CR-submanifolds of Kaehlerian product manifolds
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Abstract. In this paper, the geometry of F-invariant CR-submanifolds
of a Kaehlerian product manifold is studied. Fundamental properties of
this type submanifolds are investigated such as CR-product, D-'-totally
geodesic and mixed geodesic submanifold. Finally, we have researched
totally-umbilical F-invariant proper CR-submanifolds and CR-products
in a Kaehlerian product manifold M = M;(¢1) x Ma(c2)
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1 Introduction

The geometry of CR~-submanifolds of a Kaehlerian is an interesting subject which was
studied many geometers(see [2],[3],[9]). In particular, the geometry CR-Submanifolds
of a Kaehlerian product manifold was studied in [9] by M.H. Shahid. But, he has
choosed special the holomorphic distribution D and totally real distribution D~ in
M = M, x My such that D ¢ TM; and D+ C TM,. He demostrated CR-submanifold
is a Riemannian product manifold, if it is D totally geodesic. Moreover, He had
some results which in relation to the sectional and holomorphic curvatures of CR-
submanifold and CR~submanifold is D totally geodesic. Finally, necesarry and suf-
ficient conditions are given on a minimal CR-submanifold of a Kaehlerian product
manifold to be totally geodesic.

In this paper, necessary and sufficient conditions are given on F-invariant sub-
manifolds of a Kaehlerian product manifold M = M;j(¢1) x Ma(cz) to be a CR-
submanifold whose distributions haven been taken such that D C T(M; x Ms)
and D+ C T(M; x Ms). Moreover, we research D, D--totally geodesic and mixed-
geodesic CR submanifolds in a Kaehlerian product manifold
M = Mi(e1) x My(c2). Moreover, we get the equations of Gauss, Codazzi and
Ricci to F-invariant proper CR-submanifolds of a Kaehlerian product manifold
M = M;i(c1) x Ma(c2). Necessary and sufficient conditions are given on F-invariant
CR-submanifolds of a Kaehlerian product manifold M = M;(¢1) x Ma(c2) to be
CR-product, totally geodesic and to have semi-flat normal connection.
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2 Preliminaries

Let M be a m-dimensional Riemannian manifold and N be an n-dimensional
manifold isometrically immersed in M. Then N becomes a Riemannian submanifold
of M with Riemannian metric induced by the Riemannian metric on M. Also we
denote the Levi-Civita connections on N and M by V and V, respectively. Then the
Gauss formula is given by

(2.1) vxyZVXY-‘rh(X,Y),

for any X,Y € I'(TN), where h : T(TN) x I'(TN) — I'(TN*') is the second funda-
mental form of N in M. Now, for any X € T(TN) and V € T'(TN*), we denote the
tangent part and normal part of VxV by —Ay X and V£V, respectively. Then the
Weingarten formula is given by

(2.2) VxV =-AvX +VxV,

where Ay is called the shape operator of N with respect to V, and V+ denote the
operator of the normal connection in T'(TN*). Moreover, from (2.1) and (2.2) we
have

(2.3) g(MX,Y),V) = g(Av X, Y),
for any X,Y € I'(TN) and V € T'(TN*)[4].

Definition 2.1. Let N be a submanifold of any Riemannian manifold M. Then the
mean curvature vector field H of N is defined by formula

1 n
H=— h iy €4y
n; (e, €:)
where {e;} ,1 <i <, is a local orthonormal basis of T(T'N). If the submanifold M
having one of conditions
h = Oa h(X7Y) = g(va)Ha g(h’(Xv Y)aH) = /\g(X7Y)7H = Oa)‘ € Coo(MvR)a

for any XY € T'(T'N), then it is called totally geodesic, totally umbilical, pseudo
umbilical and minimal submanifold of M, respectively[]].

The covariant derivative of the second fundamental form h is defined by
(2.4) (Vxh)(Y,Z) = Vxh(Y,Z) = l(VxY, Z) = l(Vx Z,Y),

for any X,Y,Z e T'(T'N).

For any submanifold N of a Riemannian manifold M, the Gauss and Codazzi
equations are respectively given by

R(X,Y)Z = Ry(X,Y)Z+ Apx,2)Y — Ay, X + (Vxh)(Y, Z)
(2.5) - (Vyh)(X,2)



10 Mehmet Atceken

and
(2.6) {R(X,Y)Z} = (Vxh)(Y,Z) — (Vyh)(X, Z)

for any X,Y,Z € T(TN), where R and Ry are the Riemannian curvature tensors of
M and N, respectively. Also, {R(X,Y)Z}* denotes normal component of R(X,Y)Z.

We recall that N is called curvature-invariant submanifold of Riemannian mani-
fold M, if R(X,Y)Z € T(TN), that is, { R(X, Y)Z}J- =0 for any X,Y,Z € T(TN)[6].

Now, let M be a real differentiable manifold. An almost complex structure on M
is a tensor field J of type (1,1) on M such that J?2 = —I. M is called an almost
complex manifold if it has an almost complex structure.

A Hermitian metric on an almost complex manifold M is a Riemannian metric g
satisfying
9(JX,JY) = g(X,Y)
for all X,Y € T'(TM). Furthermore, M is called Kaehlerian manifold if the almost

complex structure is parallel with respect to V, that is, we have
(VxJ)Y =0 for any X,Y € T'(TM).

For each plane v spanned orthonormal vectors X and Y in I'(T'M) and for each
point in M, we define the sectional curvature K (v) by

K(7) = K(X AY) = g(R(X,Y)Y, X).

If K() is a constant for all planes v in I'(T'M) and for all points in M, then M is
called a space of constant curvature or real space form. We denote by M(c) a real
space form of constant sectional curvature ¢. Then the Riemannian curvature tensor
of M(c) is given by

(2.7) R(X,Y)Z = c{g(Y,2)X — g(X, 2)Y},
for any X,Y,Z € T(TM)[4].

Now, we consider a plane ~ invariant by the almost complex structure J. In this
case, we can choose a basis {X, JX} in v, where X is a unit vector in . Then the

sectional curvature K () is denoted by H(X) and it is called holomorphic sectional
curvature of M determined by the unit vector X. Then we have

H(X) = g(R(X,JX)JX, X).

If H(X) is a constant for all unit vectors in I'(TM) and for all points in M, then
M is called a space of constant holomorphic sectional curvature(or complex space
form). In this case, the Riemannian curvature tensor of M is given by

R(X,Y)Z = g{g(Y, 2)X — g(X,2)Y 4+ g(Z,JY)IX — g(Z, JX)JY
(2.8) + 29(X,JY)JZ},

for any XY, Z € T'(T' M), where c is the constant holomorphic sectional curvature of
M[5].
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3 Kaehlerian Product Manifolds

Let (My,J1,¢1) and (Ma, Ja, g2) be almost Hermitian manifolds with complex
dimensional ny and ns, respectively and M; x My be a Riemannian product manifold
of My and Ms. We denote by P and @ the projection mappings of T'(T (M7 x Ms))
to I'(T'M;) and T'(T'M3), respectively. Then we have

P+Q:I7 P2:P7 Q2:Q7 PQ:QP:O

If we put F = P — @, then we can easily see that F' # +I and F? = I, where |
denotes the identity mapping of I'(T'(M; x Ms)). The Riemannian metric of My x My
is given by formula

9(X,Y) = g1(PX, PY) + g2(QX,QY)

for any X,Y € I'(T'(My x Ms)). From the definition of g, we get M7 and M are both
totally geodesic submanifolds of Riemannian product manifold M; x Ms. We denote
the Levi-Civita connection on M; x Ms by V, then we obtain VP = ?Q =VF = 0(for
the detail, we refer to [8]).

We define a mapping by J = J1 P + JoQ of I'(T'(M; x Mz)) to I'(T'(M;y x My)).
Then, it is easily seen that J2 = —I, J1P = PJ, JoQ = QJ and F.JJ = JF. Thus J is
an almost complex structure on M; x My. Furthermore, if (M, Ji, ¢1) and (Ma, Jo, g2)
are both almost Hermitian manifolds, then we have

g(JX,JY) = q(PJX,PJY)+g:(QJX,QJY)
= q(J1PX, J1PY) + g2(J2QX, J2QY)
= q(PX,PY)+g2(QX,QY)
= 9(X)Y)

forany X,Y € I'(T(M;y x Ms)). Thus, (M7 x Ma, J, g) is an almost Hermitian manifold.
By direct calculations, we obtain

(3.1 \VxJ)Y = (VpxJ1)PY + (VoxJ2)QY + (VoxJ1)PY + (VpxJ2)QY.
If (M x My, J, g) is a Kaehlerian manifold, then we have
(32)  (VpxJI)PY + (Voxh)QY + (VoxJ1)PY + (VpxJs)QY =0,
for any X, Y € T(T(M; x Ms)). We take F'X instead of X in (3.2), then we obtain
(3.3)  (VpxJ1)PY + (VoxJ2)QY — (VoxJ1)PY — (VpxJ2)QY = 0.

Thus together with (3.2) and (3.3) give (VpxJ1)PY = (VoxJ2)QY = 0, that is,
(My,J1,91) and (Ma, Ja, g2) are Kaehlerian manifolds. We denote Kaehlerian prod-
uct manifold by (M; x Mas, J, g) througthout this paper.

If M; and M, are complex space forms with constant holomorphic sectional cur-
vatures c¢1, ¢ and we denote them by M;(c1) and Mas(cq), respectively, then the
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Riemannian curvature tensor R of Kaehlerian product manifold Mj(c1) x Ma(cs) is
given by formula

R(X,Y)Z = %(c1 +e){9(Y, 2)X — g(X, 2)Y +g(JY, 2)JX — g(JX, Z)JY
+ 29(X,JY)JZ+29(FY,Z)FX — g(FX,Z)FY + g(FJY,Z)FJX
— g(FJX,Z)FJY +2g(FX,JY)FJZ}
+ %(c1 — ) {g(FY,2)X — g(FX,Z)Y +g(Y,Z)FX — g(X, Z)FY
+ g(FJIY,2)JX — g(FJX,2)JY + g(JY, Z)FJX — g(JX,Z)FJY
(3.4) + 29(FX,JY)JZ +29(X,JY)JFZ}

for all X,Y,Z € D(T(M; x M>))[6].

We suppose that K (X AY') be the sectional curvature of M; x My determined by
orthonormal vectors X and Y. Then by using (3.4), we obtain

K(XAY) = %6(01 + ) {1+ 3g(X,JY)2 +29(FY,Y)g(FX,X) — g(FX,Y)?
+ 3¢(X,JFY)?*} + %6(01 — ) {g(FY,Y)+ g(FX, X)
(3.5) + 69(FJX,Y)g(JX,Y)}.

Similarly, if H(X) is the holomorphic sectional curvature of Kaehlerian product
manifold M7 x My determined by the unit vectors X and JX, then by using (3.4),
we derive

H(X) = K(X,JX,JX, X) %(c1 +e){d + 59(FX, X)2}

(3.6) + %(Cl —ce){g(FX, X)}

4 CR-Submanifolds of a Kaehlerian Product
Manifold

Definition 4.1. Let N be an isometrically immersed submanifold of a Kaehlerian
manifold M with complex structure J. N is said to be a CR-submanifold of M if
there exist a differentiable distribution

D:x— D, CT,N

on N satisfying the following conditions.
i) D is holomorphic(invariant), i.e., J(Dz) = Dy, for each x € N.
ii) The orthogonal complementary distribution

Dtz — DI CT,N

is totally-real(anti-invariant), i.e., J(DL) C T,N*, for each x € N [2].
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We denote by p and ¢ the dimensional of the distributions D and D+, respec-
tively. In particular, ¢ = O(resp. p = 0) for each z € N, then the CR-submanifold
N is called holomorphic submanifold(resp. totally real submanifold) of M. A proper
CR-submanifold is a CR submanifold which is neither a holomorphic submanifold nor
a totally real submanifold.

Let N be a CR-submanifold of any Kaehlerian manifold M with complex structure
J. For any vector field X tangent to IV, we put

(4.1) JX = fX + wX,

where fX and wX are the tangential and normal parts of JX, respectively. Similarly,
for any vector field V normal to N, we put

(4.2) JV = BV +CV,

where BV and C'H are the tangential and normal parts of JV, respectively.
Theorem 4.1. Let N be a F-invariant submanifold of a Kaehlerian product manifold
M = My(c1) X Ma(c2) with ¢c1.ca # 0. Then N is a CR-submanifold if and only if the
mazximal holomorphic subspaces

D,=T,NNnJ(T,N), z€N
define a montrivial differentiable distribution D on N such that
(4.3) K(D,D,D*+ D%) =0,
where D+ denotes the orthogonal complementary distribution of D in TN.

Proof. We suppose that N be a CR-submanifold of Kaehlerian product manifold
M = M;i(c1) x Ma(ez). Then by using (3.4), we obtain

RIX,Y)Z = %(01 +e){g(X,JY)JZ + g(FX,JY)JFZ}
+ é(cl + ) {g(FX,JY)JZ + g(X,JY)FJZ},
for any X,Y € I'(D) and Z € I'(D+). Thus we have
K(X,Y,Z,W) = g(R(X,Y)Z,W) =0,
for any W € T'(D1), since JZ is normal to N for any Z € T'(D4).

Conversely, if the maximal holomorphic subspaces D, for each x € N, define a
nontrivial distribution D such that (4.3) holds, then (3.4) implies that

KX, JX,ZW)= — —(a+e){9X,X)9(JZ,W)+g(FX,X)g(FJZ,W)}

= 00| =

= gla—e){g(X, FX)g(JZ, W)+ g(X, X)g(FJZ, W)} =0,
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for any X € I'(D) and Z, W € I'(D+). From above the equation, we obtain

9(X, X){g(JZ,W)(er + c2) + g(JZ, FW)(c1 — c2)}
+ g(FX, X){g(JZ,FW)(c1 +c2) + g(JZ,W)(c1 — c2)} = 0.

Thus we have

{9(JZ, W)(c1 + c2) + g(JZ, FW)(c1 — c2)} =0
and

{9(JZ, FW)(c1 + c2) + g(JZ,W)(c1 — c2)} =0,

because vector fields X and FX are independent. It follow that g(JZ,W) =
g(JZ,FW) = 0, that is, J(Dy) is perpendicular to D for each z € N. Since D
is invariant by J, J(D;) is also perpendicular to D,.. Therefore, J(Di) C TN+ and
N is a CR-submanifold of a Kaehlerian product manifold M = M (¢1) x Ma(c2). This
completes the proof of the theorem.

g

The aim of this paragraph is to obtain some results on sectional curvature of F-
invariant CR-submanifolds of a Kaehlerian product manifold M = M;(c1) x Ma(ca).

Theorem 4.2. Let N be a F-invariant proper CR-submanifold of a Kaehlerian prod-
uct manifold M = My x Ms. Then there exist no F-invariant totally umbilical
proper CR-submanifold in a Kaehlerian product manifold M = M (¢1) X Ma(ca) with
c1+ c2 7é 0.

Proof. We suppose that N be a F-invariant proper totally umbilical CR-submanifold
in a Kaehlerian product manifold M = M;(¢1) X Ma(c2). From (3.5) we obtain

KXY, X)Y) = %(01 +ea){—-1+42¢(FX, Y)2 —g(FX,X)g(FY,Y)
— 3G(PX Y} = eer - e g(FX. X)
(4.4) + g(FY.Y)},

for any orthonormal vector fields X € T'(D) and Y € T'(D1). Since vector fields X
and F'X are independent, they can be choosen orthogonal to each other. Then from
(4.4), we have

(4.5) K(X/\Y):—%(q + ¢2).

On the other hand, since N is totally umbilical proper CR-submanifold from (2.4),
we have

(Vxh)(Y. Z) = (Vyh)(X, Z) = g(Y, Z)Vx H — g(X, Z)Vy H,
for any X,Y,Z € I'(TN). Furthermore, taking account of (4.5) we obtain

(4.6) K(X,Y,Z,V)=g(Y,Z)g(VxH,V) — g(X, Z)g(VyH,V),
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for any V € T(TN%1). By putting X = Z € I'(D) and Y € I'(D%) in (4.6), then we
get JX € I'(D) and JY € T'(D+). Thus from (2.6), we infer

K(X,Y,JX,JY) = g(Y,JX)g(Vx H,JY) — g(X,JX)g(VyH,JY) = 0.
Since M is a Kaehlerian product manifold, we have
K(X,)Y,JX,JY)=K(X,Y,X,Y) =0,

which proves our assertion.
0

Theorem 4.3. Let N be a F-invariant proper CR-submanifold of a Kaehlerian prod-
uct manifold M = Mi(c1) x My(cz). If N is D*-totally geodesic submanifold, then
N = Ni(3c1) x Na(4ca), where Ni(%c1) is a real space form of constant curvature
icl and Ng(i@g) 18 a real space form of constant curvature %62,

Proof. If N is D*-totally geodesic, then by using (2.5) and (3.4), we obtain
Ry(X,Y)Z = écl{g(Y, Z2)PX — ¢(X, Z)PY — g(FX, Z)PY + ¢(FY, Z)PX}
b elgV 2)QX — g(X.2)QY — g(FY, 2)QX + ¢(FX, 2)QY)
_ icl{g(PY, PZ)PX — g(PX, PZ)PY}
b eQY.02)0X — 9(QX,Q2)QY ),

for any XY, Z, W € F(DL)7 where Ry is the Riemannian curvature tensor of V.
This completes the proof of the theorem.
O

Now, we calculate holomorphic bisectional curvature Hp(X,Y") for any unit vector
fields X € T'(D) and Y € I'(D+). From (3.4), by a direct calculation, we derive

Hy(X,Y) = g(R(CIX)IY,Y) = e+ e){L+ g(FX, X)g(FY,Y))

n é(cl — e){g(FX, X) + g(FY,Y)}.

Moreover, if N is a CR-product, then we have
Hp(X,Y) = 2|h(X,Y)|?

for any unit vector fields X € I'(D) and Y € I'(D+)[2]. Thus if N is a CR-product,
then we obtain

IRMX V)P = Z(er+e){l+g(FX, X)g(FY,Y)}

[ R A

(4.7) + —(a—e){g(FX,X)+g(FY,Y)},
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for any unit vector fields X € I'(D) and Y € I'(D*), where taking X and FX are
orthogonal vector fields in (4.7), then we have

(19) I = e+ e,

for any vector fields X € I'(D) and Y € I'(D+). Thus we have the following theorems.

Theorem 4.4. Let N be a F-invariant proper CR-submanifold in a Kaehlerian prod-
uct manifold M = My x My. Then there exist no F-invariant totally geodesic proper
CR-products N in any Kaehlerian product manifold M = Mi(c1) x Ma(ce) with
c1 +c2 75 0.

Theorem 4.5. Let N be a F-invariant proper CR-submanifold in a Kaehlerian prod-
uct manifold M = My X Ms. Then there exist no F-invariant mized-geodesic proper
CR-products N in any Kaehlerian product manifold M = Mi(c1) x Ma(c2) with
c1 +C2 75 0.

Theorem 4.6. Let N be a proper CR-submanifold of a Kaehlerian product manifold
M = M; x My. Then N is a CR-product manifold if and only if

AJZX = 07
for any X € T(D) and Z € T(D1).

D) and

Proof. Let us suppose that N be a CR-product. Then we have VxY € I'(
, (2.2) and

VwZ € T(D4) for any X,Y € I'(D) and Z,W € I'(D}). By using (2.1)
(2.3) we infer

(4.9) = —g(VxJY,Z) = —g(VxJY,Z)
and

g(AszX, W) = g(A;zW, X) =—9g(VwJZ,X)
(4.10) = g(VwZ,JX)=g(VwZ,JX),

for any X,Y € I'(D) and Z,W € I'(D1). From equations (4.9) and (4.10), we obtain
that the distribution D and D= are integrable and their leaves are totally geodesic
submanifolds in N if and only if A;zX € T'(D) and A;zX € I'(D+), which proves
our assertion.

0

Making use of the equations (2.5) and (3.4), we have special forms for the struc-
ture equations of Gauss, Codazzi and Ricci for the CR-submanifold N in Kaehlerian
product manifold M = M (c1) X Ma(ca).
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Ry(X,Y)Z =
(4.11) +
+

+

+

(4.12) -

(et e g, 2)X — (X, 2)Y + g(JY, 21X

9(JX, 2)JY +29(X,JY)JZ +29(FY, Z)FX — g(FX, Z)FY
g(FJY,Z)FJX — g(FJX,Z)FJY +29(FX,JY)FJZ}

(en — e (g(FY, 2)X — g(FX, 2)Y + (Y, 2)F X

9(X, Z)FY + g(FJY,Z)JX — g(FJX,Z)JY
g(JY,Z)FJX — g(JX,Z)FJY +29(FX,JY)JZ
29(X,JY)FJZ} + Apv,n X — Anx,2)Y
(Vxh)(Y, Z) + (Vyh)(X, Z),

for any vector fields X, Y, Z tangent to N. Taking account of (4.1) and (4.2), then the
equation of Gauss becomes

+
+
+
(4.13) +

et e gV, 2)X — (X, 2)Y +g(fY, 2)fX

9(fX, 2) Y +29(X, fY)fZ + 29(FY, Z)FX — g(FX,Z)FY
(Y, Z)FfX = g(FfX, Z)FfY +29(FX, fY)F[Z}

(e~ e {g(FY, 2)X — g(FX, 2)Y + (Y, 2)F X
9(X,2)FY +g(FfY,Z2)fX — g(FfX,Z)fY
(Y, 2)FfX —g(fX,Z)FfY +29(FX, fY)fZ

20X, fY)FfZ} 4+ Apv,n X — Anx, )Y

and the equation of Codazzi is given by

(Vxh)(Y,Z) — (Vyh)(X, 2Z)

(4.14)

(et e gV 2w X — g(fX, )Y

+ 29(X, fY)wZ+g(fY,FZ)FwX
— g(fX,FZ)FwY +2g(FX, fY)FwZ}

+ %6(01 —e){9(FZ, fY)wX — g(FZ, fX)wY

+ g(fY,2)FuX — g(fX,Z)FwY
+ 29(FX, fY)wZ +29(X, fY)FwZ},

for any vector fields X, Y, Z tangent to N. Finally, the equation of Ricci is given by

K(X,Y,V,W)

(4.15)

= g(RH(X.Y)V,W) +g([Aw, Av]X,Y)

e+ ) gV Vg X, W) — glwX, V)glw¥, W)

29(X, fY)g(CV, W) + g(wY, F'V)g(wX, F'W)
- g(wX, FV)g(wY, FW) +29(FX, fY)g(CV, FW)}

T (er = ea) (g, FV)g(wX, V) = g(wX, FV)g(w¥, W)

g(wY, V)g(wX, FW) — g(wX,V)g(wY, FW)
29(FX, fY)g(CV,W) +29(X, fY)g(CV, FW)},

+

+ o+ o+
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for any vector fields X,Y, tangent to N and V,W normal to N, where R’ is the
curvature tensor of the normal connection of I'(TN+). Thus we have the following
Theorem.

Theorem 4.7. Let N be a F invariant proper CR-submanifold of a Kaehlerian prod-
uct manifold M = My x My. Then there exist no curvature-invariant proper CR-
submanifolds in Kaehlerian product manifold M = My (c1) X Ma(cz).

Proof. Let us suppose that N be a curvature-invariant proper CR-submanifold in a
Kaehlerian product manifold M = Mj(c1) x Ma(cg). Then from (4.14), we obtain

i(cl + ) {g(fY, 2)wX — g(fX, Z)wY + 29(X, fY)wZ

0 =
16
+ g(fY,FZ)FwX — g(fX,FZ)FY + 29(FX, fY)FwZ}
+ %6(01 —e){9(FZ, fY)wX — g(FZ, fX)wY
+ g(fY,2)FwX — g(fX,Z)FwY + 29(FX, fY)wZ
(4.16) + 29(X, fY)FwZ},

for any vector fields X,Y, Z tangent to N. Taking Y € (D1) in the equation (4.16),
then we infer

0 = wY{(c1+c2)g(fX,2)+ (c1 — c2)g(f X, FZ)}
+ FwY{(c1 +e2)9(fX, FZ) + (c1 — c2)9(f X, Z2)},

that is,

9(fX, Z){(c1 + co)wY + (¢1 — c2)FwY'}
+ g(fX,FZ){(cyco)FwY + (c; — c2)wY } =0,

which implies that

(c1 +c2)g(fX, Z) + (c1 — c2)g(f X, FZ) =0
and

(c1+c2)g(fX, FZ) + (c1 — e2)9(f X, Z) =0,

for any X, Z € I'(T'N). Thus we have g(fX, Z) = 0. This is impossible. The proof is
complete.
O

Let N be a F-invariant proper CR-submanifold of a Kaehlerian product manifold
M = M;(c1) x Ma(c2). Then we say that N has semi-flat normal connection if its
normal curvature K satisfies

K*+(X,Y,V,W)

G YIWVI) = {g(X, FY)g(IV, W)
9(FX, fY)g(JV, FW)}

L(er — e {g(X, [Y)g(IV, FW) + g(FX, fY)g(JV, W)},

+ o+
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for any X,Y € I'(TN) and V,W € I'(TN*1). Making use of the equation (4.15), we
obtain that a F-invariant proper CR-submanifold N of a Kaehlerian product manifold
M = M;(c1) x Msy(c2) has semi-flat normal connection if and only if

(e @), V)X, W) + 9w X, V)g(wY, V)

g(WY, FV)g(wX, FW) — g(wX, FV)g(wY, FW)}

9([Aw, Av]X,Y)

56— ) {9V, FV)gwX, W) = (X, FV )g(Y, W)

gWY,V)g(wX, FW) — g(wX, V)g(wY, FW)}.

+ o+ o+

Theorem 4.8. Let N be a F-invariant proper CR-submanifold of a Kaehlerian prod-
uct manifold M = My x Ms. Then there exist no F-invariant totally umbilical proper
CR-submanifolds of a Kaehlerian product manifold M = Mi(c1) x Ma(ce) such that
c1 and co don’t vanish.

Proof. Choosing Y € T'(D%) in the equation (4.14), we have

(Vxm)(YV.TX) ~ (Tyh)(X,JX) = ey + en) oK, X)wY + g(FX, X))
- %6(01—02){g(X,X)FwY+g(X7FX)wY}

for any X € I'(D) and Y € T'(D4).

On the other hand, since N is totally umbilical proper CR-submanifold, we obtain

1
9V, JX)VxH = (X, JX)VyH = = Z=(e1+e){g(X, X)wY + g(FX, X)FuY'}
1
- E(Cl_c2>{g(XaX)FwY+g(X7FX)WY}a
that is,

(e1 + e2){9(X, X)wY + g(FX, X)FwY }+
(c1 — e2){9(X, X)FwY + g(X, FX)wY} =0,
which implies that
wY{(e1 + e2)g(X, X) + (c1 — c2)9(X, FX)} =0
and
FwY{(c1 4+ ¢2)9(X,FX) + (c1 —c2)9(X,X)} = 0.
It follow that 4cjcowY = 0. This is a contradiction. Thus the proof is complete. O

Since a totally geodesic submanifold is always curvature-invariant, we have the
following theorem from the theorem 4.8.

Theorem 4.9. Let N be a F-invariant proper CR-submanifold of a Kaehlerian prod-
uct manifold M = My x My. Then there exist no F-invariant totally geodesic proper
CR-submanifolds of a Kaehlerian product manifold M = My (c1) X Ma(ca) such that
c1 and co don’t vanish.
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