°,t°,4°, 2°) is an efficient solution for the dual (WMD)
and moreover, f(z°) = L(z%,y°20).

Theorem 3.3. (Converse duality). Let (29,9, 4°,2%) be an efficient solution of

(WMD). We suppose that the following conditions are satisfied:
(i) T is a regular efficient solution of (VP);
a? or each i € P, the function f; is (pi,n)—pseudoinvez at CL‘O;

7

(bY)  for each j € S, the function g; is (P}, m)—quasiinvez at 20
(c%)  for each k € Q, the function hy, is (pg/,n)—mquaszmonotomc at 20
(d°) 1% + " + 2%pf 2 0.

Then T = 2° and moreover, f(z°) = L(z°,y°2°).

Proof. We suppose, by absurdum, that T # 2°. Because T is a regular efficient
function of (VP), according to Theorem 2.1, there are vectors ¢ € R?,7 € R™ and
z € RY such that the following efficiency conditions of Kuhn-Tucker type are satisfied:

tdfi(T) + 7 dg; (T) + 2" dhi (T) = 0
¥g;(@) =0, y=0
>0, €t=1.
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From these conditions we obtain

(3.6) ﬂ'sagsa (7) —I—E’Qa ho, () =0, a=1,r.

Therefore (Z,t,7,z) € Dwap and moreover,

(3.7) f@) = L(z,73,%).

According to Theorem 3.1 it follows that the relation

(3.8) f(@) < L(a%y°,2%)

is false.

Multiplying (3.6) by e and summing side by side the obtained relations and then,
summing side by side the obtained relation with (3.8), it results that the following
relation

(3.9) L(z,7,%) < L(2%4°,2°)

is false.
But (2°,t%,9%,2%) is a (maximally) efficient solution of (WMD) and then, the
relation

(3.10) L(z,7,%) > L(z°,4°,2°)
is false, too.

We remark that relations (3.9) and (3.10) are contradictory. Consequently, T = «
and in addition, L(%,7,z) = L(z°, y°, 2°). By using now relation (3.7) we obtain

0

O

Corollary 3.3. (Converse duality). Let (2°,t°,4°2,%) be an efficient solution of
(WMD). We suppose that the next conditions are satisfied:
(i) T is a regular efficient solution of (VP);
(a%)  for each i € P, f; is (pl,n)—pseudoinver at z°;
(b°)  for each « =T,7, y$ ’gs. + Z%a’hQa is (P, n)—quasiinvez at 2°;

(%) i+ Pa 20,

a=1

Then T = 2° and f(x°) = L(2Y,4°, 2%).
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