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Abstract. This paper presents the basic elements of geometrical modeling
in the dynamics of electroelastic materials subject to electromechanical
initial fields. We derive here the field and the constitutive equations, as
well as the boundary conditions, related to the behavior of incremental
fields superposed on large static initial deformation and electric fields.
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1 Introduction

The problems related to the mechanics of materials, focusing on the electroelastic
materials subject to incremental fields superposed on initial mechanical and electric
fields, have attracted considerable attention last period, due their complexity and to
multiple applications (see papers [2, 4, 20, 21, 22]). The basic equations of the theory
of piezoelectric bodies subject to infinitesimal deformations and fields superposed on
large initial mechanical and electric fields were described by Eringen and Maugin in
monograph [3].

We present here the fundamental equations of incremental fields superposed on
large static deformation and electric fields. Following the paper [1], we derive the
balance equations, constitutive equations and boundary conditions for this problem,
using the updated Lagrangean description. We analyze the important special case of
homogeneous initial state and non-polarizable environment. A detailed analysis may
be found in the monographic chapter [17]. Application of these results are analyzed
in papers [7]-[19].

2 The quasi-electrostatic approximation of balance
equations

We assume the material to be an hyperelastic dielectric, which is nonmagnetizable
and conducts neither heat, nor electricity. We shall use the quasi-electrostatic approx-
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imation of the equations of balance. Let BR be the reference configuration, in which
at time t = 0 the body is undeformed and free of all fields and Bt the present (cur-
rent) configuration. Let VR and Vt the geometric domains associated with BR and Bt,
endowed with the usual structure of differentiable manifolds. The material position
(reported to BR) and the spatial position (reported to Bt) of an arbitrary particle
X of the body will be denoted by X, resp. x. The first case is known as Lagrangean
description, while the second as Eulerian description of the deformation.

Let ρR and ρ be the mass densities of the body, referred to the configurations BR

and Bt. If J is the determinant of the deformation gradient F from BR to Bt, then
we obtain the mass conservation law (in Lagrangean description) in the form:

(2.1) ρJ = ρR.

Similarly, let qR and q be the volumetric electric charge densities, reported to BR

and Bt. Then, we determine the charge conservation law (in Lagrangean description)
as:

(2.2) qJ = qR.

Let T be electromechanical stress tensor of Cauchy type and S its symmetric part.
We suppose that the latter tensor is derived from Helmholtz free energy as in non-
linear elasticity, but now depending on electromechanical variables, as follows. Let E,
P and D be the electric field, the electric polarization and the electric displacement
vectors, respectively. Then, we have the following relations (see [3]):

(2.3) T = S−P⊗E, D = E + P.

The balance equations in the quasi-electrostatic approximation have the form (see
[3]):

(2.4) ρv̇ = divxT + ρf + qE + (P · ∇x)E, divxD = q, rotxE = 0.

Here v is the velocity field vector, f represents the mechanical body force and q is
the volumetric charge density. A superposed dot is used to denote the material time
derivative. In equations (2.4) we used the Eulerian description, the fields involved
depending on spatial coordinate x and on time t. Here one finds the electrostatic
form of Coulomb and Faraday laws. The first differential relation is derived from the
momentum balance.

Furthermore, the jump conditions and the electromechanical surface stress vector
tn, defined on the boundary ∂Vt, are given by:

(2.5) n · [D] = w, n× [E] = 0, tn = Tn = (S−P⊗E)n on ∂Vt.

Here w represents the surface charge density, n the exterior normal unit vector to the
boundary and [φ] = φ+ − φ− is the jump of the field φ across the boundary. From
now on, we shall denote simply by φ the inside limit value φ−.

The previous field equations and boundary conditions may be expressed in La-
grangean description using electromechanical stress tensors of Piola-Kirchhoff type.
They are related to the reference configuration BR and are defined by the relations:
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(2.6) Θ = JF−1S, Π = JF−1SF−T , Θ = ΠFT .

Here Θ and Π are the nominal electromechanical stress tensors of Piola-Kirchhoff
type related to the symmetric part S of the electromechanical stress tensor T of
Cauchy type. It is obvious that Π is a symmetric tensor.

Similarly, we introduce the lagragean version of vectors P, E and D, as follows:

(2.7) P = JF−1P, E = FT E, D = JF−1D = JF−1E + P .

Finally, using the first relation (2.3) we obtain the associated material version of
tensor T:

(2.8) T = JF−1T = Θ−P ⊗E.

Consequently, we derive from the momentum balance the Lagrangean form of the
balance equations:

(2.9) ρRü = divXT + ρRf + qRE + (P · ∇X)E, divXD = qR, rotXE = 0.

Here u is the displacement vector from BR to Bt. The differential operators are
associated with the reference configuration, while the various fields involved depend
on the material coordinate X and on time t.

Furthermore, the jump conditions and the electromechanical surface stress vector
tN, reported to the material configuration, are given by:

(2.10) N · [D] = wR, N× [E ] = 0, tN = T N = (Θ−P ⊗E)N on ∂VR.

Here N is the exterior normal unit vector to the boundary ∂VR and wR is surface
charge density per material surface area.

The previous balance equations are supplemented by the constitutive equations
(see [3]):

(2.11) Π =
∂H
∂G

, P = −∂H
∂E

where

(2.12) ρRψ = H(G, E)

is the electromechanical Helmholtz free energy, and

(2.13) G =
1
2
(C− 1) =

1
2
(FT F− 1)

is Green strain tensor.

3 Small deformation and electric fields superposed
on large static deformation and electric fields

In this part we describe the behaviour of incremental electromechanical fields su-
perposed on large initial electromechanical fields. In [3] one obtains these equations
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using the field equations corresponding to the spatial (eulerian) description of the
deformation. The perturbed electromechanical surface forces, as well as the surface
and volumetric charges, are taken in the perturbed current configuration. In [1], these
quantities are referred to the initially deformed static configuration, which is supposed
as being known (i.e. the updated Lagrangean description of the deformation). We shall
follow the second approach.

To describe this situation we use three different configurations : the reference con-
figuration BR in which at time t = 0 the body is undeformed and free of all fields; the
initial configuration

◦
B in which the body is deformed statically and carries the initial

fields; the present (current) configuration Bt obtained from
◦
B by applying time depen-

dent incremental deformations and fields. Let VR,
◦
V and Vt the geometric domains

associated with BR,
◦
B and Bt, endowed with the usual structure of differentiable

manifolds.
In what follows, all the fields related to the initial configuration

◦
B will be denoted

by a superposed ”◦”. The static deformation from BR to
◦
B is described by the relation

x = χ(X), the associated deformation gradient is
◦
F=

◦
F (X) and

◦
J= det

◦
F (X). Thus,

we obtain the mass conservation law, resp. the charge conservation law, in the form:

(3.1)
◦
ρ
◦
J= ρR,

◦
q
◦
J= qR.

Furthermore, due to the relations (2.3) we derive that:

(3.2)
◦
T=

◦
S −

◦
P ⊗

◦
E,

◦
D=

◦
E +

◦
P .

According to (2.4), the field equations for these static fields are:

(3.3) divx
◦
T +

◦
ρ
◦
f +

◦
q
◦
E +(

◦
P ·∇x)

◦
E= 0, divx

◦
D=

◦
q, rotx

◦
E= 0.

Here all the electromechanical fields depend on the variable x and on time t.
Consequently, the jump conditions and the electromechanical surface stress vector

◦
tn at the boundary ∂

◦
V are:

(3.4)
◦
n ·[

◦
D] =

◦
w,

◦
n ×[

◦
E] = 0,

◦
tn=

◦
T
◦
n= (

◦
S −

◦
P ⊗

◦
E)

◦
n on ∂

◦
V .

Here
◦
n is the exterior normal unit vector to the boundary ∂

◦
V .

The constitutive equations (2.11), giving the electromechanical stress tensor and

the electric polarization in the statical configuration
◦
B, become:

(3.5)
◦
Π=

∂H
∂G

(
◦
G,

◦
E),

◦
P= −∂H

∂E (
◦
G,

◦
E),

where

(3.6)
◦
Π=

◦
J
◦
F
−1 ◦

S
◦
F
−T

,
◦
P=

◦
J
◦
F
−1 ◦

P

and
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(3.7)
◦
G=

1
2
(
◦
F

T ◦
F −1),

◦
E=

◦
F

T ◦
E .

Now, we assume that time-dependent incremental deformations and fields are ap-
plied to the body in the initial configuration

◦
B, determining their description into

the current configuration Bt. Here, all the fields referred to
◦
B as reference configu-

ration, will be denoted by a subscript ”o”. Let u(x, t) the small displacement from
◦
B to Bt and let Fo = Fo(x, t) the gradient of deformation from

◦
B to Bt,

◦
B being

taken as reference configuration. We define the gradient of the displacement u(x, t)
by Ho(x, t), and Jo(x, t) as the determinant of Fo(x, t). All the fields involved are re-

garded as functions of x and t, when reported to
◦
B. For simplicity, we shall suppress

the argument x in the following notations. Thus, we obtain:

(3.8) Fo(t) = 1 + Ho(t), F(t) = Fo(t)
◦
F, J(t) = Jo(t)

◦
J .

Here F(t) is the deformation gradient from BR to Bt and J(t) is its determinant.

Consequently, to obtain the field equations referred to the configuration
◦
B, we

introduce the following Piola-Kirchhoff type fields:

(3.9)
Θo(t) = JoF−1

o (t)S(t) =
◦
J
−1 ◦

F Π(t)
◦
F

T

FT
o (t),

Πo(t) = JoF−1
o SF−T

o , Θo = ΠoFT
o ,

(3.10) Po(t) = Jo(t)F−1
o (t)P(t) =

◦
J
−1 ◦

F P(t), Eo(t) = FT
o (t)E(t),

(3.11) Do(t) = Jo(t)F−1
o (t)D(t) = Jo(t)F−1

o (t)E(t) + Po(t),

(3.12) T o(t) = Jo(t)F−1
o (t)T(t) = Θo(t)−Po(t)⊗E(t).

Furthermore,

(3.13) Ho(0) = 0, Fo(0) = 1, Jo(0) = 1.

Therefore,

(3.14) Θo(0) =
◦
S, Po(0) =

◦
P, Eo(0) =

◦
E, Do(0) =

◦
D, T o(0) =

◦
T .

In conclusion, we obtain the balance equations in updated Lagrangean description:

(3.15) ρ(t)Jo(t) =
◦
ρ, q(t)Jo(t) = qo,

(3.16)

◦
ρ ü(t) = divxT o(t)+

◦
ρ f(t) + qo(t)E(t) + (Po(t) · ∇x)E(t),

divxDo(t) = qo(t), rotxEo(t) = 0.
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Here qo(t) is the current volumetric electric charge density per unit material volume

in the configuration
◦
B.

We find that the jump conditions and the electromechanical surface stress vector
of Piola-Kirchhoff type are given by:

(3.17)

◦
n ·[Do(t)] = wo(t),

◦
n ×[Eo(t)] = 0,

ton(t) = T o(t)
◦
n= (Θo(t)−Po(t)⊗E(t))

◦
n on ∂

◦
V ,

where wo(t) is the current surface charge density per unit material surface aria in the

configuration
◦
B.

Finally, we give the constitutive relations in the form:

(3.18) Πo(t) =
∂H
∂G

(Go(t), Eo(t)), Po(t) = −∂H
∂E

(Go(t), Eo(t)),

where

(3.19) Go(t) =
1
2
(Fo(t)T Fo(t)− 1).

Now, we define by e(t) = e(x, t) the infinitesimal perturbation of the initial applied

electric field
◦
E:

(3.20) E(t) =
◦
E +e(t),

and using (3.8) we derive the useful relation

(3.21) F(t) =
◦
F +Ho(t)

◦
F .

In what follows, we suppose that the perturbations Ho(t) and e(t) are small, such
that the products of all terms containing Ho(t) and e(t) may be neglect. In particular,
we obtain

(3.22) Jo(t) = 1 + trHo(t), F−1
o (t) = 1−Ho(t).

Henceforward, we shall denote by a superposed bar the small perturbation of an
arbitrary field. So, we have for Green tensor

(3.23) G(t) =
◦
G +Ḡ(t), where Ḡ(t) =

◦
F

T

g(t)
◦
F .

Here

(3.24) g(t) =
1
2
(Ho(t) + HT

o (t))

is the associated infinitesimal strain tensor.
Similarly, we define the perturbation of the electric field Ē(t) by

(3.25) E(t) =
◦
E +Ē(t), where Ē(t) =

◦
F

T

(e(t) + HT
o (t)

◦
E).
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We also obtain that

(3.26) Θo(t) =
◦
S +Θ̄o(t), Π(t) =

◦
Π +Π̄(t), Θ̄o(t) =

◦
J
−1 ◦

F Π̄(t)
◦
F

T

+
◦
S HT

o (t).

The previous relation shows that the stress perturbation Θ̄o(t) is known if the stress
perturbation Π̄(t) is known, and vice-versa.

Next, we define

(3.27) Po(t) =
◦
P +P̄o(t), P(t) =

◦
P +P̄(t), with P̄o(t) =

◦
J
−1 ◦

F P̄(t).

Thus, the perturbation P̄o(t) is known if the perturbation P̄(t) is known, and vice-
versa.

Similarly, if we take

(3.28) Do(t) =
◦
D +D̄o(t),

we obtain that

(3.29) D̄o(t) = e(t) + P̄o(t)+
◦
E trHo(t)−Ho(t)

◦
E,

i.e. to know the perturbation D̄o(t) we must know the perturbation P̄o(t).
We also derive that

(3.30) Eo(t) =
◦
E +Ēo(t), with Ēo(t) = e(t) + HT

o (t)
◦
E .

Finally, we find that

(3.31) T o(t) =
◦
T +T̄ o(t), where T̄ o(t) = Θ̄o(t)− P̄o(t)⊗

◦
E −

◦
P ⊗e(t).

At this stage is evident that all perturbations are known if the perturbations Π̄(t)
and P̄(t) are known. To obtain these perturbations we use the following constitutive
equations:

(3.32) Π̄(t) =
∂2

◦
H

∂G∂G
[
◦
F

T

g(t)
◦
F] +

∂2
◦
H

∂E∂G
[
◦
F

T

(e(t) + HT
o (t)

◦
E)],

(3.33) P̄(t) = − ∂2
◦
H

∂G∂E [
◦
F

T

g(t)
◦
F]− ∂2

◦
H

∂E∂E [
◦
F

T

(e(t) + HT
o (t)

◦
E)].

Here the symbol ”◦” superposed on H indicated that the corresponding second-order

derivatives of the generalized Helmholtz free energy are taken at
◦
G and

◦
E.

The perturbations of the force, resp. of charge densities are defined by:

(3.34) f(t) =
◦
f +f̄(t), qo(t) =

◦
q +q̄(t), wo(t) =

◦
w +w̄(t).

Concluding, from the relations obtained last section we derive that the incremental
fields satisfy the following balance equations:
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(3.35)

◦
ρ ü(t) = divx(Θ̄o(t)− P̄o(t)⊗

◦
E −

◦
P ⊗e(t))+

◦
ρ f̄(t) + q̄(t)

◦
E +

+
◦
q e(t) + (P̄o(t) · ∇x)

◦
E +(

◦
P ·∇x)e(t),

(3.36) divx(e(t) + P̄o(t)+
◦
E trHo(t)−Ho(t)

◦
E) = q̄(t), rotx(e(t) + HT

o (t)
◦
E) = 0.

Note that without further assumptions the differential balance equations satisfied by
the incremental fields cannot be simplified.

The jump conditions for the involved incremental fields are:

(3.37)
◦
n ·[e(t) + P̄o(t)+

◦
E trHo(t)−Ho(t)

◦
E] = w̄(t),

◦
n ×[e(t) + HT

o (t)
◦
E] = 0.

Finally, we obtain that the incremental electromechanical surface stress vector of
Piola-Kirchhoff type t̄on(t) reduces to

(3.38) t̄on(t) = (Θ̄o(t)− P̄o(t)⊗
◦
E −

◦
P ⊗e(t))

◦
n on ∂

◦
V .

4 Special cases: homogeneous initial state and non-
polarizable environment

In this part we introduce two simplifying hypotheses, essential for the subsequent
developments.

H1: The body is homogeneous, the initial deformation gradient
◦
F is constant in the

domain VR and the initial applied electric field
◦
E is constant in all of space.

H2: The environment (i.e. the vacuum) of the body is not polarizable.

As regards the second assumption, he is justified since the dielectric constants
of electroelastic materials are significantly larger than the dielectric constant of the

vacuum. Then, we have that
◦
P= 0 and e(t) = 0 in the exterior of the body

◦
V .

Thus, the associated limit values on ∂
◦
V satisfy the relations

◦
P+= 0 and e+(t) = 0.

It is evident that the second assumption leads to an important simplification of the
problem, since, by neglecting the surroundings of the body, our problem is transformed
into one of a hyperelastic dielectric.

Now, if we consider the first assumption, we observe that
◦
S,

◦
P,

◦
E,

◦
T and

◦
D are

constant fields in the domain
◦
V . Consequently, the balance equations (3.3) take place

in the assumed homogeneous state, only if

(4.1)
◦
f= 0,

◦
q= 0 in

◦
V .

Since the initial applied electric field is constant in all the space, and tacking into
account the previous remarks, we find that the second jump condition (3.4) is satisfied

if
◦
P and

◦
w are related by
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(4.2)
◦
P · ◦n= − ◦

w, on ∂
◦
V .

Further, the electromechanical stress vector
◦
tn is given by the third relation (3.4).

An important consequence of assumption H1, together with relations (4.1) and
equations (3.35-3.36), is that the differential balance equations take the form:

(4.3)
◦
ρ ü(t) = divx(Θ̄o(t)− P̄o(t)⊗

◦
E)+

◦
ρ f̄(t) + q̄(t)

◦
E,

(4.4) divx(e(t) + P̄o(t)) = q̄(t), rotxe(t) = 0.

Moreover, the second assumption H2 implies that the boundary conditions (3.37-3.38)
reduce to:

(4.5)

◦
n ·(e(t) + P̄o(t)) = −w̄(t),

◦
n ×e(t) = 0,

t̄on(t) = (Θ̄o(t)− P̄o(t)⊗
◦
E)

◦
n on ∂

◦
V .

The system (4.3-4.5) takes place whenever the initial state of the body is homogeneous
and the environment of the body is not polarizable.

To complete the description of the incremental behaviour of the body, we analyze
the constitutive equations (3.32-3.33), which give the perturbations Π̄(t) and P̄(t),
under the present assumptions. Moreover, if we use the relations (3.26-3.27), we obtain
the perturbations Θ̄o(t) and P̄o(t) in the form:

(4.6) Θ̄okl = (
◦
cklmn +

◦
Skn δlm− ◦

enkl

◦
Em)um,n− ◦

emkl em

(4.7) P̄ok = (
◦
ekmn +

◦
ηkm

◦
En)un,m+

◦
ηkl el.

Here

(4.8)

◦
cklmn=

◦
J
−1 ◦

F kp

◦
F lq

◦
Fmr

◦
Fns

∂2
◦
H

∂Grs∂Gpq
,

◦
emkl= − ◦

J
−1 ◦

Fmp

◦
F kq

◦
F lr

∂2
◦
H

∂Ep∂Gqr
,
◦
ηkl= − ◦

J
−1 ◦

F km

◦
F ln

∂2
◦
H

∂Em∂En
.

are the instantaneous material moduli (elastic, piezoelectric and dielectric moduli).
The constitutive relations (4.8) are valid even the simplifying assumptions H1 and
H2 are not satisfied.

The instantaneous material moduli possesses the following symmetry properties:

(4.9)
◦
cklmn=

◦
clkmn=

◦
cklnm=

◦
cmnkl,

◦
emkl=

◦
emlk,

◦
ηkl=

◦
ηlk .

It follows that, for general anisotropy, there exist 21 independent instantaneous moduli
◦
cklmn, 18 independent instantaneous moduli

◦
emkl and 6 independent instantaneous

moduli
◦
ηkl.
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At this point, we introduce the incremental electromechanical stress tensor Σ and
the incremental electric displacement vector ∆ by the relations:

(4.10) Σ(t) = Θ̄o(t)− P̄o(t)⊗
◦
E, ∆(t) = e(t) + P̄o(t).

It follows that, according to relations (4.6-4.7), the constitutive relations describing
the behaviour of the incremental fields, under the previous hypotheses, are:

(4.11) Σkl =
◦
Ωklmn um,n−

◦
Λmkl em, ∆k =

◦
Λkmn un,m+

◦
εkl el,

where

(4.12)

◦
Ωklmn=

◦
cklmn +

◦
Skn δlm− ◦

ekmn

◦
El − ◦

enkl

◦
Em − ◦

ηkn

◦
El

◦
Em,

◦
Λmkl=

◦
emkl +

◦
ηmk

◦
El,

◦
εkl= δkl+

◦
ηkl

are the components of the instantaneous elasticity tensor
◦
Ω, of the instantaneous

coupling tensor
◦
Λ, resp. of the instantaneous dielectric tensor

◦
ε.

From relations (4.9) we find the symmetry relations

(4.13)
◦
Ωklmn=

◦
Ωnmlk,

◦
εkl=

◦
εlk .

Moreover, we see that
◦
Ωklmn is not symmetric according to indices (k,l) and (m,n)

and
◦
Λmkl is not symmetric relative to indices (k,l). It follows that, generally, there

are 45 independent instantaneous elastic moduli
◦
Ωklmn, 27 independent instantaneous

coupling moduli
◦
Λmkl and 6 independent instantaneous dielectric moduli

◦
εkl. These

moduli are constant parameters depending on the considered hyperelastic material,
and on the initial electric and mechanical applied fields. We note at this stage that,
even if this problem is linearized, the solution depends non-linearly on the initial
applied electric field.

In this frame, using the incremental electromechanical stress tensor Σ and the
incremental electric displacement vector ∆, we derive from (4.3-4.4) the differential
balance equations in the final form:

(4.14)
◦
ρ ü(t) = divxΣ+

◦
ρ f̄(t) + q̄(t)

◦
E, divx∆ = q̄(t), rotxe(t) = 0.

The associated boundary conditions are:

(4.15)
◦
n ·∆ = −w̄(t),

◦
n ×e(t) = 0, t̄on(t) = Σ

◦
n on ∂

◦
V .
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