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Abstract. It is shown that the projectivised tangent bundle of Finsler
spaces with the Chern connection has a contact metric structure under
a conformal transformation with certain condition of the Finsler function
and moreover it is locally isometric to Em × Sm−1(4) for m > 2 and flat
for m = 2 if and only if the Cartan tensor vanishes, i.e., the Finsler space
is a Riemannian manifold.
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1 Preliminaries

Let M be an m-dimensional C∞ manifold and xi (1 ≤ i ≤ m) local coordinates on M .
It is said to be a Finsler manifold if the length s of any curve t 7→ (x1(t), . . . , xm(t))
(a ≤ t ≤ b) is given by an integral

s =
∫ b

a

F

(
x1(t), . . . , xm(t),

dx1

dt
, . . . ,

dxm

dt

)
dt,

where F has the first-degree homogeneity with respect to dxi

dt .
Our convention for indices is as follows: Latin indices run from 1 to m (except m).

Greek indices run from 1 to m. Greek indices with bar run from 1 to m− 1.

A Finsler manifold M has a tangent bundle π : TM → M . From TM we obtain
the projectivised tangent bundle of M , PTM, by identifying the non-zero vectors
differing from each other by a real factor. Geometrically PTM is the space of line
elements on M . Then a non-zero tangent vector can be expressed as

X = yi∂xi (yi not all zero),
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where we set ∂xi :=
∂

∂xi
and ∂yi :=

∂

∂yi
. The xi, yi are local coordinates on TM .

They are also local coordinates on PTM with yi being homogeneous coordinates
(determined up to a real factor). We can consider PTM as the base manifold of the
vector bundle p∗TM, pulled back with the canonical projection map p : PTM → M
defined by p(xi, yi) = (xi). The fibers of p∗TM are the vector spaces of dimension m
and the base manifold PTM is of dimension 2m− 1.

From now on fyi , fyiyj , . . . , etc. denote the partial derivative(s) of a smooth
function f with respect to the coordinates yi. Adopt a similar notation for the partial
derivatives with respect to the coordinates xi. From the first-degree homogeneity of
F , we have

yiFyi = F and yiFyiyj = 0.

A differential form on PTM can be represented as one on TM provided the latter
is invariant under rescaling in the yi and yields zero when contracted with yi∂yi .
Our differential forms on PTM will be so represented, and exterior differentiation on
PTM will be obtained by formal differentiation on TM . Then the Hilbert form

ω = Fyidxi

is intrinsically define on PTM .
Let

eα = uα
j∂xj

be an orthonormal frame field on the bundle p∗TM , and

ωα = vα
kdxk

its dual coframe field, so that

(eα, eβ) = uα
lglkuβ

k = δαβ(1.1)

and

(eα, ωβ) = δβ
α.(1.2)

(1.1) is the orthonormality condition with respect to the Finsler metric (positive
definite)

G = gijdxi ⊗ dxj

=
(

1
2
F 2

)

yiyj

dxi ⊗ dxj

=
(
FFyiyj + FyiFyj

)
dxi ⊗ dxj

defined intrinsically on PTM , and (1.2) is the duality condition, which is equivalent

uα
kvβ

k = δβ
α.
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We now distinguish the global sections

em =
yi

F
∂xi =: `i∂xi and ωm = Fyidxi = ω.

Then, taking the exterior derivative of the Hilbert form ωm on PTM, we have ([4])

dωm = ωᾱ ∧ ωᾱ
m,(1.3)

where ωᾱ
m is

ωᾱ
m = −uᾱ

iFyiyj dyj +
uᾱ

i

F

(
Fxi − yjFyixj

)
ωm

+uᾱ
iuβ̄

jFxiyj ωβ̄ + λᾱβ̄ωβ̄ (see [4] for λᾱβ̄).

Define N i
j and δyj as follows:

N i
j =

1
F

Gi
yj and δyj =

dyj

F
+ N j

kdxk,

where Gi denotes

Gi = gil

{
ys

(
1
2
F 2

)

ylxs

−
(

1
2
F 2

)

xl

}
.

Then the orthonormal vectors in T (TM\0) and the dual orthonormal vectors in
T ∗(TM\0) are given by

êα = uα
jδxj ⇐⇒ ωα = vα

jdxj

and

êm+α = uα
jδyj ⇐⇒ ωm

α = vα
jδy

j ,

where

δxi := ∂xi − FN j
i∂yj

and

δyi := F∂yi .

The set
{
δxj , δyi

}
is naturally dual to the set

{
dxi, δyi

}
, and these form local

bases for T (TM\ {0}) and T ∗(TM\ {0}), respectively.

Generally a (2n+1)-dimensional manifold M̃ is said to have a contact structure
and is called a contact manifold if it carries a global 1-form η such that

η ∧ (dη)n 6= 0(1.4)



54 Shigeo Fueki and Hiroshi Endo

everywhere on M̃ , where the exponent denotes the n-th exterior power. We call η a
contact form of M̃. A structure tensor (φ, ξ, η, g) on (2n + 1)-dimensional manifold
M̃ said to be an almost contact metric structure if a tensor field of type (1,1) φ, a
vector field ξ, a 1-form η and a Riemannian metric g satisfy

η(ξ) = 1, φ2 = −I + ξ ⊗ η, φξ = 0, η(φX) = 0,(1.5)

g(φX, φY ) = g(X, Y )− η(X)η(Y ), η(X) = g(X, ξ), rank φ = 2n

for any X, Y ∈ χ(M̃), where χ(M̃) is the Lie algebra of vector fields on M̃ .
Let M̃ be a (2n + 1)-dimensional manifold with a contact form η. If M̃ has an

almost contact metric structure (φ, ξ, η, g) such that

g(φX, Y ) = dη(X, Y ),(1.6)

then M̃ is said to have a contact metric structure and is called a contact metric
manifold, that is

η(ξ) = 1, φ2 = −I + ξ ⊗ η, φξ = 0, η(φX) = 0,(1.7)

g(φX, φY ) = g(X, Y )− η(X)η(Y ), η(X) = g(X, ξ),

rank φ = 2n, g(φX, Y ) = dη(X,Y )

for any X, Y ∈ χ(M̃).

Let M̃ be a (2m− 1)-dimensional contact metric manifold with a contact metric
structure (φ, ξ, η, g) and R the curvature tensor field on M̃ . It is well known that the
condition R(X,Y )ξ = 0 for all X, Y has a strong and interesting implication for a
contact metric manifold, namely that M̃ is locally the product of Euclidean space Em

and a sphere of constant curvature +4. D. E. Blair proved the following theorem.

Theorem 1.1. [2, 3] A contact metric manifold M̃2m−1 satisfying R(X, Y )ξ = 0 is
locally isometric to Em × Sm−1(4) for m > 2 and flat for m = 2.

The following proposition is well known (cf. [2], [3], [6]).

Proposition 1.2. Let M̃ be a contact metric manifold with a contact metric structure
(φ, ξ, η, g). Then M̃ is a K-contact manifold if and only if

∇Xξ = φX

for any X ∈ χ(M̃).

The following lemma is well known (cf. [4]).

Lemma 1.3. The Hilbert form on PTM given by

ωm = Fyidxi = ω

satisfies the condition ω ∧ (dω)m−1 6= 0, that is PTM has a contact structure with
respect to Hilbert form ω.
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Then S. S. Chern proved the following theorem.

Theorem 1.4. [4] There exists a torsion-free and an almost metric-compatible linear
connection p∗TM → PTM , that is the Chern connection

D : Γ(p∗TM) → Γ(p∗TM ⊗ PTM)

given by

Deα = ωα
βeβ , ωm

m = 0,

that is dωα = ωβ ∧ ωβ
α and

ωαβ + ωβα = −2Aαβγωm
γ .(1.8)

In particular

ωα
m + ωm

α = 0,(1.9)

where ωαβ = ωα
γδγβ and the Cartan tensor A = Aαβγωα ⊗ ωβ ⊗ ωγ is given by

Aαβγ =
F

2
(
1
2
F 2)yiyjykuα

iuβ
juγ

k.

Next we define the Chern connection in natural coordinates as follows:

D : Γ(p∗TM) → Γ(p∗TM ⊗ T ∗(TM\0))

given by

D∂xi = ω j
i ∂xj ,

where ω j
i are the components of the connection matrix in natural coordinates. Since

the Chern connection is torsion-free, we can see that (see [1] and [4])

dxi ∧ ω j
i = 0,(1.10)

which is equivalent to the torsion-free condition of the Chern connection in natural
coordinates. Wedge product of ω j

i and dxi is zero in (1.10), so they are linearly
dependent. We can write ω j

i in terms of dxi as

ω j
i = Γj

ildxl,

where the quantities

Γi
jk =

gis

2
(δxkgsj − δxsgjk + δxj gks)

are called the Christoffel symbols of the first. Then we obtain

Γi
jk`j = N i

k.(1.11)
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By using the Cartan formula, we obtain the following Lie bracket (cf. [1] ):

[
δxk , δyl

]
=

{
Ȧi

kl +
`i

F
(FFyk)xl − `iNkl

}
δyi ,(1.12)

where the quantities Ȧi
kl are

Ȧi
kl :=

(
δxsAi

kl + Ah
klΓ

i
hs −Ai

hlΓ
h
ks −Ai

khΓh
ls

)
`s.

On the other hand, by straightforward calculations we obtain

[
δxk , δyl

]
=

1
2
Gi

ykylδyi =
{

Ȧi
kl + Γi

kl

}
δyi .(1.13)

On PTM , there are the quantities which are homogeneous of degree zero in the yi.
Let f be a smooth function on PTM . Using the Euler’s theorem, we have

`iδyif = yifyi = 0.(1.14)

From (1.11), (1.12), (1.13) and (1.14), it follows that

N i
jδyif = `kΓi

kjδyif = 0.(1.15)

Then, by (1.15), we can see that the orthonormal vectors in T (PTM) and the dual
orthonormal vectors in T ∗(PTM) are given by

ẽα = u j
α ∂xj ⇐⇒ ωα = vα

jdxj(1.16)

and

ẽm+ᾱ = u j
ᾱ δyj ⇐⇒ ωm

ᾱ = vᾱ
jδy

j .(1.17)

2 Theorem

Now, let us consider the conformal transformation:

F = eσ(x)F,(2.1)

of the fundamental function F , where σ(x) is a local differentiable function on the
base manifold M (cf. [5]).

With respect to (2.1) we have the conformal transformation:

gij :=
(

1
2
F

2
)

yiyj

= e2σ(x)

(
1
2
F 2

)

yiyj

=: e2σ(x)gij ,(2.2)

of the fundamental tensor field.
On the manifold TM\ {0} we locally define the tensor field :

gijdxi ⊗ dxj + gij

δyi

F
⊗ δyj

F
.(2.3)
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For {ẽα(resp. ωα), ẽm+ᾱ(resp. ωm
ᾱ)} in T (PTM) (resp. T ∗(PTM)), we can rewrite

it as

δαβωα ⊗ ωβ + e2σ(x)δm+ᾱ m+β̄ωm
ᾱ ⊗ ωm

β̄ .(2.4)

We now distinguish the global sections

ẽm := e−σ(x)ẽm and ωm := eσ(x)ωm = eσ(x)ω (=: ω) .

Putting ωᾱ := ωᾱ, we locally define the tensor field:

gs = δαβωα ⊗ ωβ + e2σ(x)δm+ᾱ m+β̄ωᾱ
m ⊗ ωβ̄

m.(2.5)

We consider the following tensor field φ of (1,1) type:

φẽᾱ = −e−σ(x)ẽm+ᾱ, φ ẽm = 0 and φẽm+ᾱ = eσ(x)ẽᾱ.(2.6)

For the conformal transformation, we get the following theorem.

Theorem 2.1. A structure tensor (φ, ẽm, ω, gs) is an almost contact metric structure
on PTM . Moreover ω is a contact form on PTM and (φ, ẽm, ω, gs) is a contact metric
structure if and only if σ(x) is a function satisfying dσ = ωm.

Proof. It is evident that ω(ẽm) = 1. From (1.16), (1.17) and (2.5) we have

gs(ẽm, ẽm) = δαβωα ⊗ ωβ(ẽm, ẽm) = δmm = 1,

from which

gs(ẽm, ẽm) = ω(ẽm) = 1.(2.7)

Using the argument similar to (2.7), we get

gs(ẽᾱ, ẽm) = ω(ẽᾱ) = 0(2.8)

and

gs(ẽm+ᾱ, ẽm) = ω(ẽm+ᾱ) = 0.(2.9)

By (2.7), (2.8) and (2.9), we get

gs(X, ẽm) = ω(X)(2.10)

for any X ∈ χ(PTM).
From (2.6) we see that

φ2ẽᾱ = −φe−σ(x)ẽm+ᾱ = −ẽᾱ, φ2ẽm = 0

and

φ2ẽm+ᾱ = φeσ(x)ẽᾱ = −ẽm+ᾱ.
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Then it follows that

φ2X = −X + ω(X)ẽm(2.11)

for any X ∈ χ(PTM). Moreover, we get

φ ←→




0 · · · 0 0 eσ(x) · · · 0
...

. . .
...

...
...

. . .
...

0 · · · 0 0 0 · · · eσ(x)

0 · · · 0 0 0 · · · 0
−e−σ(x) ... 0 0 0 · · · 0
...

. . .
...

...
...

. . .
...

0 · · · −e−σ(x) 0 0 · · · 0




,

from which we have

rank φ = 2(m− 1).(2.12)

It is clear that ω(φ ẽm) = 0. Moreover we have

ω(φẽᾱ) = −e−σ(x)ωm(ẽm+ᾱ) = 0

and

ω(φẽm+ᾱ) = eσ(x)ωm(ẽᾱ) = e2σ(x)δm
ᾱ = 0.

It follows that

ω(φX) = 0(2.13)

for any X ∈ χ(PTM).
From (2.5), (2.6) and (2.8) we see that

gs(φẽγ̄ , φẽµ̄)= e−2σ(x)gs(ẽm+γ̄ , ẽm+µ̄)
= δm+ᾱ m+β̄ ωm

ᾱ ⊗ ωm
β̄(ẽm+γ̄ , ẽm+µ̄)

= δm+ᾱ m+β̄ δᾱ
γ̄δβ̄

µ̄ = δm+γ̄ m+µ̄.

Since we have

gs(ẽγ̄ , ẽµ̄) = δαβωα ⊗ ωβ(ẽγ̄ , ẽµ̄) = δγ̄µ̄,

we get

gs(φẽγ̄ , φẽµ̄) = gs(ẽγ̄ , ẽµ̄)− ω(ẽγ̄)ω(ẽµ̄).(2.14)

Similarly we obtain

gs(φẽγ̄ , φẽm+µ̄) = gs(ẽγ̄ , ẽm+µ̄)− ω(ẽγ̄)ω(ẽm+µ̄)(2.15)

and
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gs(φẽm+γ̄ , φẽm+µ̄) = gs(ẽm+γ̄ , ẽm+µ̄)− ω(ẽm+γ̄)ω(ẽm+µ̄).(2.16)

By means of (2.14)∼(2.16) it follows that

gs(φX, φY ) = gs(X, Y )− ω(X)ω(Y )(2.17)

for any X,Y ∈ χ(PTM), so that we find that φ is skew-symmetric. Hence we see that
a structure tensor (φ, ẽm, ω, gs) is an almost contact metric structure on PTM .

From the exterior derivative of the form ω on PTM , we see that

dω = d
(
eσ(x)ωm

)
= deσ(x) ∧ ωm + eσ(x)ωᾱ ∧ ωᾱ

m,(2.18)

from which

ω ∧ (dω)m−1 = emσ(x)ω ∧ (dω)m−1 6= 0.

Hence ω is a contact form of PTM .

Using (1.9), (2.6) and (2.18) we have

gs(φẽγ̄ , ẽµ̄) = −e−σ(x)gs(ẽm+γ̄ , ẽµ̄) = 0

and

dω(ẽγ̄ , ẽµ̄) = (deσ(x) ∧ ωm − eσ(x)ωᾱ ∧ ωm
ᾱ)(ẽγ̄ , ẽµ̄) = 0.

Thus we find that

gs(φẽγ̄ , ẽµ̄) = dω(ẽγ̄ , ẽµ̄).(2.19)

Using the similar techniques, we obtain

gs(φẽm+γ̄ , ẽµ̄) = dω(ẽm+γ̄ , ẽµ̄),(2.20)

gs(φẽγ̄ , ẽm+µ̄) = dω(ẽγ̄ , ẽm+µ̄)(2.21)

and

gs(φẽm+γ̄ , ẽm+µ̄) = dω(ẽm+γ̄ , ẽm+µ̄).(2.22)

Using (2.5) we get

gs(φX, ẽm) = 0.

On the other hand, by (2.18), we obtain

dω(X, ẽm) = Xeσ(x) − ωm(X)ẽmeσ(x).

By (2.19)∼(2.22), we get

gs(φX, Y ) = dω(X,Y )(2.23)

for any X, Y ∈ χ(PTM) if and only if

dω(X, ẽm) = 0,

or equivalently,

Xeσ(x) = ωm(X)ẽmeσ(x) ⇐⇒ deσ(x) = ωm.

This proves the theorem.
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¤

We assume that σ(x) is a function satisfying dσ = ωm. We calculate the Levi-
Civita connection ∇ on PTM with respect to gs , which is given by

2gs(∇XY, Z)= X(gs(Y,Z)) + Y (gs(X, Z))− Z(gs(X, Y ))

+gs([X, Y ], Z) + gs([Z, X], Y )− gs([Y, Z], X)
(2.24)

for any X, Y, Z ∈ χ(PTM).
Let f be a smooth function on PTM . By the definition of Lie bracket and

ωα
β = vβ

i(du i
α + u j

α ω i
j ) = vβ

i(du i
α + u j

α Γi
jkdxk),

we get

[
ẽᾱ, ẽβ̄

]
(f)=

[
u i

ᾱ ∂xi , u j

β̄
∂xj

]
(f)

= u i
ᾱ u j

β̄
[∂xi , ∂xj ] (f) + u i

ᾱ (∂xiu j

β̄
)∂xj (f)− u j

β̄
(∂xj u i

ᾱ )∂xi(f)

=
(
u j

ᾱ (∂xj u i
β̄

)− u j

β̄
(∂xj u i

ᾱ )
)

∂xi(f)

=
(
u i

γ ω γ

β̄
(ẽᾱ)− u i

γ ω γ
ᾱ

(
ẽβ̄

))
vδ

iẽδ(f)

=
(
ω γ

β̄
(ẽᾱ)− ω γ

ᾱ

(
ẽβ̄

))
ẽγ(f),

from which
[
ẽᾱ, ẽβ̄

]
=

(
ω γ

β̄
(ẽᾱ)− ω γ

ᾱ

(
ẽβ̄

))
ẽγ .(2.25)

Similarly, by straightforward calculations, using (1.16) and (1.17), we have the
followings:

[
ẽᾱ, ẽm+β̄

]
= ω γ̄

β̄
(ẽᾱ)ẽm+γ̄ − ω γ

ᾱ (ẽm+β̄)ẽγ(2.26)

and
[
ẽm+ᾱ, ẽm+β̄

]
=

(
ω γ̄

β̄
(ẽm+ᾱ)− ω γ̄

ᾱ (ẽm+β̄)
)

ẽm+γ̄ ,(2.27)

in particular

[ẽᾱ, ẽm]= −ω γ̄
ᾱ (ẽm) ẽγ̄ ,

[ẽm, ẽm+ᾱ]= ω γ̄
ᾱ (ẽm)ẽm+γ̄ − ẽᾱ.

Moreover, by the definition of Lie bracket, we get
[
ẽᾱ, ẽm

]
(f)=

[
ẽᾱ, e−σ(x)ẽm

]
(f)

= e−σ(x) [ẽᾱ, ẽm] (f) + (ẽᾱe−σ(x))ẽm(f)

= −e−σ(x)ωᾱ
γ̄(ẽm)ẽγ̄(f)− e−2σ(x)(deσ(x)(ẽᾱ))ẽm(f),
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from which
[
ẽᾱ, ẽm

]
= −e−σ(x)ωᾱ

γ̄(ẽm)ẽγ̄ .(2.28)

Similarly, by straightforward calculations we have
[
ẽm, ẽm+ᾱ

]
= e−σ(x)ω γ̄

ᾱ (ẽm)ẽm+γ̄ − e−σ(x)ẽᾱ.(2.29)

Using (2.24)∼(2.29) and (1.8), we obtain

2gs(∇ẽm+ᾱ
ẽm+β̄ , ẽγ̄)= ẽm+ᾱ(gs(ẽm+β̄ , ẽγ̄)) + ẽm+β̄(gs(ẽm+ᾱ, ẽγ̄))

−ẽγ̄(gs(ẽm+ᾱ, ẽm+β̄))

+gs([ẽm+ᾱ, ẽm+β̄ ], ẽγ̄)− gs([ẽm+β̄ , ẽγ̄ ], ẽm+ᾱ)

+gs([ẽγ̄ , ẽm+ᾱ], ẽm+β̄)

= e2σ(x)
(
ωβ̄ᾱ(ẽγ̄) + ωᾱβ̄(ẽγ̄)

)
= −2e2σ(x)Aᾱβ̄δω

δ
m (ẽγ̄)

= 0.

Moreover we get

gs(∇ẽm+ᾱ
ẽm+β̄ , ẽm) = −eσ(x)δᾱβ̄

and

gs(∇ẽm+ᾱ
ẽm+β̄ , ẽm+γ̄) = e2σ(x)

{
ωβ̄γ̄(ẽm+ᾱ) + Aᾱβ̄γ̄

}
.

Thus we find that

∇ẽm+ᾱ
ẽm+β̄ = −eσ(x)δᾱβ̄ ẽm + ω γ̄

β̄
(ẽm+ᾱ)ẽm+γ̄ + Aγ̄

ᾱβ̄
ẽm+γ̄ .(2.30)

Using the similar techniques, we have

∇ẽm+ᾱ
ẽβ = ω γ

β (ẽm+ᾱ)ẽγ + Aγ
ᾱβ ẽγ ,(2.31)

∇ẽα
ẽm+β̄ = Aγ

αβ̄
ẽγ + ω γ̄

β̄
(ẽa)ẽm+γ̄(2.32)

and

∇ẽα
ẽβ = ω γ

β (ẽα)ẽγ −Aγ̄
αβ ẽm+γ̄ .(2.33)

From (2.24)∼(2.29) and (1.8), it follows that

gs(∇ẽᾱ
ẽm, ẽγ) = gs(∇ẽᾱ

ẽm, ẽm+γ̄) = 0.

Thus we find that

∇ẽᾱ
ẽm = 0.(2.34)

Using the similar techniques, we have
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∇ẽm
ẽm = 0 and ∇ẽm+ᾱ

ẽm = e−σ(x)ẽᾱ.(2.35)

From (2.35) it follows that

∇X ẽm = e−3σ(x)
∑
ᾱ

gs(X, ẽm+ᾱ)ẽᾱ(2.36)

for any X ∈ χ(PTM).

From Proposition 1.2 and (2.36), we obtain the following theorem.

Theorem 2.2. PTM has a non-K-contact, contact metric structure (φ, ẽm, ω, gs)
with respect to gs satisfying dσ = ωm.

Remark 2.3. PTM gives us a example of non-K-contact, contact metric manifold
with respect to gs satisfying dσ = ωm.

The curvature tensor filed R on PTM is given by

R(X, Y )Z := ∇X∇Y Z −∇Y∇XZ −∇[X,Y ]Z(2.37)

for any X, Y, Z ∈ χ(PTM). From (2.36) and (2.37) it follows that

R(X, Y )ẽm

= −3e−4σ(x)
∑
ᾱ

(ωm(X)gs(Y, ẽm+ᾱ)− ωm(Y )gs(X, ẽm+ᾱ)) eᾱ

+e−3σ(x)
∑
ᾱ

(gs(Y,∇X ẽm+ᾱ)− gs(X,∇Y ẽm+ᾱ)) eᾱ

+e−3σ(x)
∑
ᾱ

{gs(Y, ẽm+ᾱ)∇X ẽᾱ − gs(X, ẽm+ᾱ)∇Y ẽᾱ}

(2.38)

for any X, Y ∈ χ(PTM).
Setting X = ẽα and Y = ẽβ in (2.38), by (2.32), we get

R(ẽα, ẽβ)ẽm = e−3σ(x)
∑
ᾱ

(
gs(ẽβ ,∇ẽα

ẽm+ᾱ)− gs(ẽα,∇ẽβ
ẽm+ᾱ)

)
ẽᾱ

+e−3σ(x)
∑
ᾱ

{
gs(ẽβ , ẽm+ᾱ)∇ẽα

ẽᾱ − gs(ẽα, ẽm+ᾱ)∇ẽβ
ẽᾱ

}

= e−3σ(x)
∑
ᾱ

(
Aγ

αᾱδγβ −Aγ
βᾱδγα

)
ẽᾱ = 0.

Similarly, replacing X by ẽα and Y by ẽm+ᾱ and using (2.30) and (2.32), we obtain

R(ẽα, ẽm+α)ẽm = −e−σ(x)Aγ̄
αᾱẽm+γ̄ .

Also, setting X = ẽm+ᾱ and Y = ẽm+β̄ in (2.38), by (2.30) and (2.31), we have

R(ẽm+ᾱ, ẽm+β̄)ẽm = 0.
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Hence we obtain

R(X, Y )ẽm = −e−3σ(x)
∑
α

∑

β̄

{
gs(X, ẽα)gs(Y, ẽm+β̄)

−gs(Y, ẽα)gs(X, ẽm+β̄)
}

Aγ̄

αβ̄
ẽγ̄

(2.39)

for all X, Y ∈ χ(PTM).

From Theorem 1.1 and (2.39), we obtain

Theorem 2.4. A (2m− 1)-dimensional contact metric manifold PTM with respect
to gs satisfying dσ = ωm is locally isometric to Em×Sm−1(4) for m > 2 and flat for
m = 2 if and only if the Cartan tensor A = 0, i.e., M is a Riemannian manifold.
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