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Abstract. We describe a robust method for constructing a tubular surface
surrounding a timelike space curve in Minkowski 3-Space. Our method
is designed to eliminate undesirable twists and wrinkles in the tubular
surface’s skin at points where the curve experiences high torsion. In our
construction the tubular surface’s twist is bounded by the timelike curve’s
curvature and is independent of the timelike curve’s torsion. This paper
is a generalization of [4] to Minkowski 3–space.
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1 Preliminaries

Let R3 = {(x1, x2, x3)|x1, x2, x3 ∈ R} be a 3-dimensional vector space, and let x =
(x1, x2, x3) and y = (y1, y2, y3) be two vectors in R3. The Lorentz scalar product of x
and y is defined by

〈x, y〉L = −x1y1 + x2y2 + x3y3,

E3
1 =

(
R3, 〈x, y〉L

)
is called 3-dimensional Lorentzian space, Minkowski 3-Space or

3- dimensional Semi-Euclidean space. The vector x in E3
1 is called a spacelike vector,

null vector or a timelike vector if 〈x, x〉L > 0 or x = 0, 〈x, x〉L = 0 or 〈x, x〉L < 0,
respectively. For x ∈ E3

1, the norm of the vector x defined by ‖x‖L =
√|〈x, x〉L|, and

x is called a unit vector if ‖x‖L = 1. For any x, y ∈ E3
1 , Lorentzian vectoral product

of x and y is defined by

x ∧L y = (x3y2 − x2y3, x3y1 − x1y3, x1y2 − x2y1) .

Similarly, an arbitrary curve α = α(s) in E3
1 is locally spacelike, timelike or null

(lightlike), if all of its velocity vectors α′(s) = T (s) are respectively spacelike, timelike
or null, for each s ∈ I ⊂ R. The vectors v, w ∈ E3

1 are orthogonal if and only if
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〈v, w〉L = 0. The Lorentzian sphere of center m = (m1,m2,m3) and radius r ∈ R+ in
the space E3

1 is defined by

S2
1 =

{
a = (a1, a2, a3)∈ E3

1

∣∣〈a−m, a−m〉L = r2
}

.

Basic notations and definitions in this section are taken from M. Petrovic and E.
Sucurovic[3].

2 Inroduction

Consider a curve α(s) in E3
1, parameterized by its arc length s. Let T (s) be its tangent

vector, i.e., T (s) = α′(s) = dα(s)
ds . The arc length parameterization of the curve makes

T (s) a unit vector, i.e., ‖T (s)‖L = 1, therefore its derivative is orthogonal to T . The
principal normal vector N is defined defined as N = T ′

‖T ′‖L
. The binormal vector B is

defined as the cross product B = T ∧L N . The Frenet-Serret equations, express the
rate of change of the moving orthonormal triad {T, N, B} along the timelike curve
α(s),





T ′ = κN
N ′ = κT + τB

B′ = −τN
(2.1)

and

〈T, T 〉L = −1, 〈B, B〉L = 〈N, N〉L = 1 ,

〈T, N〉L = 〈T, B〉L = 〈B, N〉L = 0 .

The coefficients κ and τ are the curve’s curvature and torsion [3].
A.Gray [1] has noted that wild gyrations of the Frenet-Serret system can be ex-

pected at points where the curvature κ is small and the torsion τ is large. An inspec-
tion of the Frenet-Serret equations (2.1) shows that at such points T ′ is small and N ′

and B′ are large, in effect indicating that the Frenet-Serret system is spinning about
its T axis.

The curve’s torsion is a function of the curve’s third derivative as evidenced by
the explicit formulas

κ =
‖x′ ∧L x′′‖L

‖x′‖3L
, τ =

det (x′, x′′, x′′′)
‖x′ ∧L x′′‖2L

.

3 Characterization of Canal and Tubular Surfaces

Theorem 3.1. Suppose the center curve of a canal surface is a unit speed timelike
curve α : I → E3

1 with nonzero curvature. Then the canal surface can be parametrized

C (s, t) = α(s) + r(s)r′(s)T (s)∓ r(s)
√

1 + r′2(s)N(s) cos t± r(s)
√

1 + r′2(s)B(s) sin t,

(3.1)

where T, N and B denote the tangent, normal and binormal of α.
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Proof: Let C denote a patch that parametrizes the envelope of Lorentzian spheres
defining the canal surface. Since the curvature of α is nonzero, the Frenet- Serret
frame {T, N, B} is well-defined, and we can write

C (s, t)− α(s) = a(s, t)T + b(s, t)N + c(s, t)B(3.2)

where a, b and c are differentiable on the interval on which α is defined. We must
have

‖C (s, t)−α(s)‖2L = r2(s)(3.3)

Equation (3.3) expresses analytically the geometric fact that C (s, t) lies on a Lorentzian
sphere S2

1(s) of radius r(s) centered at α(s). Furthermore, C (s, t)− α(s) is a normal
vector to the canal surface; this fact implies that

〈C (s, t)−α(s),Cs〉L = 0,(3.4)

〈C (s, t)−α(s),Ct〉L = 0,(3.5)

Equations (3.3) and (3.4) say that the vectors Cs and Ct are tangent to S2
1(s). From

(3.2) and (3.3) we get
{ −a2 + b2 + c2 = r2

−aas + bbs + ccs = rr′(3.6)

When we differentiate (3.2) with respect to t and use the Frenet-Serret formulas, we
obtain

Cs = (1+as+bκ)T + (aκ−cτ+bs) N + (cs+bτ) B.(3.7)

Then (3.6), (3.7), (3.2) and (3.4) imply that

−a + rr′ = 0,(3.8)

and from (3.6) and (3.7) we get

b2 + c2 = r2
(
1+r′2

)
.(3.9)

We can write

b = ∓ r
√

1 + r′2 cos t,

c = ± r
√

1 + r′2 sin t .

Thus (3.2) becomes

C (s, t) = α(s) + r(s)r′(s)T (s)∓ r(s)
√

1 + r′2(s)N(s) cos t± r(s)
√

1 + r′2(s)B(s) sin t.

With the Frenet-Serret system in hand, we can construct a ”tubular surface” of radius
r = const. about the curve by defining a surface with parameters s and t:

Tube (s, t) = α(s) + r (N(s) cos t+B(s) sin t)(3.10)

¤
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4 An Alternative Moving Frame

We introduce an alternative, more tamely behaved moving triad for timelike curves.
For this, we let α(s) be a regular timelike curve in E3

1 parameterized by its arc length,
and T (s) = α′(s) be its unit tangent vector the same as before. We will define unit
vector fields P (s) and Q(s) such that {T, P,Q} is orthonormal at each point along
the timelike curve. We will chose P (s)and Q(s) in such a way as to minimize its
gyrations as the triad moves along the timelike curve.

Unlike the Frenet-Serret triad which is defined locally on the timelike curve, our
triad is denned in terms of the solution of a differential equation, hence it depends
not only on thetimelike curve’s local properties but also on the location and value of
the differential equation’s initial conditions.

The construction of the new triad is based on the set of solutions of the system of
differential equations

d

ds

[
a
b

]
=

[
0 τ(s)

−τ(s) 0

] [
a
b

]
(4.1)

where a and b are functions of s and τ(s) is the torsion of the timelike curve α(s). Let
denote the semigroup of solutions of this differential equation, that is, (a(s), b(s)) =
φs0,s (a(s0), b(s0)) is the solution of the differential equation corresponding to the
initial data (a(s0), b(s0)) at s = s0. If the timelike curve α(s) is sufficiently regular,
then the standard theory of linear systems, guarantees the existence, uniqueness and
maximal continuation of its solutions.

Definition 4.1. Let U(s) denote the normal plane of the curve α(s) at any s. That
is, U(s) is perpendicular to T (s) and contains the principal normal and binormal
vectors N(s) and B(s). We equip each U(s) with the inner product inherited from E3

1.
We define the mapping φs0,s : U(s0) → U(s) with

φs0,s : V0 ∈ U(s0) → a(s)N(s) + b(s)B(s)

where (a(s), b(s)) = φs0,s (〈V0, N0(s0)〉L , 〈V0, B0(s0)〉L).

Lemma 4.1. Let φs0,s be as in Definition 4.1. Then for any V0 ∈ U(s0) the vector
valued function V (s) defined by V (s) = φs0,s (V0) satisfies the differential equation
V ′ = 〈V, T ′〉L T , where T is the timelike curve’s unit tangent vector.

Proof: According to the definition of φs0,s, the components 〈V (s), N(s)〉L and 〈V (s), B(s)〉L
of V (s) satisfy the differential equation (4.1), therefore

〈V, N〉′L = τ 〈V, B〉L
and

〈V,B〉′L = −τ 〈V,N〉L .

We now compute V ′(s) while making use of the Frenet-Serret equations:
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V ′(s) = [〈V, N〉L N + 〈V, B〉L B]′

= 〈V,N〉′L N + 〈V,N〉L N ′ + 〈V, B〉′L B + 〈V, B〉L B′

= τ 〈V, B〉L N + 〈V, N〉L (κT + τB)− τ 〈V, N〉L B − τ 〈V,B〉L N

= κ 〈V,N〉L T

= 〈V, κN〉L T

= 〈V, T ′〉L T

as asserted. ¤

Theorem 4.1. The mapping φs0,s : U(s0) → U(s) is an isometry.

Proof: Take any two vectors P0 and Q0 in U(s0) and let P (s) = φs0,s(P0) and Q(s) =
φs0,s(Q0). Then applying the result of Lemma 4.1 we get

〈P (s), Q(s)〉′L = 〈P ′, Q〉L + 〈P,Q′〉L
= 〈〈P, T ′〉L T ,Q〉

L
+ 〈〈Q,T ′〉L T ,P 〉

L

= 0

because 〈T, P 〉L = 0 and 〈T, Q〉L = 0. Therefore φs0,s preserves the inner product
hence is an isometry. ¤

Definition 4.2. Let α(s) be a regular timelike curve in E3
1 parameterized by its arc

length, and let T (s) denote its unit tangent. Arbitrarily fix a parameter value s0 and let
T0 = T (s0). Choose any pair of vectors P0 and Q0 such that {T0, P0, Q0} forms and or-
thonormal set. Then let P (s) = φs0,s(P0) and Q(s) = φs0,s(Q0). According to Theorem
4.2, the triad {T (s), P (s), Q(s)} is orthonormal for all s. We call {T (s), P (s), Q(s)}
a tubular surface triad for the timelike curve.

Remark 4.1. If the initial triad {T0, P0, Q0} is chosen such that it is positively ori-
ented, i.e., det {T0, P0, Q0} = 1, then the tubular surface triad will be positively ori-
ented for all s. This is an immediate consequence of the continuity of solutions of the
differential equations (4.1).

The rate of change of the tube triad is expressed in equations akin to Frenet-
Serret’s:

Theorem 4.2. Let {T (s), P (s), Q(s)} be a positively oriented tubular surface triad.
Then its rate of change is expressed by:





T ′ = k1P + k2Q
P ′ = k1T
Q′ = k2T

(4.2)

where k1(s) and k2(s) are scalar functions defined along the timelike curve.

Proof: The second and third equations in (4.2) are consequences of Lemma 4.1. To
obtain the first equation we note that the positive orientation of the tubular surface
triad implies −T = P ∧L Q and P = Q ∧L T and Q = T ∧L P . Therefore we have
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−T ′ = P ∧L Q

−T ′ = P ′ ∧L Q + P ∧L Q′

T ′ = −P ′ ∧L Q− P ∧L Q′

T ′ = −〈P, T ′〉L T ∧L Q− P ∧L 〈Q,T ′〉L T

T ′ = −〈P, T ′〉L (T ∧L Q)− (P ∧L T ) 〈Q,T ′〉L
T ′ = −〈P, T ′〉L (−P )− 〈Q,T ′〉L (−Q)
T ′ = 〈P, T ′〉L P − 〈Q,T ′〉L Q

T ′ = k1P + k2Q

as asserted. ¤

Remark 4.2. Rather than computing both P and Q components of the tubular surface
triad with P (s) = φs0,s(P0) and Q(s) = φs0,s(Q0) as in Definition 4.2, it is more
practical to compute one, say P (s), then define Q(s) as Q(s) = T (s)∧L P (s) , which
also implies the permutations P = Q ∧L T and −T = P ∧L Q. We can verify directly
that Q, defined this way, satisfies the differential equation (4.1):

Q′ = (T ∧L P )′

= T ′ ∧L P + T ∧L P ′

= T ′ ∧L P + T ∧L (〈P, T ′〉L T )
= T ′ ∧L P + (T ∧L T ) 〈P, T ′〉L
= T ′ ∧L P

= T ′ ∧L (Q ∧L T )
= −〈T ′, T 〉L Q + 〈T ′, Q〉L T

= 〈Q,T ′〉L T

therefore Q(s) = φs0,s(Q0), as required. In this derivation we have made use of the
fact that . We have also used the general vector algebra identities a ∧L a = 0 and
a ∧L (b ∧L c) = −〈a, c〉L b + 〈a, b〉L c.

The following theorem establishes bounds on the rate of change of the tubular surface
triad:

Theorem 4.3. Let {T, P, Q} be the tubular surface triad as in Definition 4.2 and let
κ be the curvature of the timelike curve. We have the following pointwise bounds on
the rate of change of the triad:

‖T ′(s)‖L = κ(s),

‖P ′(s)‖L ≤ κ(s),(4.3)

‖Q′(s)‖L ≤ κ(s).

Proof: The first of the estimates (4.3) is merely the definition of curvature. To verify
the second, we refer to equation (4.1):
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‖P ′(s)‖L = |〈P, T ′〉L| ‖T‖L ≤ ‖P‖L ‖T ′‖L = ‖T ′‖L = κ(s).

The third equation is verified in the same way. ¤
Unlike the Frenet-Serret system, the rate of change of the tubular surface triad

{T, P, Q} is bounded by the curvature but is independent of timelike curve’s torsion.
A tubular surface based on the tubular surface triad, i.e.,

Tube (s, t) = α(s) + r (P (s)cos t+Q(s)sin t)

will have fewer twists and wrinkles in its skin compared to one based on the Frenet-
Serret formulas as in (3.10).

Example 4.1. Let c2 = a2−b2 > 0. For illustration, we compute the P and Q vectors
of the tubular surface triad for the unit speed timelike helix:

α(s) =
(

a sinh
s

c
, a cosh

s

c
,
bs

c

)
(4.4)

with a 6= 0. For the corresponding Frenet–Serret triad is:

T (s) =
(

a

c
cosh

s

c
,
a

c
sinh

s

c
,
b

c

)

N(s) =
(
sinh

s

c
, cosh

s

c
, 0

)

B(s) =
(

b

c
cosh

s

c
,
b

c
sinh

s

c
,
a

c

)

The curvature and torsion are constants, independent of s, and are given by

‖T ′‖L = κ =
a

a2 − b2
,

‖B′‖L = τ =
b

a2 − b2
.

Since torsion is constant, the system (4.1) reduces to a differential equation with
constant coefficients which can be solved readily once a set of initial conditions is
supplied. Suppose that we take P (0) = B(0). Note that P (0) is of unit length and
orthogonal to T (0), as required. Then

a(0) = 〈P (0), N(0)〉L = 0

and

b(0) = 〈P (0), B(0)〉L = 1.

Solving (4.1) with these initial conditions we obtain a(s) = 〈P, N〉L = sin τs and
b(s) = 〈P,B〉L = cos τs, whence, according to Definition 4.1:

P (s) = N(s) sin τs + B(s) cos τs,

where N(s), B(s) and τ are given in terms of s by the explicit formulas above. The
vector Q can also be computed in the same manner, or simply through Q(s) = T (s)∧L

P (s). Since T ∧L N = B and T ∧L B = −N , we get:

Q(s) = −N(s) cos τs + B(s) sin τs.
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