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Abstract. In this paper, the geometry of F -invariant CR-submanifolds
of a Kaehlerian product manifold is studied. Fundamental properties of
this type submanifolds are investigated such as CR-product, D⊥-totally
geodesic and mixed geodesic submanifold. Finally, we have researched
totally-umbilical F -invariant proper CR-submanifolds and CR-products
in a Kaehlerian product manifold M = M1(c1)×M2(c2)
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1 Introduction

The geometry of CR-submanifolds of a Kaehlerian is an interesting subject which was
studied many geometers(see [2],[3],[9]). In particular, the geometry CR-Submanifolds
of a Kaehlerian product manifold was studied in [9] by M.H. Shahid. But, he has
choosed special the holomorphic distribution D and totally real distribution D⊥ in
M = M1×M2 such that D ⊂ TM1 and D⊥ ⊂ TM2. He demostrated CR-submanifold
is a Riemannian product manifold, if it is D⊥ totally geodesic. Moreover, He had
some results which in relation to the sectional and holomorphic curvatures of CR-
submanifold and CR-submanifold is D totally geodesic. Finally, necesarry and suf-
ficient conditions are given on a minimal CR-submanifold of a Kaehlerian product
manifold to be totally geodesic.

In this paper, necessary and sufficient conditions are given on F -invariant sub-
manifolds of a Kaehlerian product manifold M = M1(c1) × M2(c2) to be a CR-
submanifold whose distributions haven been taken such that D ⊂ T (M1 ×M2)
and D⊥ ⊂ T (M1 ×M2). Moreover, we research D, D⊥-totally geodesic and mixed-
geodesic CR submanifolds in a Kaehlerian product manifold
M = M1(c1) × M2(c2). Moreover, we get the equations of Gauss, Codazzi and
Ricci to F -invariant proper CR-submanifolds of a Kaehlerian product manifold
M = M1(c1) ×M2(c2). Necessary and sufficient conditions are given on F -invariant
CR-submanifolds of a Kaehlerian product manifold M = M1(c1) × M2(c2) to be
CR-product, totally geodesic and to have semi-flat normal connection.
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2 Preliminaries

Let M be a m-dimensional Riemannian manifold and N be an n-dimensional
manifold isometrically immersed in M . Then N becomes a Riemannian submanifold
of M with Riemannian metric induced by the Riemannian metric on M . Also we
denote the Levi-Civita connections on N and M by ∇ and ∇̄, respectively. Then the
Gauss formula is given by

∇̄XY = ∇XY + h(X, Y ),(2.1)

for any X,Y ∈ Γ(TN), where h : Γ(TN)× Γ(TN) −→ Γ(TN⊥) is the second funda-
mental form of N in M . Now, for any X ∈ Γ(TN) and V ∈ Γ(TN⊥), we denote the
tangent part and normal part of ∇̄XV by −AV X and ∇⊥XV , respectively. Then the
Weingarten formula is given by

∇̄XV = −AV X +∇⊥XV,(2.2)

where AV is called the shape operator of N with respect to V , and ∇⊥ denote the
operator of the normal connection in Γ(TN⊥). Moreover, from (2.1) and (2.2) we
have

g(h(X,Y ), V ) = g(AV X, Y ),(2.3)

for any X, Y ∈ Γ(TN) and V ∈ Γ(TN⊥)[4].

Definition 2.1. Let N be a submanifold of any Riemannian manifold M . Then the
mean curvature vector field H of N is defined by formula

H =
1
n

n∑

i=1

h(ei, ei),

where {ei} ,1 ≤ i ≤ n, is a local orthonormal basis of Γ(TN). If the submanifold M̄
having one of conditions

h = 0, h(X,Y ) = g(X, Y )H, g(h(X, Y ),H) = λg(X, Y ), H = 0, λ ∈ C∞(M,R),

for any X,Y ∈ Γ(TN), then it is called totally geodesic, totally umbilical, pseudo
umbilical and minimal submanifold of M , respectively[4].

The covariant derivative of the second fundamental form h is defined by

(∇̄Xh)(Y,Z) = ∇⊥Xh(Y,Z)− h(∇XY, Z)− h(∇XZ, Y ),(2.4)

for any X, Y, Z ∈ Γ(TN).

For any submanifold N of a Riemannian manifold M , the Gauss and Codazzi
equations are respectively given by

R(X, Y )Z = RN (X, Y )Z + Ah(X,Z)Y −Ah(Y,Z)X + (∇̄Xh)(Y, Z)
− (∇̄Y h)(X,Z)(2.5)
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and

{R(X, Y )Z}⊥ = (∇̄Xh)(Y, Z)− (∇̄Y h)(X, Z)(2.6)

for any X, Y, Z ∈ Γ(TN), where R and RN are the Riemannian curvature tensors of
M and N , respectively. Also, {R(X, Y )Z}⊥ denotes normal component of R(X, Y )Z.

We recall that N is called curvature-invariant submanifold of Riemannian mani-
fold M , if R(X, Y )Z ∈ Γ(TN), that is, {R(X,Y )Z}⊥ = 0 for any X, Y, Z ∈ Γ(TN)[6].

Now, let M be a real differentiable manifold. An almost complex structure on M
is a tensor field J of type (1, 1) on M such that J2 = −I. M is called an almost
complex manifold if it has an almost complex structure.

A Hermitian metric on an almost complex manifold M is a Riemannian metric g
satisfying

g(JX, JY ) = g(X,Y )

for all X, Y ∈ Γ(TM). Furthermore, M is called Kaehlerian manifold if the almost
complex structure is parallel with respect to ∇̄, that is, we have
(∇̄XJ)Y = 0 for any X,Y ∈ Γ(TM).

For each plane γ spanned orthonormal vectors X and Y in Γ(TM) and for each
point in M , we define the sectional curvature K(γ) by

K(γ) = K(X ∧ Y ) = g(R(X,Y )Y,X).

If K(γ) is a constant for all planes γ in Γ(TM) and for all points in M , then M is
called a space of constant curvature or real space form. We denote by M(c) a real
space form of constant sectional curvature c. Then the Riemannian curvature tensor
of M(c) is given by

R(X, Y )Z = c{g(Y, Z)X − g(X, Z)Y },(2.7)

for any X, Y, Z ∈ Γ(TM)[4].

Now, we consider a plane γ invariant by the almost complex structure J . In this
case, we can choose a basis {X, JX} in γ, where X is a unit vector in γ. Then the
sectional curvature K(γ) is denoted by H(X) and it is called holomorphic sectional
curvature of M determined by the unit vector X. Then we have

H(X) = g(R(X, JX)JX, X).

If H(X) is a constant for all unit vectors in Γ(TM) and for all points in M , then
M is called a space of constant holomorphic sectional curvature(or complex space
form). In this case, the Riemannian curvature tensor of M is given by

R(X,Y )Z =
c

4
{g(Y,Z)X − g(X, Z)Y + g(Z, JY )JX − g(Z, JX)JY

+ 2g(X, JY )JZ},(2.8)

for any X, Y, Z ∈ Γ(TM), where c is the constant holomorphic sectional curvature of
M [5].
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3 Kaehlerian Product Manifolds

Let (M1, J1, g1) and (M2, J2, g2) be almost Hermitian manifolds with complex
dimensional n1 and n2, respectively and M1×M2 be a Riemannian product manifold
of M1 and M2. We denote by P and Q the projection mappings of Γ(T (M1 ×M2))
to Γ(TM1) and Γ(TM2), respectively. Then we have

P + Q = I, P 2 = P, Q2 = Q, PQ = QP = 0.

If we put F = P − Q, then we can easily see that F 6= ±I and F 2 = I, where I
denotes the identity mapping of Γ(T (M1×M2)). The Riemannian metric of M1×M2

is given by formula

g(X, Y ) = g1(PX,PY ) + g2(QX,QY )

for any X, Y ∈ Γ(T (M1×M2)). From the definition of g, we get M1 and M2 are both
totally geodesic submanifolds of Riemannian product manifold M1 ×M2. We denote
the Levi-Civita connection on M1×M2 by ∇̄, then we obtain ∇̄P = ∇̄Q = ∇̄F = 0(for
the detail, we refer to [8]).

We define a mapping by J = J1P + J2Q of Γ(T (M1 ×M2)) to Γ(T (M1 ×M2)).
Then, it is easily seen that J2 = −I, J1P = PJ , J2Q = QJ and FJ = JF . Thus J is
an almost complex structure on M1×M2. Furthermore, if (M1, J1, g1) and (M2, J2, g2)
are both almost Hermitian manifolds, then we have

g(JX, JY ) = g1(PJX, PJY ) + g2(QJX, QJY )
= g1(J1PX, J1PY ) + g2(J2QX, J2QY )
= g1(PX, PY ) + g2(QX,QY )
= g(X, Y )

for any X, Y ∈ Γ(T (M1×M2)). Thus, (M1×M2, J, g) is an almost Hermitian manifold.
By direct calculations, we obtain

(∇̄XJ)Y = (∇̄PXJ1)PY + (∇̄QXJ2)QY + (∇̄QXJ1)PY + (∇̄PXJ2)QY.(3.1)

If (M1 ×M2, J, g) is a Kaehlerian manifold, then we have

(∇̄PXJ1)PY + (∇̄QXJ2)QY + (∇̄QXJ1)PY + (∇̄PXJ2)QY = 0,(3.2)

for any X, Y ∈ Γ(T (M1 ×M2)). We take FX instead of X in (3.2), then we obtain

(∇̄PXJ1)PY + (∇̄QXJ2)QY − (∇̄QXJ1)PY − (∇̄PXJ2)QY = 0.(3.3)

Thus together with (3.2) and (3.3) give (∇̄PXJ1)PY = (∇̄QXJ2)QY = 0, that is,
(M1, J1, g1) and (M2, J2, g2) are Kaehlerian manifolds. We denote Kaehlerian prod-
uct manifold by (M1 ×M2, J, g) througthout this paper.

If M1 and M2 are complex space forms with constant holomorphic sectional cur-
vatures c1, c2 and we denote them by M1(c1) and M2(c2), respectively, then the
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Riemannian curvature tensor R of Kaehlerian product manifold M1(c1) ×M2(c2) is
given by formula

R(X,Y )Z =
1
16

(c1 + c2){g(Y, Z)X − g(X, Z)Y + g(JY, Z)JX − g(JX, Z)JY

+ 2g(X, JY )JZ + 2g(FY,Z)FX − g(FX, Z)FY + g(FJY,Z)FJX

− g(FJX, Z)FJY + 2g(FX, JY )FJZ}
+

1
16

(c1 − c2){g(FY, Z)X − g(FX,Z)Y + g(Y, Z)FX − g(X, Z)FY

+ g(FJY,Z)JX − g(FJX,Z)JY + g(JY, Z)FJX − g(JX, Z)FJY

+ 2g(FX, JY )JZ + 2g(X, JY )JFZ}(3.4)

for all X, Y, Z ∈ Γ(T (M1 ×M2))[6].

We suppose that K(X ∧Y ) be the sectional curvature of M1×M2 determined by
orthonormal vectors X and Y . Then by using (3.4), we obtain

K(X ∧ Y ) =
1
16

(c1 + c2){1 + 3g(X, JY )2 + 2g(FY, Y )g(FX, X)− g(FX, Y )2

+ 3g(X, JFY )2}+
1
16

(c1 − c2){g(FY, Y ) + g(FX,X)

+ 6g(FJX, Y )g(JX, Y )}.(3.5)

Similarly, if H(X) is the holomorphic sectional curvature of Kaehlerian product
manifold M1 ×M2 determined by the unit vectors X and JX, then by using (3.4),
we derive

H(X) = K(X, JX, JX, X) =
1
16

(c1 + c2){4 + 5g(FX, X)2}

+
1
2
(c1 − c2){g(FX, X)}(3.6)

4 CR-Submanifolds of a Kaehlerian Product
Manifold

Definition 4.1. Let N be an isometrically immersed submanifold of a Kaehlerian
manifold M with complex structure J . N is said to be a CR-submanifold of M if
there exist a differentiable distribution

D : x −→ Dx ⊂ TxN

on N satisfying the following conditions.
i) D is holomorphic(invariant), i.e., J(Dx) = Dx, for each x ∈ N .
ii) The orthogonal complementary distribution

D⊥ : x −→ D⊥
x ⊂ TxN

is totally-real(anti-invariant), i.e., J(D⊥
x ) ⊂ TxN⊥, for each x ∈ N [2].
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We denote by p and q the dimensional of the distributions D and D⊥, respec-
tively. In particular, q = 0(resp. p = 0) for each x ∈ N , then the CR-submanifold
N is called holomorphic submanifold(resp. totally real submanifold) of M . A proper
CR-submanifold is a CR submanifold which is neither a holomorphic submanifold nor
a totally real submanifold.

Let N be a CR-submanifold of any Kaehlerian manifold M with complex structure
J . For any vector field X tangent to N , we put

JX = fX + ωX,(4.1)

where fX and ωX are the tangential and normal parts of JX, respectively. Similarly,
for any vector field V normal to N , we put

JV = BV + CV,(4.2)

where BV and CH are the tangential and normal parts of JV , respectively.

Theorem 4.1. Let N be a F-invariant submanifold of a Kaehlerian product manifold
M = M1(c1)×M2(c2) with c1.c2 6= 0. Then N is a CR-submanifold if and only if the
maximal holomorphic subspaces

Dx = TxN ∩ J(TxN), x ∈ N

define a nontrivial differentiable distribution D on N such that

K(D,D, D⊥, D⊥) = 0,(4.3)

where D⊥ denotes the orthogonal complementary distribution of D in TN .

Proof. We suppose that N be a CR-submanifold of Kaehlerian product manifold
M = M1(c1)×M2(c2). Then by using (3.4), we obtain

R(X, Y )Z =
1
8
(c1 + c2){g(X, JY )JZ + g(FX, JY )JFZ}

+
1
8
(c1 + c2){g(FX, JY )JZ + g(X,JY )FJZ},

for any X, Y ∈ Γ(D) and Z ∈ Γ(D⊥). Thus we have

K(X,Y, Z,W ) = g(R(X,Y )Z, W ) = 0,

for any W ∈ Γ(D⊥), since JZ is normal to N for any Z ∈ Γ(D⊥).

Conversely, if the maximal holomorphic subspaces Dx for each x ∈ N , define a
nontrivial distribution D such that (4.3) holds, then (3.4) implies that

K(X, JX, Z,W ) = − 1
8
(c1 + c2){g(X, X)g(JZ,W ) + g(FX,X)g(FJZ, W )}

− 1
8
(c1 − c2){g(X, FX)g(JZ, W ) + g(X,X)g(FJZ, W )} = 0,
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for any X ∈ Γ(D) and Z,W ∈ Γ(D⊥). From above the equation, we obtain

g(X,X){g(JZ, W )(c1 + c2) + g(JZ, FW )(c1 − c2)}
+ g(FX,X){g(JZ, FW )(c1 + c2) + g(JZ, W )(c1 − c2)} = 0.

Thus we have

{g(JZ, W )(c1 + c2) + g(JZ, FW )(c1 − c2)} = 0

and

{g(JZ, FW )(c1 + c2) + g(JZ,W )(c1 − c2)} = 0,

because vector fields X and FX are independent. It follow that g(JZ,W ) =
g(JZ, FW ) = 0, that is, J(D⊥

x ) is perpendicular to D⊥
x for each x ∈ N . Since D

is invariant by J , J(D⊥
x ) is also perpendicular to Dx. Therefore, J(D⊥

x ) ⊂ TxN⊥ and
N is a CR-submanifold of a Kaehlerian product manifold M = M1(c1)×M2(c2). This
completes the proof of the theorem.

The aim of this paragraph is to obtain some results on sectional curvature of F -
invariant CR-submanifolds of a Kaehlerian product manifold M = M1(c1)×M2(c2).

Theorem 4.2. Let N be a F -invariant proper CR-submanifold of a Kaehlerian prod-
uct manifold M = M1 × M2. Then there exist no F -invariant totally umbilical
proper CR-submanifold in a Kaehlerian product manifold M = M1(c1)×M2(c2) with
c1 + c2 6= 0.

Proof. We suppose that N be a F -invariant proper totally umbilical CR-submanifold
in a Kaehlerian product manifold M = M1(c1)×M2(c2). From (3.5) we obtain

K(X, Y,X, Y ) =
1
16

(c1 + c2){−1 + 2g(FX, Y )2 − g(FX,X)g(FY, Y )

− 3g(FX, JY )2} − 1
16

(c1 − c2){g(FX,X)

+ g(FY, Y )},(4.4)

for any orthonormal vector fields X ∈ Γ(D) and Y ∈ Γ(D⊥). Since vector fields X
and FX are independent, they can be choosen orthogonal to each other. Then from
(4.4), we have

K(X ∧ Y ) = − 1
16

(c1 + c2).(4.5)

On the other hand, since N is totally umbilical proper CR-submanifold from (2.4),
we have

(∇̄Xh)(Y, Z)− (∇̄Y h)(X,Z) = g(Y, Z)∇⊥XH − g(X, Z)∇⊥Y H,

for any X, Y, Z ∈ Γ(TN). Furthermore, taking account of (4.5) we obtain

K(X, Y, Z, V ) = g(Y,Z)g(∇⊥XH,V )− g(X, Z)g(∇⊥Y H,V ),(4.6)
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for any V ∈ Γ(TN⊥). By putting X = Z ∈ Γ(D) and Y ∈ Γ(D⊥) in (4.6), then we
get JX ∈ Γ(D) and JY ∈ Γ(D⊥). Thus from (2.6), we infer

K(X,Y, JX, JY ) = g(Y, JX)g(∇⊥XH, JY )− g(X, JX)g(∇⊥Y H,JY ) = 0.

Since M is a Kaehlerian product manifold, we have

K(X,Y, JX, JY ) = K(X,Y, X, Y ) = 0,

which proves our assertion.

Theorem 4.3. Let N be a F -invariant proper CR-submanifold of a Kaehlerian prod-
uct manifold M = M1(c1) × M2(c2). If N is D⊥-totally geodesic submanifold, then
N = N1( 1

4c1) × N2( 1
4c2), where N1( 1

4c1) is a real space form of constant curvature
1
4c1 and N2(1

4c2) is a real space form of constant curvature 1
4c2.

Proof. If N is D⊥-totally geodesic, then by using (2.5) and (3.4), we obtain

RN (X, Y )Z =
1
8
c1{g(Y, Z)PX − g(X, Z)PY − g(FX,Z)PY + g(FY, Z)PX}

+
1
8
c2{g(Y, Z)QX − g(X,Z)QY − g(FY,Z)QX + g(FX,Z)QY }

=
1
4
c1{g(PY, PZ)PX − g(PX, PZ)PY }

+
1
4
c2{g(QY, QZ)QX − g(QX, QZ)QY },

for any X, Y, Z,W ∈ Γ(D⊥), where RN is the Riemannian curvature tensor of N .
This completes the proof of the theorem.

Now, we calculate holomorphic bisectional curvature HB(X, Y ) for any unit vector
fields X ∈ Γ(D) and Y ∈ Γ(D⊥). From (3.4), by a direct calculation, we derive

HB(X,Y ) = g(R(X,JX)JY, Y ) =
1
8
(c1 + c2){1 + g(FX,X)g(FY, Y )}

+
1
8
(c1 − c2){g(FX, X) + g(FY, Y )}.

Moreover, if N is a CR-product, then we have

HB(X, Y ) = 2‖h(X,Y )‖2,

for any unit vector fields X ∈ Γ(D) and Y ∈ Γ(D⊥)[2]. Thus if N is a CR-product,
then we obtain

‖h(X, Y )‖2 =
1
4
(c1 + c2){1 + g(FX, X)g(FY, Y )}

+
1
4
(c1 − c2){g(FX, X) + g(FY, Y )},(4.7)
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for any unit vector fields X ∈ Γ(D) and Y ∈ Γ(D⊥), where taking X and FX are
orthogonal vector fields in (4.7), then we have

‖h(X, Y )‖2 =
1
4
(c1 + c2),(4.8)

for any vector fields X ∈ Γ(D) and Y ∈ Γ(D⊥). Thus we have the following theorems.

Theorem 4.4. Let N be a F -invariant proper CR-submanifold in a Kaehlerian prod-
uct manifold M = M1 ×M2. Then there exist no F -invariant totally geodesic proper
CR-products N in any Kaehlerian product manifold M = M1(c1) × M2(c2) with
c1 + c2 6= 0.

Theorem 4.5. Let N be a F -invariant proper CR-submanifold in a Kaehlerian prod-
uct manifold M = M1 ×M2. Then there exist no F -invariant mixed-geodesic proper
CR-products N in any Kaehlerian product manifold M = M1(c1) × M2(c2) with
c1 + c2 6= 0.

Theorem 4.6. Let N be a proper CR-submanifold of a Kaehlerian product manifold
M = M1 ×M2. Then N is a CR-product manifold if and only if

AJZX = 0,

for any X ∈ Γ(D) and Z ∈ Γ(D⊥).

Proof. Let us suppose that N be a CR-product. Then we have ∇XY ∈ Γ(D) and
∇W Z ∈ Γ(D⊥) for any X,Y ∈ Γ(D) and Z, W ∈ Γ(D⊥). By using (2.1), (2.2) and
(2.3) we infer

g(AJZX, Y ) = −g(∇̄XJZ, Y ) = g(∇̄XZ, JY )
= −g(∇̄XJY, Z) = −g(∇XJY, Z)(4.9)

and

g(AJZX,W ) = g(AJZW,X) = −g(∇̄W JZ, X)
= g(∇̄W Z, JX) = g(∇W Z, JX),(4.10)

for any X, Y ∈ Γ(D) and Z, W ∈ Γ(D⊥). From equations (4.9) and (4.10), we obtain
that the distribution D and D⊥ are integrable and their leaves are totally geodesic
submanifolds in N if and only if AJZX ∈ Γ(D) and AJZX ∈ Γ(D⊥), which proves
our assertion.

Making use of the equations (2.5) and (3.4), we have special forms for the struc-
ture equations of Gauss, Codazzi and Ricci for the CR-submanifold N in Kaehlerian
product manifold M = M1(c1)×M2(c2).
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RN (X, Y )Z =
1
16

(c1 + c2){g(Y, Z)X − g(X,Z)Y + g(JY, Z)JX

− g(JX, Z)JY + 2g(X, JY )JZ + 2g(FY,Z)FX − g(FX, Z)FY

+ g(FJY, Z)FJX − g(FJX, Z)FJY + 2g(FX, JY )FJZ}(4.11)

+
1
16

(c1 − c2){g(FY, Z)X − g(FX,Z)Y + g(Y, Z)FX

− g(X,Z)FY + g(FJY, Z)JX − g(FJX, Z)JY

+ g(JY, Z)FJX − g(JX, Z)FJY + 2g(FX, JY )JZ

+ 2g(X,JY )FJZ}+ Ah(Y,Z)X −Ah(X,Z)Y

− (∇̄Xh)(Y, Z) + (∇̄Y h)(X, Z),(4.12)

for any vector fields X, Y, Z tangent to N . Taking account of (4.1) and (4.2), then the
equation of Gauss becomes

RN (X, Y )Z =
1
16

(c1 + c2){g(Y,Z)X − g(X, Z)Y + g(fY, Z)fX

− g(fX, Z)fY + 2g(X, fY )fZ + 2g(FY, Z)FX − g(FX,Z)FY

+ g(FfY, Z)FfX − g(FfX, Z)FfY + 2g(FX, fY )FfZ}
+

1
16

(c1 − c2){g(FY, Z)X − g(FX, Z)Y + g(Y,Z)FX

− g(X, Z)FY + g(FfY, Z)fX − g(FfX,Z)fY

+ g(fY, Z)FfX − g(fX,Z)FfY + 2g(FX, fY )fZ

+ 2g(X, fY )FfZ}+ Ah(Y,Z)X −Ah(X,Z)Y(4.13)

and the equation of Codazzi is given by

(∇̄Xh)(Y, Z)− (∇̄Y h)(X,Z) =
1
16

(c1 + c2){g(fY, Z)ωX − g(fX,Z)ωY

+ 2g(X, fY )ωZ + g(fY, FZ)FωX

− g(fX, FZ)FωY + 2g(FX, fY )FωZ}
+

1
16

(c1 − c2){g(FZ, fY )ωX − g(FZ, fX)ωY

+ g(fY, Z)FωX − g(fX, Z)FωY

+ 2g(FX, fY )ωZ + 2g(X, fY )FωZ},(4.14)

for any vector fields X,Y, Z tangent to N . Finally, the equation of Ricci is given by

K(X, Y, V,W ) = g(R⊥(X,Y )V,W ) + g([AW , AV ]X, Y )

=
1
16

(c1 + c2){g(ωY, V )g(ωX, W )− g(ωX, V )g(ωY, W )

+ 2g(X, fY )g(CV,W ) + g(ωY, FV )g(ωX,FW )
− g(ωX, FV )g(ωY, FW ) + 2g(FX, fY )g(CV, FW )}
+

1
16

(c1 − c2){g(ωY, FV )g(ωX, W )− g(ωX, FV )g(ωY,W )

+ g(ωY, V )g(ωX,FW )− g(ωX, V )g(ωY, FW )
+ 2g(FX, fY )g(CV, W ) + 2g(X, fY )g(CV, FW )},(4.15)
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for any vector fields X, Y, tangent to N and V, W normal to N , where R⊥ is the
curvature tensor of the normal connection of Γ(TN⊥). Thus we have the following
Theorem.

Theorem 4.7. Let N be a F invariant proper CR-submanifold of a Kaehlerian prod-
uct manifold M = M1 × M2. Then there exist no curvature-invariant proper CR-
submanifolds in Kaehlerian product manifold M = M1(c1)×M2(c2).

Proof. Let us suppose that N be a curvature-invariant proper CR-submanifold in a
Kaehlerian product manifold M = M1(c1)×M2(c2). Then from (4.14), we obtain

0 =
1
16

(c1 + c2){g(fY, Z)ωX − g(fX, Z)ωY + 2g(X, fY )ωZ

+ g(fY, FZ)FωX − g(fX, FZ)FωY + 2g(FX, fY )FωZ}
+

1
16

(c1 − c2){g(FZ, fY )ωX − g(FZ, fX)ωY

+ g(fY, Z)FωX − g(fX, Z)FωY + 2g(FX, fY )ωZ

+ 2g(X, fY )FωZ},(4.16)

for any vector fields X, Y, Z tangent to N . Taking Y ∈ (D⊥) in the equation (4.16),
then we infer

0 = ωY {(c1 + c2)g(fX, Z) + (c1 − c2)g(fX, FZ)}
+ FωY {(c1 + c2)g(fX, FZ) + (c1 − c2)g(fX, Z)},

that is,

g(fX, Z){(c1 + c2)ωY + (c1 − c2)FωY }
+ g(fX, FZ){(c+c2)FωY + (c1 − c2)ωY } = 0,

which implies that

(c1 + c2)g(fX, Z) + (c1 − c2)g(fX, FZ) = 0

and

(c1 + c2)g(fX,FZ) + (c1 − c2)g(fX,Z) = 0,

for any X,Z ∈ Γ(TN). Thus we have g(fX, Z) = 0. This is impossible. The proof is
complete.

Let N be a F-invariant proper CR-submanifold of a Kaehlerian product manifold
M = M1(c1) × M2(c2). Then we say that N has semi-flat normal connection if its
normal curvature K⊥ satisfies

K⊥(X, Y, V,W ) = g(R⊥(X,Y )V, W ) =
1
8
{g(X, fY )g(JV, W )

+ g(FX, fY )g(JV, FW )}
+

1
8
(c1 − c2){g(X, fY )g(JV, FW ) + g(FX, fY )g(JV, W )},
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for any X, Y ∈ Γ(TN) and V, W ∈ Γ(TN⊥). Making use of the equation (4.15), we
obtain that a F -invariant proper CR-submanifold N of a Kaehlerian product manifold
M = M1(c1)×M2(c2) has semi-flat normal connection if and only if

g([AW , AV ]X, Y ) =
1
16

(c1 + c2){g(ωY, V )g(ωX,W ) + g(ωX, V )g(ωY, V )

+ g(ωY, FV )g(ωX,FW )− g(ωX,FV )g(ωY, FW )}
+

1
16

(c1 − c2){g(ωY, FV )g(ωX, W )− g(ωX, FV )g(ωY, W )

+ g(ωY, V )g(ωX, FW )− g(ωX, V )g(ωY, FW )}.
Theorem 4.8. Let N be a F -invariant proper CR-submanifold of a Kaehlerian prod-
uct manifold M = M1×M2. Then there exist no F -invariant totally umbilical proper
CR-submanifolds of a Kaehlerian product manifold M = M1(c1) ×M2(c2) such that
c1 and c2 don’t vanish.

Proof. Choosing Y ∈ Γ(D⊥) in the equation (4.14), we have

(∇̄Xh)(Y, JX)− (∇̄Y h)(X, JX) = − 1
16

(c1 + c2){g(X, X)ωY + g(FX, X)FωY }

− 1
16

(c1 − c2){g(X,X)FωY + g(X,FX)ωY }

for any X ∈ Γ(D) and Y ∈ Γ(D⊥).

On the other hand, since N is totally umbilical proper CR-submanifold, we obtain

g(Y, JX)∇⊥XH − g(X, JX)∇⊥Y H = − 1
16

(c1 + c2){g(X, X)ωY + g(FX, X)FωY }

− 1
16

(c1 − c2){g(X, X)FωY + g(X, FX)ωY },

that is,
(c1 + c2){g(X, X)ωY + g(FX,X)FωY }+

(c1 − c2){g(X, X)FωY + g(X,FX)ωY } = 0,

which implies that

ωY {(c1 + c2)g(X,X) + (c1 − c2)g(X, FX)} = 0

and

FωY {(c1 + c2)g(X, FX) + (c1 − c2)g(X, X)} = 0.

It follow that 4c1c2ωY = 0. This is a contradiction. Thus the proof is complete.

Since a totally geodesic submanifold is always curvature-invariant, we have the
following theorem from the theorem 4.8.

Theorem 4.9. Let N be a F -invariant proper CR-submanifold of a Kaehlerian prod-
uct manifold M = M1 ×M2. Then there exist no F -invariant totally geodesic proper
CR-submanifolds of a Kaehlerian product manifold M = M1(c1) ×M2(c2) such that
c1 and c2 don’t vanish.
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