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Abstract. A Lagrangian or an affine Hamiltonian is called totally sin-
gular if it is defined by affine functions in highest velocities or momenta
respectively. A natural duality relation between these Lagrangians and
affine Hamiltonians is considered. The energy of a second order affine
Hamiltonian is related with a dual corresponding Lagrangian of order
one. Relations between the curves that are solutions of Euler and Hamil-
ton equations of dual objects are also studied using semi-sprays. In order
to generate examples of second order, a natural lifting procedure is con-
sidered.
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1 Introduction

In the case of hyperregular Lagrangians and Hamiltonians, a duality between La-
grangians and Hamiltonians is usually given by a Legendre transformation. Using
constraints or symplectic technics, one can handle dualities between large classes of
singular Lagrangians and Hamiltonians. We are concerned in this paper with La-
grangians and Hamiltonians that have null vertical Hessians, i.e. the ,,most singular”
Lagrangians and Hamiltonians; they are affine in velocities and in momenta respec-
tively and are called here totally singular ones. The Lagrangian case is remarked in
[2], where it is related to a classification of singular Lagrangians. Marsden and Ratiu
are concerned in [6] with a special case, called here the regular one, when the vector
field given by the Euler equation is uniquely determined. A classification of dynamic
solutions using constraints is considered in [3].

We define in the paper allowed totally singular Lagrangians, i.e. Lagrangians affine
in velocities together with a vector field that is a solution of its Euler equation (in
[2] one say that the Lagrangian allows a global dynamics). We consider a duality of
a such Lagrangian with a corresponding allowed totally singular Hamiltonian that is
affine in momenta, so that the Legendre map sends lifts of the integral curves of the
Euler equation to integral curves of the Hamilton equation (Proposition 2.1). Every
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allowed Lagrangian has a dual allowed Hamiltonian, but the converse is true only
locally (Proposition 2.2). Certain examples of allowed Lagrangians and Hamiltonians
are given.

In the second section we consider allowed totally singular Lagrangians and affine
Hamiltonians of second order, having null vertical Hessians of 2-velocities and mo-
menta respectively. A duality is considered also in this case. An allowed Lagrangian
has a dual allowed Hamiltonian, but for the converse situation, Theorem 3.4 asserts
that, assuming some conditions, an allowed Hamiltonian of second order has a al-
lowed Lagrangian of second order and both can be related to ordinary dual allowed
Lagrangians and Hamiltonians on TM . A study of some classes of allowed Lagrangians
of second order, including some considered in [6], is performed, obtaining differential
equations that have as solutions curves that verify the Euler-Lagrange equations. In
order to have consistent examples of allowed Lagrangians and Hamiltonians of second
order, a lifting procedure is given from the first to the second order, in the regular
case. In this way, certain examples considered in the first section, or examples con-
sidered in [6] or [2] can be lifted to allowed Lagrangians and Hamiltonians of second
order.

The paper is addressed mainly to a reader interested in geometric mechanics.
We avoid abstract and general constructions, or to mention and to extend some re-
lated problems (such as affine bundles, some aspects of analytical mechanics or Lie
algebroids). We use coordinates on the second order tangent spaces as in [7, 10]. Con-
cerning some new examples we give, we have in mind not to bring over, but to bring
in attention. Further developments can be done to foliations (as in [5]), to a complex
setting (as in [11]) or to other singular cases (as in [14]).

2 Totally singular Lagrangians and Hamiltonians of
order one

A Lagrangian L : TM → IR is totally singular if it is affine in velocities, or, equiva-
lently it has a null vertical Hessian. This class of Lagrangians is considered in [6], [1],
[2], [3] etc. A totally singular Lagrangian L has the form L(x, y) = α(y) + β, where
α ∈ X ∗(M) and β ∈ F(M). Using local coordinates,

(2.1) L(xi, yi) = αi(xj)yi + β(xj).

The Euler equation of L, d
dt

(
∂L
∂yi

)
= ∂L

∂xi , becomes

(2.2)
(

∂αi

∂xj
− ∂αj

∂xi

)
ϕj =

∂β

∂xi
,

where dxi

dt = yi not.= ϕi, or iϕdα = dβ.We are interested in the case when ϕ = ϕi ∂
∂xi ∈

X (M).
We say that a (local) vector field ϕ on M is allowed for L if it fulfills the condition

(2.2). In the case when ϕ is a global vector field, one say in [2] that L allows a global
dynamics. Briefly we say in that follows that the Lagrangian L is allowed if an allowed
vector field ϕ exists and it is considered implicitly associated with L if anything else is
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assumed. A dual totally singular Hamiltonian H (i.e. affine in momenta) is associated
here with an allowed L in order to give a natural correlation between the solutions of
the Lagrange equation of L and the Hamilton equation of H.

Some important particular cases are briefly described as follows. The regular case
is when dα is a symplectic form and β is arbitrary. The allowed vector field ϕ is in
this case the Hamiltonian vector field Xβ . A trivial case is when α is closed, when
β = const. and every ϕ ∈ X (M) is allowed for L. Another case is when dα has the rank
dim M − 1 and β = const. The vector subbundle ker dα ⊂ TM has a one dimensional
fibers, then L becomes allowed considering any section ϕ in ker dα. The case when the
equation (2.2) has multiple solutions is studied in [3], where a classification of such
Lagrangians related to their dynamics on TM is performed.

A Hamiltonian H : T ∗M → IR is totally singular (or affine in momenta) iff H has
a null vertical Hessian. The general form of H is

(2.3) H(x, p) = p(ϕ) + γ,

where ϕ ∈ X (M) is a vector field and γ ∈ F(M) is a real function; using coordinates
H(xi, pi) = piϕ

i(xj)+ γ(xj). The Hamilton equations of H are

(2.4)

{
dxi

dt = ϕi,
dpi

dt = −∂ϕj

∂xi pj − ∂γ
∂xi .

It follows that a integral curve γ = (xi, pi) : I = (a, b) → T ∗M (of the Hamilton
equations) projects to a curve π1 ◦ γ = xi : I → M , that is an integral curve of the
vector field ϕ = ϕi ∂

∂xi ∈ X (M).
All the Hamiltonians considered in this section are totally singular. Notice that

every curve γ in M that has the local form t → (γi(t)) lifts to a curve γ(1) in TM
that has the local form t → (γi(t), dγ

dt (t)). We say that γ(1) is the tangent lift of γ.
If ϕ is an allowed vector field for L, we denote by ΓL,ϕ the set of its integral curves
(in M); these curves are solutions of the Euler equation of L. If H : T ∗M → IR
is a Hamiltonian, we denote by ΓH the set of curves in T ∗M that are solutions of
Hamilton equation of H and by XH ∈ X (T ∗M) the Hamiltonian vector field of H.
In the sequel π : TM → M and π′ : T ∗M are the canonical projections. We say
that a Hamiltonian H having the form (2.3) and an allowed Lagrangian L having the
form (2.1) are in duality if the vector field ϕ that corresponds to H is allowed for L
(i.e. iϕdα = dβ) and L(x, ϕ) + H(x, α) − α(ϕ) = const. Using coordinates, the two
conditions are equivalent to (2.2) and β + γ + αjϕ

j = const. respectively. Since the
Lie derivative has the form Lϕ = iϕd + diϕ, it follows that the condition iϕdα = dβ
is equivalent to the condition Lϕα = d(α(ϕ) + β). Thus H and L are in duality iff
the conditions iϕdα = dβ and Lϕα = −dγ hold. The following characterization is
straightforward using the definitions and the above remarks.

Proposition 2.1. The allowed totally singular Lagrangian L and the totally singular
Hamiltonian H are in duality iff the following two conditions hold:

1. The projection of the Hamiltonian vector field XH , ϕ = π′∗XH , is an allowed
vector field for L.

2. The Legendre map L : TM → T ∗M of L sends every tangent lift of a curve
γ ∈ ΓL,ϕ to a curve L ◦ γ(1) ∈ ΓH .
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Proposition 2.2. 1. If L is an allowed totally singular Lagrangian, then it has a
dual H. If H and H ′ are two duals that correspond to a same allowed vector
field, then H −H ′ = const.

2. Let H be a totally singular Hamiltonian having the form (2.3). If ϕ 6= 0, then,
locally, there is a totally singular Lagrangian L that is a dual with H and has ϕ
as an allowed vector field.

Notice that the essential relation is

(2.5)
∂αi

∂xj
ϕj + αj

∂ϕj

∂xi
+

∂γ

∂xi
= 0,

or Lϕα+dγ = 0. It is a system of partial differential equations that (αi) must satisfy.
The final argument in the proof is obtained using the following Lemma.

Lemma 2.3. If ϕ 6= 0, then the system (2.5) allows always α as a local solution.

We consider below some examples. Other ones can be found in [2, 3].

Example 1. Let L : TM → IR be a regular Lagrangian and f ∈ F(TM). Then
L0 : TTM → IR, L0(xi, yi, Xi, Y i) = Xi ∂L

∂yi (xj , yj) + f(xj , yj) is a regular totally
singular Lagrangian. The Euler equations of L0, gives a vector field G(f) = −gij ∂f

∂yj

∂
∂xi + gij

((
∂2L

∂xp∂yj − ∂2L
∂xj∂yp

)
gpq ∂f

∂yq + ∂f
∂xj

)
∂

∂yi ∈ X (TM) . If f ∈ π∗F(M), then
G(f) is a vertical vector field. In the particular case when L comes from a Riemannian
metric on M , then G(f) is the vertical lift of the usual gradient of f . The dual Hamil-
tonian is H0 : T ∗TM → IR, H0(xi, yi, p(0)i, p(1)i) = Xip(0)i+Y ip(1)i+γ(xj , yj), where

Xi = −gij ∂f
∂yj and Y i = gij

((
∂2L

∂xj∂yk − ∂2L
∂xk∂yj

)
Xk + ∂f

∂xj

)
, thus γ = gij ∂f

∂yj
∂L
∂yi − f .

In particular, when L = 1
2F , F is 2-homogeneous and f(xi, yj) = − 1

2F (xi, yj)+h(xi),
then Xi = yi and the solutions of the Euler-Lagrange equations are the integral curves
of a (first order) semi-spray (xi, yi) S→ (xi, yi, yi, Si(xi, yi)). For example, it is the case
when L = 1

2gij(xk)yiyj comes from a (pseudo) Riemannian metric g.

Example 2. The vector field given by Euler equations for the rotational dynamics
of a rigid body about its center of mass, in absence of external forces (see [6, section
1.2 and chapter 15]), can be associated with a totally singular Lagrangian, as follows.
Consider (Π1,Π2, Π3) ∈ IR3, Ii ∈ IR∗+, i = 1, 3, and the 1-form F = I1Π1(Π2

2+
Π2

3)dΠ1+ I2Π2(Π2
3+ Π2

1)dΠ2+ I3Π3(Π2
1+ Π2

2)dΠ3. If I1 6= I2 6= I3 6= I1, then dF has
rank 2 on an open domain, dense in IR3. The totally singular Lagrangian L(Πi, Π̇i) =
I1Π1Π̇1(Π2

2 +Π2
3)+ I2Π2Π̇2(Π2

3 +Π2
1)+ I3Π3Π̇3(Π2

1 +Π2
2) is allowed according to ϕ =

Π2Π3 (I2 − I3) ∂
∂Π1

+ Π3Π1 (I3 − I1) ∂
∂Π2

+ Π1Π2 (I1 − I2) ∂
∂Π1

∈ kerF .

Example 3. Let Ω = dω be a symplectic form on M , Xf ∈ X (M) be the
Hamiltonian vector field of an f ∈ F(M). Then the totally singular Lagrangian
L(xi, yi) = yiωi + f is allowed and the solutions of the Euler equation of this La-
grangian are the integral curves of Xf . A particular case is contained in Example
1.

Example 4. Let X ∈ X (D), f ∈ F(D), where D ⊂ IRm is open , m ≥ 2, Xx 6= 0,
dfx 6= 0, (∀)x ∈ D, and X(f) = 0 on D. Let us say that f is a critical function for X.
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It can be easily proved that every point x0 ∈ D has a neighborhood D0 ⊂ D such that
there are local coordinates (zi)i=1,m on D0 such that X = ∂

∂z2 and f(zi) = z1. Let us
suppose that D = D0 and define ω ∈ X ∗(D), ω = z1dz2+ω̃, where ω̃ ∈ X ∗(D) has the
form π∗ω1, π : D → D1, (zi) π→ (z3, . . . , zm), D1 ⊂ IRm−2 is open and ω1 ∈ X ∗(D1).
We have obviously iXdω = df , thus the totally singular Lagrangian L(xi, yi) =

yiωi + f is allowed. When m = 2n we can consider ω =
n∑

α=1

z2α−1dz2α; in this case

dω is symplectic and the totally singular Lagrangian L(zi, wi) =
n∑

α=1

z2α−1w2α + z1

is regular, thus it is allowed with the corresponding vector field X.

Example 5. The totally singular Lagrangian L(x1, x2, y1, y2) = ex1
y2 on IR2 is

regular.

Example 6. The Hamiltonian H(x1, x2, p1, p2) = ex1
p2 on IR2 is totally singular.

The corresponding vector field is ϕ = ex1 ∂
∂y2 . If we look for a differential form α =

α1(x1, x2)dx1 + α2(x1, x2)dx2 such that the Lie derivative Lϕα = 0, we obtain that
α1 = −x2f(x1) + c and α2 = f(x1). Then dα = (f(x1) + f ′(x1))dx1 ∧ dx2. The
condition that α be non-degenerated is f + f ′ 6= 0.

3 Second order Hamiltonians and Lagrangians

A coordinate construction of T kM , k ≥ 2, can be found in [7]-[10], or in [13] most
used in this paper. The adapted coordinates on T 2M on the domain of an adapted
chart are (xi, yi = y(1)i, y(2)i); they change according to the rules xi′ = xi′(xi),

y(1)i′ = ∂xi′

∂xi y(1)i, y(2)i′ = 1
2

∂2xi′

∂xi∂xj y(1)iy(1)j + ∂xi′

∂xi y(2)i. A section S : TM → T 2M

of the affine bundle T 2M
π2→ TM is called a (first order) semi-spray on TM . It can

be regarded as well as a vector field Γ0 on the manifold TM , since T 2M ⊂ TTM .
The total space of the induced vector bundle π∗1T ∗M is also the total space of a
fibered manifold (TM ×M T ∗M, r2,M). It is used in [8, 13] in the study of the dual
geometrical objects of second order on M , in particular the second order Hamiltonians
on M . In the sequel we denote π∗1T ∗M = T 2∗M , considered as a vector bundle over
TM . The tensors defined on the fibers of the vertical vector bundle V 2

1 M → T 2M of
the affine bundle T 2M

π2→ TM , or on the fibers of an open fibered submanifold, are
called d-tensors of second order on M . For example, d-vector fields of second order
are sections of V 2

1 M → T 2M , or, equivalently, of T 2M ×M TM = π∗2TM → T 2M ;
a d-covector field of second order (or a second order d-form on T 2M , for short) is a
section of T 2M ×M T ∗M = π∗2T ∗M → T 2M ; a bilinear d-form on T 2M is a section
of T 2M×M (T ∗M ⊗ T ∗M) = π∗2(T ∗M⊗ T ∗M) → T 2M ; and so on.

A Lagrangian of second order on M is a differentiable function L : T 2M → IR or
L : W → M , where W ⊂ T 2M is an open subfibered manifold. For example, in [7]-
[10] W = T̃ 2M is T 2M\{0} (where {0} is the image of the ,,null” velocities) and L :
T 2M → IR is continuous. If u ∈ TM , then the fiber T 2

uM = π−1
2 (u) ⊂ T 2M is a real

affine space, modeled on the real vector space Tπ(u)M . The vectorial dual of the affine
space T 2

uM is the vector space of affine morphisms T 2
uM† = Aff(T 2

uM, IR). Denoting
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by T 2M† = ∪
u∈T k−1M

T 2
uM† and π† : T 2M† → TM the canonical projection, then

(T 2M†, π†, TM) is a vector bundle. There is a canonical vector bundle epimorphism
over the base TM , Π : T 2M† → T 2∗M . This projection is also the canonical projection
of an affine bundle with the fiber IR. An affine Hamiltonian of second order on M is
a section h : T 2∗M → T 2M† of this affine bundle (or of an open fibered submanifold
W ⊂ T 2∗M), i.e. Π ◦ h = 1T 2∗M (or Π ◦ h = 1W respectively). Thus an affine
Hamiltonian is not a real function, but a section in an affine bundle with a one
dimensional fiber.

The definition of a affine Hamiltonian was first considered in [13], in order to create
a canonical duality Lagrangian - Hamiltonian, via a Legendre map. The Hamiltonians
considered in [9] are called in [13] as em vectorial Hamiltonians; they are not in a
canonical duality with Lagrangians of higher order (see [13] for more details).

We consider some local coordinates (xi) on M , (xi, yi) on TM , and (xi, yi, pi, T ) on
T 2†M . The vector bundle morphism Π is given in local coordinates by (xi, yi, pi, T ) Π→
(xi, yi, pi). The coordinates pi and T change according to the rules pi′ =

∂xi

∂xi′ pi and

T ′ = T+ 1
2yj ∂yi′

∂xj
∂xi

∂xi′ pi respectively. Thus the local function H0 changes according
to the rule

(3.1) H ′
0(x

i′ , yi′ , pi′) = H0(xi, yi, pi) +
1
2
yjyk ∂2xi′

∂xj∂xk

∂xi

∂xi′ pi.

The corresponding map h : T 2∗M → T 2†M has the local form h(xi, yi, pi) = (xi, yi,

pi, H0(xi, yi, pi)). It is easy to see that ∂H′
0

∂pi′
= ∂xi′

∂xi
∂H0
∂pi

+ 1
2yjyk ∂2xi′

∂xj∂xk . Thus there

is a Legendre∗ map H : T 2∗M → T 2M , given in local coordinates by (xi, yi, pi)
H→

(xi, yi,Hi), Hi(xi, yi, pi) = ∂H0
∂pi

(xi, yi, pi). It is easy to see that hij = ∂2H0
∂pi∂pj

is a
symmetric bilinear d-form on TM , which we call the vertical Hessian of h. For an
affine Hamiltonian h of second order and the local domain U , the energy EU is given
by the local formula EU = p(0)iy

i + 2H0(xi, yi, p(1)i). It can be proved (see [13]) that

the local functions EU glue together in a global function E0 : T ∗T̃ 1M → IR. We say
that an affine Hamiltonian is totally singular if its vertical Hessian is null. A totally
singular affine Hamiltonian h of second order on M has a local form

(3.2) H0(xj , yi, pi) = piS
i(xj , yj) + f(xj , yj),

where (Si) defines an affine section S : TM → T 2M given locally by (xi, yi) S→
(xi, yi, Si) and f ∈ F(TM). It defines also a (first order) semi-spray, denoted by
Γ0 ∈ X (TM), given locally by the formula

(3.3) Γ0 = yi ∂

∂xi
+ 2Si ∂

∂yi
,

that we call the associated semi-spray of h.
For example, let Γ0 = y(1)i ∂

∂xi + 2Si ∂
∂y(1)i be the local form of a first order semi-

spray. Then the formula H0(xi, pi) = Sipi defines a totally singular affine Hamiltonian
of second order. In particular, one Γ0 can be the first order semi-spray defined by a
regular Lagrangian L0 : TM → IR (see [7]).
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Given a totally singular affine Hamiltonian h having the local form 3.2, its energy
E = p(0)iy

(1)i + 2p(1)iS
i + 2f is a totally singular Hamiltonian E : TM → T ∗TM . Let

us look for a totally singular Lagrangian on TM , that is in duality with E . The vector
field on TM , that corresponds to E is ϕ = Γ0 = y(1)i ∂

∂xi + 2Si ∂
∂y(1)i , the first order

semi-spray defined by h. We denote ϕ(0)i = y(1)i, ϕ(1)i = 2Si(xj , y(1)j) and γ = f .
The system (2.5), where additionally α := ᾱ, with

(3.4) ᾱ = α(0)idxi + α(1)idy(1)i,

becomes: 2∂Sj

∂xi α(1)j +2 ∂f
∂xi +Γ0(α(0)j) = 0, α(0)i+2 ∂Sj

∂y(1)i α(1)j +2 ∂f
∂y(1)i +Γ0(α(1)j) = 0,

Denoting by H0(xi, y(1)j , p(1)j) = Sip(1)i+f , then this system of partial differential
equations becomes:

(3.5)

{
2∂H0

∂xi (xi, y(1)j , α(1)j) + Γ0(α(0)j) = 0,

α(0)i + 2 ∂H0
∂y(1)i + Γ0(α(1)j) = 0,

Taking α(0)i from the second equation, the first equation becomes

(3.6) Γ0(α(1)i) = 2
∂H0

∂xi
(xi, y(1)i, α(1)i).

Let us denote by Fi ∈ F(T 2∗M) the right side of this equation. Let {zα}α=1,3m

be a system of local coordinates on the manifold T 2∗M such that Γ0 = ∂
∂z1 . Then

the local form of the differential equation (3.6) is ∂1α(1)i

∂z1 = Fi(zα, α(1)i). It is obvious
that this differential equation has local solutions.

There are canonical projections T 2†M π→ T 2∗M = TM ×M T ∗M
p1→ TM . If

α = (αi(xj , y(1)j)) is a d-form on TM , let α′ : TM → T 2∗M = T 1M ×M T ∗M
be the map defined by α′(z) = (z, αz). We say that a map hα : TM → T 2†M
is an α-Hamiltonian if π ◦ hα = α′. Using local coordinates, the local form of hα is
(xj , y(1)j) h→ (xj , y(1)j , αi(xj , y(1)j), −h0(xj , y(1)j)) and the local functions h0 change
on the intersection of two coordinate charts according to the rule 2h′0(x

j′ , y(1)j′) =
2h0(xj , y(1)j) + Γ(y(1)i′)αi′ . For example, if χ : T 2∗M → T 2†M is an affine Hamil-
tonian and α : TM → TM ×M T ∗M is a d-form on TM , then hα = χ ◦ α′ is an
α-Hamiltonian.

Proposition 3.1. Let

(3.7) L(xj , y(1)j , y(2)j) = 2y(2)iαi(xj , y(1)j)− 2h0(xj , y(1)j),

where α = (αi) is a d-form on TM and h0 is the local form an α-Hamiltonian hα.
Then L ∈ F(T 2M).

A second order Lagrangian L : T 2M → IR gives rise to an integral action I(γ) =∫ 1

0
L

(
xi, dxi

dt , 1
2

d2xi

dt2

)
dt on curves γ : [0, 1] → M , t

γ→ (xi(t)), γ(1)(0) = x
(1)
0 , γ(1)(1) =

x
(1)
1 . The critical curves of this action, obtained by a variational condition, verify the

well-known Lagrange equation of second order (see, for example, [7]):

(3.8)
∂L

∂xi
− d

dt

∂L

∂y(1)i
+

1
2

d2

dt2
∂L

∂y(2)i
= 0.
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The dual counterpart of this action is the integral action of an affine Hamiltonian
h on a curve γ : [0, 1] → T ∗M , using the formula:

(3.9) I(γ) =
∫ 1

0

[
pi

d2xi

dt2
− 2H0

(
xi,

dxi

dt
, pi

)]
dt,

where γ has the local form t
γ→ (xi(t), pi(t)). The critical condition (or Fermat condi-

tion in the case of an extremum) can be used for the integral action; one obtains the
Hamilton equation in the condensed form:

(3.10)

{
1
2

d2pi

dt2 − ∂H0
∂xi + d

dt
∂H0

∂y(1)i = 0,
1
2

d2xi

dt2 − ∂H0
∂pi

= 0.

(See [13] for more details.)
Let h and L be totally singular of second order, having the local forms (3.2)

and (3.7) respectively. Then a d-form on TM , given locally by α = (αi(xj , y(1)j)),
corresponds to L and a first order semi-spray Γ0, given by formula (3.3), corresponds
to h. We say that L is in duality with h if the formula (3.6) holds, with α(1)i = αi

and hα = h ◦ α′ (i.e. the α-Hamiltonian hα corresponds to h and α). Using relation
(3.7), one can prove the following fact.

Lemma 3.2. If L is in duality with h, then ∂H0
∂xi (xi, y(1)i, αi) = − ∂L

∂xi (xi, y(1)i, Si)
and ∂H0

∂y(a)i (xi, y(1)i, αi) = − ∂L
∂y(a)i (xi, y(1)i, Si).

We say also that a totally singular Lagrangian L of second order is allowed if
there is a first order semi-spray Γ0 and a d-form α = (αi) such that the following
formula holds Γ0(αi) = −2 ∂L

∂xi (xi, y(1)i, αi) + 2Γ0

(
∂L

∂y(1)i

)
. Notice that for a second

order Lagrangian, this condition is analogous to the condition (2.2), obtained in the
first order case.

It is easy to see that a totally singular Lagrangian of second order is allowed if it
is in duality with a totally singular Hamiltonian of second order. Thus a local dual
of a totally singular Hamiltonian of second order is allowed. One can easily check the
validity of the following result.

Proposition 3.3. Let α = (αi(xj , y(1)j)) be a d-form on TM and h : TM → T 2†M
be an α-Hamiltonian such that there is a 1-form ᾱ ∈ X ∗(TM) such that α is the top
component of ᾱ, i.e. ᾱ = α(0)idxi + α(1)idy(1)i, with α(1)i = αi. Then the formula

(3.11) L(xj , y(1)j , Y (0)i, Y (1)i) = (Y (0)i − y(1)i)α(0)i + Y (1)iα(1)i − h

defines a totally singular Lagrangian L : TTM → IR.

The restriction of L to T 2M , has the form L0(xj , y(1)j , y(2)j) = y(2)iαi − h. Thus
if a totally singular Lagrangian L0 on T 2M has the property that α = (αi) is the
top component of a 1-form α′ on TM , then L0 is the restriction to T 2M of a totally
singular Lagrangian L on TM (since T 2M ⊂ TTM).

Let h be a totally singular Hamiltonian of second order on M , i.e. H0(xj , y(1)j ,
pi) = piS

i(xj , y(1)j) + f(xj , y(1)j). We can consider a local 1-form ᾱ = α(0)idxi +
α(1)idy(1)i that is a solution of the system (3.5). Considering the d-form α on TM ,
defined by its top component, we can construct a totally singular Lagrangian of second
order on M .
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Theorem 3.4. Let h be a totally singular affine Hamiltonian of second order. If the
system (3.6) has a d-form α = (α(1)i) on TM as a global solution, then there is a
totally singular allowed Lagrangian, L : TTM → IR (on TM), such that:

1. The energy E of h is a dual Hamiltonian of L.

2. The restriction of L to T 2M ⊂ TTM is an allowed totally singular Lagrangian
L1 : T 2M → IR (of second order on M).

3. The pairs (h,L1) and (E , L) are each dual pairs.

Notice that Theorem 3.4 can be adapted in the case when the d-form α = (α(1)i)
has a solution on an open fibered submanifold of T 2∗M → TM .

Every curve γ in M that has the local form t → (γi(t)) lifts to a curve γ(2) in
T 2M that has the local form t → (γi(t), dγi

dt (t), 1
2

d2γi

dt2 (t)), called the 2-tangent lift of
γ.

Proposition 3.5. Let t
γ1→ (γi

1(t), γ
(1)i
1 (t)) be an integral curve of the first order

semi-spray Γ0 that corresponds to h and L be a dual Lagrangian. Then:

1. The curve γ1 is the tangent lift of a curve t
γ→ (γi(t)), i.e. γ1 = γ(1).

2. The curve t
γ2→ (γi, ωi) in T ∗M , where ωi(t) = αi(γi(t), dγ

dt (t)), is a solution of
Hamilton equation of h.

3. The curve γ given by 1. is a solution of Euler equation of L.

We remark in that follows that not all the solutions of the Lagrange equation of
a totally singular Lagrangian of second order come from the integral curves of a first
order semi-spray, but some come from the integral curves of a second order semi-spray.

Let L : T 2M → IR be a totally singular Lagrangian, i.e. L(xi, y(1)i, y(2)i) =
2y(2)iαi(xj , y(1)j) − 2β(xi, y(1)i). The Lagrange equation of L is ∂L

∂xi− d
dt

∂L
∂y(1)i +

1
2!

d2

dt2
∂L

∂y(2)i = 0.

Let us consider a curve on T 2M that is a solution of the Lagrange equation,
that has the form t → (xi(t), y(1)i(t) = dxi

dt , y(2)i(t) = 1
2

dy(1)i

dt ). By a straightforward
computation one obtain

∂L
∂xi − d

dt
∂L

∂y(1)i + 1
2

d2

dt2
∂L

∂y(2)i =

2dy(2)j

dt

(
∂αi

∂y(1)j − ∂αj

∂y(1)i

)
+ 2y(2)j

(
∂αj

∂xi − ∂2αj

∂xk∂y(1)i y
(1)k−

2 ∂2αj

∂y(1)k∂y(1)i y
(2)k + 2 ∂2β

∂y(1)j∂y(1)i + 2 ∂2αi

∂y(1)j∂xk y(1)k+

2 ∂2αi

∂y(1)k∂y(1)j y(2)k + ∂αi

∂xj

)− 2 ∂β
∂xi + 2 ∂2β

∂xk∂y(1)i y
(1)k + ∂2αi

∂xk∂xj y(1)ky(1)j .

First let us suppose that ∂αi

∂y(1)j − ∂αj

∂y(1)i = 0, i.e. locally there is a function α such

that αi = ∂α
∂y(1)i . In this case, since ∂L

∂xi − d
dt

∂L
∂y(1)i + 1

2
d2

dt2
∂L

∂y(2)i =

2y(2)j
(

∂αj

∂xi + ∂αi

∂xj + ∂2αi

∂y(1)j∂xk y(1)k + ∂2β
∂y(1)j∂y(1)i

)
−

2 ∂β
∂xi + 2 ∂2β

∂xk∂y(1)i y
(1)k + ∂2αi

∂xk∂xj y(1)ky(1)j .
It follows that along a curve that is a lift of a solution of the Euler equation, {y(2)j}
is a solution of an algebraic system of equations.
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Let us denote by gij = ∂αj

∂xi + ∂αi

∂xj + ∂2αi

∂y(1)j∂xk y(1)k + ∂2β
∂y(1)j∂y(1)i , by fi = 2 ∂β

∂xi −
2 ∂2β

∂xk∂y(1)i y
(1)k − ∂2αi

∂xk∂xj y(1)ky(1)j and let U ⊂ TM be their domain of definition.

Proposition 3.6. Let us suppose that there is a local vector field S = yi ∂
∂xi +

Si(xj , y(1)j) ∂
∂y(1)i : U → TTM such that gijS

j = fj. Then the image U ′ = S(U)
is included in T 2M and the image of an integral curve of S has the form γ(2), where
γ is a solution of the Euler equation of the Lagrangian L.

Corollary 3.7. Let us suppose that the local matrix (gij) is invertible and (gij) =
(gij)−1. Then, considering the local vector field S = yi ∂

∂xi + gjkfk
∂

∂y(1)i : U → TTM ,
the image U ′ = S(U) is included in T 2M and the image of an integral curve of S has
the form γ(2), where γ is a solution of the Euler equation of the Lagrangian L.

Notice that the above result is related with [4, Sect. 5].
An other interesting situation arises when the d-tensor ᾱij = ∂αj

∂y(1)i − ∂αi

∂y(1)j is
non-degenerated. In this case we look for a second order semi-spray, i.e. a vector field
X ∈ X (T 2M), X : T 2M → T 3M ⊂ TT 2M , having the local form X = y(1)i ∂

∂xi +
2y(2)i ∂

∂y(1)i + 3f i(xi, y(1)i, y(2)i) ∂
∂y(2)i = Γ + 3f i ∂

∂y(2)i , such that the Euler equation
holds along its integral curves. Let us consider an integral curve of X. Then along the
curve we have d

dt = X and
∂L
∂xi − d

dt
∂L

∂y(1)i + 1
2

d2

dt2
∂L

∂y(2)i = 2y(2)j ∂αj

∂xi − 2 ∂β
∂xi − 6f j ∂αj

∂y(1)i−
2y(2)jΓ

(
∂αj

∂y(1)i

)
+ 2Γ

(
∂β

∂y(1)i

)
+ 1

2Γ2(αi) + 6f j ∂αi

∂y(1)j =
∂L
∂xi − Γ( ∂L

∂y(1)i ) + 1
2Γ2(αi) − 6f j( ∂αj

∂y(1)i − ∂αi

∂y(1)j ). If we suppose that the d-tensor

ᾱij = ∂αj

∂y(1)i − ∂αi

∂y(1)j is non-degenerated and we denote by (ᾱij) = (ᾱij)−1, then

f j(xi, y(1)i, y(2)i) = 1
6 ᾱij

(
∂L
∂xi − Γ

(
∂L

∂y(1)i

)
+ Γ2(αi)

)
=

1
6 ᾱij

(
∂L
∂xi − Γ

(
∂L

∂y(1)i

)
+ 1

2Γ2
(

∂L
∂y(2)i

))
.

In order to have consistent examples of totally singular Lagrangians and affine
Hamiltonians of second order, we give an algorithm for lifting an allowed non-
degenerated non-singular Lagrangian of first order, to an allowed non-singular La-
grangian of second order, also non-degenerated.

We recall that if ᾱ ∈ X ∗(TM) has the local expression ᾱ = α(0)idxi + α(1)idy(1)i,
then the d-form α defined by (α(1)i) is called its top component. We say that the d-form

α on TM is non-degenerated if the matrix
(
αij = ∂αi

∂y(1)j

)
i,j=1,m

is non-degenerate in

every point of TM of coordinates (xj , y(1)j). We denote (αij) = (αij)−1. Notice that
the condition does not depend on coordinates. We say that the d-form α on TM is
s-non-degenerated (the initial s comes from skew-symmetric) if the matrix

(3.12)
(

α̃ij =
∂αi

∂y(1)j
− ∂αj

∂y(1)i

)

i,j=1,m

is non-degenerate in every point of TM of coordinates (xj , y(1)j). We denote (α̃ij) =
(α̃ij)−1. Notice that the condition does not depend on coordinates.

Let L : TM → IR, L(xi, y(1)i) = αi(xj)y(1)i + β(xj), be the general form of a
totally singular Lagrangian, where α ∈ X ∗(M), β ∈ F(M). We denote by αij =
(dα)ij = ∂αi

∂xj − ∂αj

∂xi , ω̄i = y(1)jαji and θ̄i = 1
2y(1)j ∂ω̄j

∂xi .
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Lemma 3.8. The couple (ω̄i, θ̄i) defines a covector field ω : TM → T ∗TM .

Let us suppose that dα is non-degenerate, i.e. L is regular (in our sense). Using
formula

(3.13) 2Si = αij (Γ (αj)− βj) ,

we obtain a section S : TM → T 2M . Then L̄(xi, y(1)i, y(2)i) = (y(2)i−Si(xj , y(1)j))ω̄i

+β(xj) is a Lagrangian of order 2 on M that has a null Hessian, and it is s-non-
degenerated, since ∂ω̄i

∂y(1)j − ∂ω̄j

∂y(1)i = 2αji.
We say that the totally singular Lagrangian L̄, of order 2, is the lift of the La-

grangian L; it is easy to see that L̄ is s-non-degenerated.
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