On some pseudo-symmetric Riemann spaces

Tulia Elena Hirica

Abstract. Let (M,g) be a Riemannian manifold. It is called pseudo-
symmetric if at every point of M the tensor R- R and the Tachibana tensor
Q(g, R) are linearly dependent. Any semi-symmetric manifold (R- R = 0)
is pseudo-symmetric. This general notion arose during the study of totally
umbilical submanifolds of semi-symmetric spaces, as well as during the
consideration of geodesic mappings.

We continue the study in this direction, considering subgeodesic map-
pings, which are a natural generalization of geodesic mappings on Rie-
mannian manifolds. We study &-subgeodesically related spaces, extend-
ing some known results concerning pseudo-symmetric spaces admitting
geodesic mappings. Conharmonic semi-symmetric spaces geodesically re-
lated are also characterized.
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1 Classes of Riemannian manifolds

Let (M, g) be a Riemann manifold. The notion of pseudo-symmetry [10] is a
natural generalization of semi-symmetry [14], [2] along the line of spaces of constant
sectional curvature and locally symmetric spaces.

Ro C R4 C Ro C R,

where R is the class of constant sectional curvature Riemann spaces,

R is the class of locally symmetric Riemann spaces (i.e. VR = 0),

R is the class of semi-symmetric Riemann spaces (i.e. R- R = 0),

R3 is the class of pseudo-symmetric Riemann spaces (i.e. R- R = LQ(g, R)).

Remark A. Let T € T%*M. We define R-T,Q(g,T) € T®*+2M, by

(R-T)(X1,..., X} X,Y) = (R(X,Y) - T)(X1,...,Xz) =
= —T(RX,Y)X1,...,Xg) — - — T(X1,...,R(X,Y)Xz).
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Qg T)(X1,..., X X,Y)=—((XAY)-T)(Xy,...,X}) =
=T(XAY)X1,..., Xp) 4 +T(X1,..., (X AY)Xp),

where (X Ay Y)U =g(U,Y)X — g(U, X)Y.

Remark B. The class Ry of semi-symmetric spaces was introduced by E. Cartan.
These spaces were classified by Z.I. Szabo [11] and semi-symmetric hypersurfaces in
E™! were studied by K.Nomizu.

a) It is clear that any semi-symmetric manifold (R- R = 0) is Ricci semi-symmetric

(R-S =0).

b)(Open Problem) It is a long standing question whether these notions are equiv-
alent for hypersurfaces of Euclidean spaces.

¢) Ricci semi-symmetric hypersurfaces of Euclidean spaces (n > 3), with positive
scalar curvature are semi-symmetric.

d) Both properties are equivalent for hypersurfaces of Euclidean space E”'H(n >
3), under the additional global condition of completness.

The class R3 of pseudo-symmetric manifolds (i.e. R- R and Q(g, R) are linearly
dependent) arose:

I) during the study of totally umbilical submanifolds in semi-symmetric manifolds
(4], [5], [6]:

Theorem A. Let M™ C M be a totally umbilical hypersurface. If mt!
semi-symmetric then M is conformally flat or is a pseudo-symmetric space.

Theorem B. The hypersurface M C E"" n > 3, is pseudo-symmetric if and
only if the shape operator has one of the following forms:

1) On
2) /\In, A # 0;
3) A @ 0,1, X #£0;
) M ®0p—p, AN £0,k > 1;
5) A1 @ plh & 0,—2, Ay # 0;
6) N1 ® plp—1, A\ # 05
T My @ ply—g, A # 0,k > 1.
IT) during the study of geodesic and subgeodesic mappings:

Remark C. -

a) Let £ € X(M). A diffeomorphism f : V,, = (M,g) — V,, = (M, g) is called

&— subgeodesic mapping if maps £— subgeodesics into {— subgeodesics, where £—
subgeodesics on M are given by the following equations:

d?x’ - dx® dad dx?

e Vg T Y

‘767; :gij§j7a7b € f(M)

b) There exists a £— subgeodesic mapping f if and only if the Yano formulae are
satisfied
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VxY =VxY +9(X)Y + (V)X - g(X,Y)E, ¢ € A (M).
c¢) f is called nontrivial if ¢; — & # 0,Vi € {1,...n}.

d) There exists f geodesic mapping (i.e. £ = 0 ) if and only if the Weyl formulae
are satisfied o
VxY =VxY +¢(X)Y +¢(YV)X.

e) The geodesic correspondence is special if 1;; = fg;;, where

Yij = iy — Yy, f € F(M).

Example.

Let V,, = (M, g),V, = (M, g) be geodesically related Riemann spaces, where one
considers the warped product [12] M = (a,b) x pM of an open interval (a,b) of R"
and of a Riemann space of constant sectional curvature (M"~1,3). Let F : (a,b) — R
be a positive differentiable function. The geodesically related metrics are defined in
the following manner [5]

g11 = €€ {—1,1}

Jap :Fgaﬁ
91a =0.
gy
g1 = (F+d)?
cF
dos—cr—F o
or
gla =0.
Also one has
1P
1= 2 F+d ¢de R a,3=2,n.
wa 207
€ ()
1—17%(17 ) (215’)2) d (F")?
L= —(F" — 2 —(F” — )
QCF( 2F )+ 20( F )
1 1 2 = de
One can take, for example, F(z') = (kz' 4+ d)*. So, L=0,L = ——.
c

Theorem C. [4] Let (M, g) be a pseudo-symmetric manifold admitting a nontriv-
ial geodesic mapping f on (M,g). Then (M, g) is also a pseudo-symmetric space.

Remark D. We should point out that one can consider the general context of
pseudo-Riemannian case.

Many spacetimes (Robertson-Walker, Schwarzchild, Einstein-de Sitter etc) are
pseudo-symmetric and those which are not pseudo-symmetric verify certain condi-
tions of pseudo-symmetric type [6].

Extensive literature concerning similar problems for Einstein equations, PDE’s
and integral equations can be mentioned from different perspectives [1], [3], [7], [13].
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2 Conharmonic semi-symmetric spaces

Let V,, = (M, g) be a Riemann space, n > 3. The conharmonic curvature tensor C' is
defined by

C(X,Y)Z = R(X,Y)Z — ﬁ{(AX AY)Z + (X AAY)Z),

where A is the symmetric endomorphism of the tangent space at each point of the
manifold corresponding to the Ricci tensor S, i.e. g(AX,Y) = S(X,Y).
Let £ € X(M). The conformal transformation
ou

9'—>§:€2u97U67(M)7% =& = g8

is called a conharmonic transformation if &5, = 0, where

Enk = Enk — Enli + 35 ghn-

The conharmonic curvature tensor is invariant under these transformations.

The conharmonic curvature tensor has been introduced by Y. Ishii and character-
izes conformally flat spaces with vanishing scalar curvature, if it vanishes identically.

The space V,, is called conharmonic semi-symmetric if R - C = 0.

Our aim is to characterize conharmonic semi-symmetric spaces geodesically re-
lated.

Theorem 2.1. Let V,, = (M, g) and V,, = (M,g),n > 3, be two nontrivial geodesi-
cally related Riemann spaces.

If V,, is C-semi-symmetric, then V,, and V, are spaces with constant sectional
curvature or are special geodesically related.

Proof. V,, is C-semi-symmetric.
Then (R-C)., =0, -C

ijkrm jkhyms

%

=0.
Contracting this relation with ¢*" one gets

jkh;sm

9*" (R Rhsmr + R Rusji + R Ruisk+
+RzmTRhijs) + thj\psm - ghmgker]gj\Ijsr+
AWimSin = Vis B, + Cjs Ry — 9ing™ War Ry, —

*\Ilstf—m'h + \IjisR;mh + \I]m,st‘ih - thijm - gjh\:[/isgsrsrm =0,

(2.1)

where f = g"U,;.
Summing the above equation with the same obtained interchanging the indices h
and i, we obtain

\I’stfhj + \Iist;Sn‘j - ghmgqu’serkj - wsrgimgkrRij+
+th\pim + Sijqjmh + \Ijstfmh + \I/stimi_
_gjhgkrlllkstmr - gijgqulkSRimr - gjh‘llisgSTSTm_
_gij\IjhsSrm =0.

(2.2)

Summing the relation (2.2) with the same equation obtained permuting the indices j
with m, we have

SinWim + 5i;Vnm — 9inVYis Ay, + Sem¥ij — 9i; Vsn As,+

2.3 m o
( ) +Sim¥nj — gmh\IjisAj - gim\I/shAj =0.
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After a contraction of (2.3) with g%, we get the equation

(2.4) (1 + 1) Uns A%, — P — FSnm + Grm W S5 — Wy A3 = 0,
where S% = ¢'" Al p = g S;;. From (2.4) we obtain

(2.5) pf =nS9,;.

The relations (2.5) and (2.3) lead to

(26) ‘IjshAfn = ismh - ngmh + B\I}mh = \PsmA;
n n n

Using (2.6), the relation (2.3) becomes
(fghm - n‘l/hm)(nsu - pgij) + (fgij - nq/ij)(nshm - pghm)+
+(fgjm — V) (nSin — pgin) + (fgin — nWin)(nSim — pgjm) = 0.

We obtain (U;; — % ij)(Shm — £ ghm) = 0. Hence the correspondence is special or
the space V,, is Einstein. In the second case one has

f

Wy — ~gir = 0 or Pijrn =0,

where P is the projective Weyl curvature tensor [9], [8]. V, being an Einstein space,
if P = 0 then V,, becomes a space with constant curvature. Hence, V,, and V,, are
spaces with constant curvature, using the Beltrami theorem. O

Theorem 2.2. Let V,, = (M, g) cmdyn = (M,g),n > 3, be two nontrivial geodesi-
cally related Riemann spaces. If V., is C-semi-symmetric, with irreducible curvature
tensor, then V,, and V,, are spaces with constant sectional curvature.

Proof. If V,, and V,, are two special geodesically related Riemannian spaces then
Ry = Ry + [(64,9jk — 6.95n), where W;; = fgi;.
The above relation leads to
=S =}
GisBjpn + gjsBigp =0
The space V,, being with irreducible curvature tensor, then the system
(2.7) @is Ry, + 25 Ry, = 0

has an unique solution, abstraction a factor. Because g;; and g,; are solutions of the
system (2.7) we obtain 9i; = engij, where u is a function with variables z!, ..., 2™. V,,
i i

Jk Jk
Then 5;‘Ilk +6:W; =0 and ¥y = 0. Using the previous result, the theorem is proved.
O

and V}, being geodesically related, we have v = ct. and we obtain
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The relation between the subgeodesic correspondence and the conformal related
spaces leads to the

Theorem 2.3. Let V,, = (M,g) and V,, = (M,g),n > 3, be two nontrivial &-
subgeodesically related Riemann spaces. If V,, is C-semi-symmetric, with irreducible
curvature tensor, then V,, and V,, = (M, § = €*“g) are spaces with constant sectional
curvature.

Proof. V,, and V,, being subgeodesically related, we have

i i
Jk Jk

Because V,, and V,, are conformally related, the Christoffel symbols are trans-
formed by

+ 510y + 5L — gné'

—_~

jk ‘ - ‘ Jk ’+5;-§k+6,2£j LSS
7 ) X .
Then we have ik = ik + 5}wk + djw;, where wy = ¥y, — .
So, V,, and V;, are non-trivial geodesically related. Applying the previous theorem
for spaces V,, and V,,, we obtain the conclusion. O

3 Pseudo-symmetric subgeodesically

related Riemann spaces
One can obtain certain conditions of pseudo-symmetric type for £—subgeodesically
related spaces:

Theorem 3.1. Let V,, = (M,g) and V,, = (M,g),n > 3, be nontrivial &-
subgeodesically related Riemann spaces.
Then

where

Fij = &y — iy — (& — i) (&5 — ¥5).

Proof. Using the Yano formulae, we get
Gjkyir = _Q\I/i;rgjk - (\I’j;r - fj;r)gik - (\I/k;r - gk;r)gij_
=2, [=2W, g1 — (V) — &) grk — (WU — k) grj] —

—(V; = &) 2,90 — (Vs — &) grk — (Wi — &k)gir) —

—(Ur — &) [291gi5 — (U5 — &5)gri — (Ui — &i)gry] -
Hence B

(R : g)jkri = Gjksir — Gjk;ri = Q(ga F)jkria

where Fj; = &5 — Wiy — (& — W) (& — ¥)). m
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Theorem 3.2. Let V, = (M,g) and V,, = (M,g),n > 3, be nontrivial &-
subgeodesically related Riemann spaces.
Let V,, = (M, g) be a pseudo-symmetric space such that

R-R=1Q(3,R),

where L is constant on the set U = {x € M | Z # 0 at x},Z being the concircular
curvature tensor. B
If F = fg+hg, f,h € F(M), then spaces are conformally related or L =h o

n
Proof. Because F' = fg + hg, using the previous theorem, we have R - g

The tensor E = —hg — Lg satisfies on U the relation

U.

1
E— ~(§9E;)g = 0.
n (g )9
This condition is equivalent [5] with

(L+h) {9 - Tll(g”‘gij)g] =0

on U. O
Conjectures:

Let V,, = (M,g) and V, = (M,g),n > 3, be nontrivial geodesically or & -
subgeodesically related Riemann spaces.

If V,, is conharmonic pseudo-symmetric (i.e. R-C = LQ(g,C)) then

a) Vi, is conharmonic pseudo-symmetric (i.e. R-C = LQ(g,C));

b) both spaces have constant sectional curvature.
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