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Abstract. Lorentzian three-manifolds admitting a parallel null vector
field have been intensively studied, since they possess several interesting
geometrical properties which do not have a Riemannian counterpart. We
completely classify homogeneous structures on Lorentzian three-manifolds
which admit a parallel null vector field. This leads to the full classification
of locally homogeneous examples within this class of manifolds.
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1 Introduction

The existence of parallel vector fields has strong and interesting consequences on
the geometry of a manifold. If a Riemannian manifold (M, g) admits such a vec-
tor field, then (M, g) is locally reducible. The same property remains true for a
pseudo-Riemannian manifold admitting a parallel non-null vector field. However, in
the pseudo-Riemannian framework, a peculiar phenomenon arises: it can exist a par-
allel null vector field.

The geometry of a Lorentzian three-manifolds admitting a parallel null vector field
has been studied in the fundamental paper [3]. These manifolds possess several inter-
esting geometrical properties which do not have analogues in Riemannian settings.
They are described in terms of a suitable system of local coordinates (t, x, y) and
form a quite large class, depending on an arbitrary two-variables function f(x, y).
The Levi-Civita connection and curvature of (M, gf ) are completely described and
several geometric consequences are deduced. In particular, locally symmetric examples
are classified in terms of the defining function f , as well as curvature homogeneous
examples with diagonal Ricci operator. It is then natural to ask the following

QUESTION: When (M, gf ) is locally homogeneous?

The purpose of this paper is to answer the question above. It is worthwhile to remark
that, differently from the Riemannian case, scalar curvature invariants do not help
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here to determine the locally homogeneous examples. In fact, all scalar curvature
invariants of a Lorentzian three-space (M, gf ) admitting a parallel null vector field
vanish identically ([3], p.844).

In order to determine the locally homogeneous spaces of the form (M, gf ), we shall
make use of the notion of homogeneous structure. Homogeneous pseudo-Riemannian
structures were introduced by Gadea and Oubiña in [5], to obtain a characterization
of reductive homogeneous pseudo-Riemannian manifolds, similar to the one given for
homogeneous Riemannian manifolds by Ambrose and Singer [1] (see also [8]). In di-
mension three, as a consequence of the characterization proved by the second author in
[2], a homogeneous Lorentzian space is necessarily reductive. Hence, the existence of a
homogeneous structure on a Lorentzian three-space is a necessary and sufficient condi-
tion for local homogeneity. Recent complementary results about Lorentzian manifolds
can be found in [6],[7].

In Section 2, we shall recall the description of Lorentzian three-manifolds (M, gf )
admitting a parallel null vector field and the definition and basic properties of ho-
mogeneous (pseudo-Riemannian) structures. Then, in Section 3 we shall write down
and solve the system of partial differential equations determining a homogeneous
structure on (M, gf ) in terms of its local components and we shall give the complete
classification of locally homogeneous spaces (M, gf ).

2 Preliminaries

We start with a short description of Lorentzian three-manifolds admitting a parallel
null vector field, referring to [3] for more details and further results. Such a manifold
(M, g) admits a system of canonical local coordinates (t, x, y), adapted to a parallel
plane field in such a way that ∂

∂t
is the parallel null vector field, and there exists

a smooth function f = f(x, y), such that the Lorentzian metric tensor g = gf is
described in local coordinates as follows:

(2.1) g =




0 0 1
0 ε 0
1 0 f


 ,

where ε = ±1. In the sequel, we shall denote by (M, gf ) this Lorentzian manifold. In
[3], a general description was provided for the wider class of Lorentzian three-manifolds
admitting a parallel degenerate line field, that is, having a null vector field u such that
∇u = ω⊗u for a suitable 1-form ω. In this more general case, the function f occurring
in (2.1) also depends on t. Restricting ourselves to the case when f = f(x, y), we have
that the Levi-Civita connection ∇ of (M, gf ) is completely determined by

(2.2) ∇∂x∂y =
1
2
fx∂t, ∇∂y∂y =

1
2
fy∂t − ε

2
fx∂x,

where we put ∂t = ∂
∂t

, ∂x = ∂
∂x

and ∂y = ∂
∂y

.
Next, the only non-vanishing local components of the curvature tensor are de-

scribed by
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(2.3) R(∂x, ∂y)∂x = −1
2
fxx∂t, R(∂x, ∂y)∂y =

ε

2
fxx∂x.

Since M is three-dimensional, its curvature is completely determined by the Ricci
tensor %. By (2.3) it easily follows that the local components of the Ricci tensor are
given by

(2.4) % =




0 0 0
0 0 0
0 0 − ε

2fxx


 .

In particular, (2.4) yields that (M, gf ) is flat if and only if fxx = 0.
We now recall the definition and basic properties of homogeneous pseudo-Rieman-

nian structures.

Definition 2.1. [5] Let (M, g) be a pseudo-Riemannian manifold. A homogeneous
pseudo-Riemannian structure is a tensor field T of type (1, 2) on M , such that the
connection ∇̃ = ∇− T satisfies

∇̃g = 0, ∇̃R = 0, ∇̃T = 0.

More explicitly, T is the solution of the following system of equations (known as
Ambrose-Singer equations):

g(TXY, Z) + g(Y, TXZ) = 0,(2.5)
(∇XR)Y Z = [TX , RY Z ]−RTXY Z −RY TXZ ,(2.6)
(∇XT )Y = [TX , TY ]− TTXY ,(2.7)

for all vector fields X, Y, Z. The geometric meaning of the existence of a homogeneous
pseudo-Riemannian structure is explained by the following

Theorem 2.2. [5] A connected, simply connected and complete pseudo-Riemannian
manifold (M, g) admits a homogeneous pseudo-Riemannian structure if and only if it
is a reductive homogeneous pseudo-Riemannian manifold.

If at least one of the hypotheses of connectedness, simply connectedness or com-
pleteness is lacking in Theorem 2.2, then the existence of a solution of (2.5)-(2.7)
implies that (M, g) is locally isometric to a reductive homogeneous space (and so,
locally homogeneous).

A three-dimensional homogeneous Lorentzian manifold is necessarily reductive.
This was proved in [4] and also follows independently from the classification the second
author gave in [2]. Therefore, the existence of a homogeneous structure on a Lorentzian
three-manifold is a necessary and sufficient condition for its local homogeneity.

3 Homogeneous structures on (M, gf)

In the sequel, we shall assume (M, gf ) non-flat, that is, fxx 6= 0. A homogeneous
Lorentzian structure T on (M, gf ) is uniquely determined by its local components T k

ij
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with respect to the coordinate vector fields {∂1 = ∂t, ∂2 = ∂x, ∂3 = ∂y}. Functions T k
ij

are defined by

T (∂i, ∂j) =
3∑

k=1

T k
ij∂k,

for all indices i, j, k. Writing the Ambrose-Singer equations (2.5)-(2.7) for the coordi-
nate vector fields ∂i, we obtain the equivalent system of equations

T r
ijgrk + T r

ikgrj = 0,(3.1)
∇i%jk = −T r

ij%rk − T s
ik%js,(3.2)

(∇iT )∂j = T∂iT∂j − T∂j T∂i − TT∂i
∂j ,(3.3)

for all indices i, j, k. Note that in (3.2) we took into account the fact that the curvature
is completely determined by the Ricci tensor %. Using (2.1), (2.2) and (2.4), from (3.1)
and (3.2) we get

(3.4)





T∂t
∂t = 0,

T∂i∂t = −T 3
i3∂t, i = 2, 3,

T∂i∂x = −εT 2
i3∂t, i = 1, 2, 3,

T∂t∂y = T 2
13∂x,

T∂i∂y = −fT 3
i3∂t + T 2

i3∂x + T 3
i3∂y, i = 2, 3,

T 3
23 = − fxxx

2fxx
,

T 3
33 = − fxxy

2fxx
.

From (3.3), we obtain the following system

(3.5)





∂t(T 2
13) = ∂x(T 2

13) = ∂y(T 2
13) = 0,

∂t(T 3
23) = ∂x(T 3

23) = ∂y(T 3
23) = 0,

∂t(T 2
23) = T 2

13(T
3
23 + εT 2

13),

∂x(T 2
23) = εT 2

23T
2
13,

∂y(T 2
23)− fx

2 T 2
13 − ε fx

2 T 3
23 = T 3

23T
2
33 − T 3

33T
2
23 + εT 2

33T
2
13,

∂t(T 2
33) = T 2

13(T
3
33 − T 2

23),

∂x(T 2
33)− fx

2 T 2
13 = T 3

33T
2
23 − 2T 3

23T
2
33 + fT 3

23T
2
13 −

(
T 2

23

)2
,

∂y(T 2
33)− fy

2 T 2
13 + ε fx

2 (T 2
23 − T 3

33) = fT 2
13T

3
33 − T 2

33T
2
23 − T 3

33T
2
33,

∂t(T 3
33) = −T 2

13T
3
23,

∂x(T 3
33) = −T 3

23(T
2
23 + T 3

33),

∂y(T 3
33) + ε fx

2 T 3
23 = −T 2

33T
3
23 −

(
T 3

33

)2
.

We note that T 2
13 and T 3

23 are real constants; hence, by the sixth equation in (3.4),
fxxx

fxx
must be constant. Now, put
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(3.6) T 2
13 = α, T 3

23 = β = −fxxx

2fxx
, T 2

23 = U, T 2
33 = V, T 3

33 = W = − fxxy

2fxx
,

where α, β are real constants and U, V, W are real-valued smooth functions on M.
Then, (3.5) becomes

(3.7)





∂tU = α(β + εα),
∂xU = εαU,

∂yU = fx

2 (α + εβ) + V (εα + β)− UW,
∂tV = α(W − U),
∂xV = α fx

2 + U(W − U) + β(αf − 2V ),
∂yV = ε fx

2 (W − U) + α
fy

2 + (αf − V )W − UV,
∂tW = −αβ,
∂xW = −β(U + W ),
∂yW = −εβ fx

2 − βV −W 2.

Since W depends only on x and y, it follows from (3.7) that αβ = 0, and (3.7) becomes

(3.8)





∂tU = εα2,
∂xU = εαU,

∂yU = fx

2 (α + εβ) + V (εα + β)− UW,
∂tV = α(W − U),
∂xV = α fx

2 + U(W − U)− 2βV,

∂yV = ε fx

2 (W − U) + α
fy

2 + (αf − V )W − UV,
∂tW = 0,
∂xW = −β(U + W ),
∂yW = −εβ fx

2 − βV −W 2.

Next, we derive the first and the second equation of (3.8) for x and t, respectively,
obtaining

∂x∂tU = 0, ∂t∂xU = α3.

Therefore, α = 0 and (3.8) reduces to

(3.9)





∂tU = 0,
∂xU = 0,

∂yU = εβ
2 fx + βV − UW,

∂tV = 0,
∂xV = U(W − U)− 2βV,
∂yV = ε

2fx(W − U)− V (W + U) ,
∂tW = 0,
∂xW = −β(U + W ),
∂yW = − εβ

2 fx − βV −W 2.

We now calculate ∂x∂yU by the third equation of (3.9) and, taking into account the
second equation and the expression of ∂xV and ∂xW , we get

(3.10) β
(ε

2
fxx + 2UW − 2βV

)
= 0.
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Moreover, deriving the last two equations of (3.9) respect to y and x, respectively and
using the expression of ∂yU, ∂xV, ∂xW and ∂yW , by the identity ∂x∂yW = ∂y∂xW
we get

(3.11) β
(
−ε

2
fxx + U2 + 2βV + W 2

)
= 0.

Summing up (3.10) and (3.11), then we obtain

β (U + W )2 = 0.

This leads to distinguish two cases:

First Case: β = 0.
In this case, fxx only depends on y and the system (3.9) reduces to

(3.12)





∂tU = 0, ∂xU = 0, ∂yU = −UW,
∂tV = 0, ∂xV = U(W − U), ∂yV = ε

2fx(W − U)− V (W + U) ,
∂tW = 0, ∂xW = 0, ∂yW = −W 2,

By the last equation of (3.12), we can distinguish two subcases:
I a): If W = 0: we have that fxx is constant. Thus,

(3.13) f(x, y) =
θ

2
x2 + F (y)x + G(y),

where θ 6= 0 is a real constant and F , G are smooth functions. Moreover, U = uo,
with uo a real constant, and the system (3.12) becomes

(3.14)

{
∂xV = −u2

o,

∂yV = − εuo

2 fx − uoV.

Derive the first equation of (3.14) with respect to y and the second respect to x. Since
∂y∂xV = ∂y∂yV we get

uo

(
u2

o −
ε

2
fxx

)
= 0.

If uo = 0, we obtain V = vo, with vo a real constant, U = W = 0 and f(x, y)
determined by (3.13).
If uo 6= 0, then fxx = 2εu2

o and so, in (3.13) we have θ = 2εu2
o. The system (3.14)

implies that V (x, y) = −u2
ox + H(y), with

(3.15) H ′(y) + uoH(y) +
εuo

2
F (y) = 0,

where H is a smooth function.
I b): If W 6= 0, the last equation of (3.12) gives

(3.16) W (y) =
1

y + k
,

where k is a real constant. On the other hand, W = − fxxy

2fxx
, thus
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(3.17) f(x, y) =
s

2(y + k)2
x2 + P (y)x + Q(y),

with s 6= 0 a real constant (since fxx 6= 0). Next, from the third equation of (3.12)
and by (3.16), if U 6= 0, we deduce

(3.18) U =
r

y + k
,

for a real constant r 6= 0. On the other hand, the case U = 0 can not occur. In fact,
if U = 0 then by (3.12) we get





∂tV = 0,
∂xV = 0,
∂yV = ( ε

2fx − V )W.

Deriving the last equation of the above system by x and using the fact that V = V (y)
and W = W (y), we obtain fxxW = 0, which is a contradiction, since (M, g) is not
flat and W 6= 0. Now, from (3.12), we calculate

∂y∂xV = 2UW (U −W ),

∂x∂yV = (U −W )
(
U(U + W )− ε

2
fxx

)
,

which, together with (3.16), (3.17) and (3.18), imply

(r − 1)(2r2 − 2r − εs) = 0.

So, if r = 1 then U(y) = W (y) = 1
y+k and from (3.12) we easily get V (y) = σ

(y+k)2
,

for a real constant σ, and f is given by (3.17).
If r = 1±√1+2εs

2 , with 1 + 2εs ≥ 0 and s 6= 0, because W (y) = 1
y+k , (3.12) becomes

(3.19)





∂tV = 0,
∂xV = − εs

2(y+k)2
,

∂yV =
ε(1∓

√
1+2εs)

4(y+k) fx − (3±
√

1+2εs)
2(y+k) V.

The second equation in (3.19) gives

(3.20) V (x, y) = − εs

2 (y + k)2
x + L(y),

where L = L(y) is a smooth function. Next, deriving the above expression of V by y,
we find

(3.21) ∂yV =
εs

(y + k)3
x + L′(y).

We compare (3.21) together with the third equation in (3.19). Taking into account
the expression of fx deduced by (3.17), we obtain

(3.22) L′(y) +

(
3±√1 + 2εs

)

2 (y + k)
L(y) =

ε
(
1∓√1 + 2εs

)

4 (y + k)
P (y).
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Then, V is given by (3.20), under the condition that (3.22) is satisfied.

Second Case: β 6= 0.
In this case W = −U = − fxxy

2fxx
and the system (3.9) becomes

(3.23)





∂yU = εβ
2 fx + βV + U2,

∂tV = 0,
∂xV = −2U2 − 2βV,
∂yV = −εfxU.

Hence, U only depends on y. The first equation of (3.23), derived with respect to the
x, gives

(3.24) ∂xV = −ε

2
fxx.

We compare the above formula with the third equation of (3.23), getting

V =
1
β

(ε

4
fxx − U2

)
.

Now, taking into account the first and the third equation of (3.23), and making use
of the (3.24), we get

(3.25) 2Uy =
ε

2
(fxx + 2βfx).

Since fxxx

2fxx
= −β, we can integrate with respect to the x and we obtain

fxx = ±eM(y)−2βx,

where M = M(y) is a smooth function. Again integrating with respect to the x, we
find

(3.26) fx(x, y) = ∓eM(y)−2βx

2β
+ N(y),

with N a smooth function only depending on y. Taking into account (3.25), since
U = fxxy

2fxx
, it holds:

(3.27) M ′′(y) = εβN(y).

Thus, integrating again (3.26) with respect to the x, we obtain

(3.28) f(x, y) = ±eM(y)−2βx

4β2
+

ε

β
M ′′(y)x + R(y),

where R = R(y) is a smooth function. Therefore, calculations above lead to the
following

Theorem 3.1. Let (M, gf ) be a non-flat Lorentzian three-space admitting a parallel
null vector field. (M, gf ) is locally homogeneous if and only for its defining function
f , one of the following statements holds true:
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(i) (locally symmetric case) there exist a real constant θ 6= 0 and two one-variable
smooth functions F and G, such that

f(x, y) =
θ

2
x2 + F (y)x + G(y);

(ii) there exist a real constant s 6= 0 and two one-variable smooth functions P and
Q, such that

f(x, y) =
s

2(y + k)2
x2 + P (y)x + Q(y);

(iii) there exist two one-variable smooth functions M and R, such that

f(x, y) = ±eM(y)−2βx

4β2
+

ε

β
M ′′(y)x + R(y).

Notice that in order to prove Theorem 3.1, we completely solved the system (3.1)-
(3.3). Thus, we also obtained the complete classification of homogeneous structures
on (M, gf ), summarized in the following

Proposition 3.2. Let (M, gf ) be a non-flat locally homogeneous Lorentzian three-
space admitting a parallel null vector field. All and the ones homogeneous structures
on (M, gf ) are determined (through their local components T k

ij with respect to the
coordinate vector fields) by (3.6), where α = 0, β is a real constant and U, V,W are
smooth real-valued functions for which one of the following statements holds true:

(i) If f satisfies (3.13), then β = 0, W = 0 and

• either U = 0 and V = v0 is constant, or

• U = u0 6= 0 is constant and V (x, y) = −u2
ox+H(y), for a smooth function

H satisfying (3.15). In this case, θ = 2εu2
0 in (3.13).

(ii) If f satisfies (3.17), then

• either there exist two real constants k and σ, such that U(y) = W (y) = 1
y+k

and V (y) = σ
(y+k)2

, or

• there exist two real constants k and s 6= 0, such that U = 1±√1+2εs
2(y+k) ,

W (y) = 1
y+k and V (x, y) = − εs

2(y+k)2
x + L(y), for a smooth function L

satisfying (3.22).

(iii) If f satisfies (3.28), then β 6= 0, U(y) = −W (y) = M ′(y)
2 and V (x, y) =

1
4β (±εeM(y)−2βx −M ′(y)2), for a smooth function M .
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Département de Mathématiques et Informatique,
Oran, Algérie.
E-mail: wafa.batat@enset-oran.dz

Giovanni Calvaruso
Dipartimento di Matematica ”E. De Giorgi”,
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