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Abstract. In this article we study conditions for the integrability of the
distribution defined on a regular Poisson manifold as the orthogonal com-
plement (with respect to a pseudo-Riemannian metric) to the tangent
spaces of the leaves of a symplectic foliation. Integrability criteria in
terms of Casimir covectors and in terms of the Nijenhuis Tensor defined
by the orthogonal distribution are obtained. Examples of integrability and
non-integrability of this distribution are provided.

M.S.C. 2010: 53D17, 58D27, 53B21.
Key words: Poisson manifold; integrability; Nijenhuis tensor.

1 Introduction

Let (Mn, P ) be a regular Poisson manifold. Denote by S = {Sm|m ∈ M} the sym-
plectic foliation of M by symplectic leaves (of constant dimension k). Denote by T (S)
the sub-bundle of T (M) of tangent spaces to the symplectic leaves (the association
x → Tx(S) is an integrable distribution on M which we will also denote by T (S)).
Let M be endowed with a pseudo-Riemannian metric g such that the restriction of g
to each symplectic leaf is non-degenerate.

Let Nm = S⊥m be the subspace of Tm(M) that is g-orthogonal to Sm. The asso-
ciation m → Nm defines a distribution N which is transversal and complemental to
the distribution T (S). The restriction of the metric g to N is non-degenerate and has
constant signature. In general, the distribution N is not integrable.

If the metric g is Riemannian, and if the Poisson tensor is parallel with respect to
the Levi-Civita connection ∇ = ∇g defined by g, ie: ∇P = 0, then it is a classical
result of A. Lichnerowicz ([13], Remark 3.11) that the distribution N is integrable,
and the restriction of the metric g to the symplectic leaves defines, together with the
symplectic structure ωS = P |−1

S , a Kähler structure on symplectic leaves.
Integrability of the distribution N depends strongly on the foliation S and its

“transversal topology” (see [11]). Thus, in general it is more a question of the theory
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of bundles with Ehresmann connections rather than that of Poisson geometry. Yet
in some instances, it is useful to have integrability conditions in terms of the Poisson
structure P , and to relate integrability of the distribution N with other structures of
the Poisson manifold - Casimir functions, Poisson vector fields, etc.

Our interest in this question was influenced by our study of the representation of
a dynamical system in metriplectic form, i.e. as a sum of a Hamiltonian vector field
(with respect to a Poisson structure, and a gradient one (with respect to a metric g),
see [2, 4, 12, 1], or, [6] for a more general approach. Integrability of the distribution
N guarantees that in the geometrical (local) splitting of the space M as a product
of a symplectic leaf and a transversal submanifold with Casimir functions ci as local
coordinates (see [14]), the transversal submanifold can be chosen to be invariant under
the gradient flow (with respect to the metric g) of the functions ci.

As a result one can separate observables of the system into Casimirs undergoing
pure gradient (dissipative) evolution from those (along symplectic leaves) which un-
dergo the mix of Hamiltonian and gradient evolutions. Such a separation leads to an
essential simplification of the description of the transversal dynamics in metriplectic
systems.

In Section 2 we introduce necessary notions and notations. In Section 3 we obtain
necessary and sufficient conditions on the metric g and the tensor P for the distribu-
tion N to be integrable. We derive these conditions in terms of covariant derivatives
of the Poisson Tensor, in terms of covariant derivatives of Casimir covectors, and as
conditions on the nullity of the Nijenhuis Torsion of the (1,1)-tensor Aµ

ν = Pµκgκν .
As a corollary we prove that the distribution N is integrable if parallel translation
(via the Levi-Civita connection of the metric g) in the direction of N preserves the
symplectic distribution T (S).

In Section 4 we present integrability conditions in Darboux-Weinstein coordinates:
the distribution N is integrable if and only if the following symmetry conditions are
fulfilled for Γ: ΓJIs = ΓJIs, where Γαβγ = gασΓσ

βγ , and where capital Latin letters
I, J indicate the transversal coordinates ,while small Latin letters indicate coordinates
along symplectic leaves.

In Section 5 we describe an example of non-integrability of N and refer to the
integrability of N for linear Poisson structures on dual spaces g∗ of semi-simple Lie
algebras g, with the metric induced by the Killing form, as well as for the dual se(3)∗

to the Lie algebra se(3) of Euclidian motions in R3 with the simplest non-degenerate
ad∗-invariant metric(s).

2 Orthogonal distribution of Poisson manifold with
a pseudo-Riemannian metric

Let (Mn, P ) be a regular Poisson manifold ([13]). We will be use local coordinates
xα in the domains U ⊂ M with the corresponding local frame { ∂

∂xα } and the dual
coframe dxα. Let g be a pseudo-Riemannian metric on M as above, and let Γ denote
the Levi-Civita connection associated with g. The tensor P τσ(x) defines a mapping

0 → C(M) → T ∗(M) P→ T (S) → 0
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where C(M) ⊂ T ∗(M) is the kernel of P and T (S) is (as defined above) the tangent
distribution of the symplectic foliation {Sk}. The space C(M) is a sub-bundle of the
cotangent bundle T ∗M consisting of Casimir covectors. Locally, C(M) is generated
by differentials of functionally independent Casimir functions ci(x), i = 1, . . . , n −
k satisfying the condition P τσdci

σ = 0 (in this paper we assume the condition of
summation by repeated indices).

We denote by N the distribution defined as the g-orthogonal complement
T (S)⊥ to T (S) in T (M). Then we have, at every point x a decomposition into a
direct sum of distributions (sub-bundles)

TxM = Tx(S)⊕Nx.

The assignment x → Nx defines a transverse connection for the foliation S, or,
more exactly, for the bundle (M, π, M/S) over the space of leaves M/S, whenever
one is defined (see below). We are interested in finding necessary and sufficient con-
ditions on P and g under which the distribution N is integrable. By the Frobenius
theorem, integrability of N is equivalent to the involutivity of the distribution N
with respect to the Lie bracket of N -valued vector fields (sections of the sub-bundle
N ⊂ T (M)).

Let ωi = ωi
µdxµ (i ≤ d = n-k) be a local basis for C(M). For any α in T ∗(M),

let α] denote the image of α under the bundle isomorphism ] : T ∗(M) → TM of
index lifting induced by the metric g. The inverse isomorphism (index lowering) will
be conventionally denoted by [ : T (M) → T ∗M . We introduce the following vector
fields: ξi = (ωi)] ∈ T (M).

Lemma 1. The vectors ξi form a (local) basis for N .

Proof. Since g is non-degenerate, the vectors ξi are linearly independent and span a
subspace of TM of dimension d. For any vector η ∈ TM ,

〈ξi, η〉g = gµνξµ
i ην = gµνgµλωi

λην = ωi
νην = ωi(η).

So the vector η is g-orthogonal to all ξi if and only if η is annihilated by each ωi. That
is, η ∈ Ann(C(M)) = {λ ∈ T (M) |ωj(λ) = 0, ∀ j ≤ d}. Since Ann(C(M)) = T (S),
we see that the linear span of {ξi}⊥ is T (S). ¤

Recall (see [10]) that the curvature (Frobenius Tensor) of the “transversal con-
nection” N is the bilinear mapping RN : T (M)× T (M) → T (S) defined as

(2.1) RN (γ, η) = v([hγ, hη]),

where h : T (M) → N is g-orthogonal projection onto N , and v : T (M) → T (S) is
g-orthogonal projection onto T (S).

It is known (see [9]) that N is integrable if and only if the curvature RN defined
above is identically zero on TM × TM .
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3 Integrability criteria

Condition that the curvature (2.1) is identically zero is equivalent to v([γ, η]) = 0, for
all γ, η ∈ N . If we write the vectors γ, η in terms of the basis {ξi}, then we have

v([γiξi, η
jξj ]) = v

(
γi(ξi · ηj)ξj − ηj(ξj · γi)ξi + γiηj [ξi, ξj ]

)

= γiηjv([ξi, ξj ]), since v(ξk) = 0 ∀ k.

Thus R = 0 if and only if v([ξi, ξj ]) = 0 for all i, j ≤ d.
Consider the linear operator A : T (M) → T (M) defined by the (1,1)-tensor field

Aτ
µ = P τσgσµ. Since g is non-degenerate we have ImA = T (S). Since each basis

vector ξi ∈ N is of the form ξµ
i = gµνωi

ν with ωi ∈ kerP , we also have

Aτ
µξµ

i = P τσgσµgµνωi
ν = P τνωi

ν = 0.

Therefore N ⊂ kerA, and by comparing dimensions we see that N = kerA. Notice
that operator A and the orthonormal projector v have the same image and kernel.
We conclude that

R = 0 ⇔ A[ξi, ξj ] = 0, ∀ i, j ≤ d.

We now prove the main result of this section.

Theorem 1. Let ωi, 0 ≤ i ≤ d be a local basis for C(M) and let (ωi)] = ξi be the
corresponding local basis of N . Let ∇ be the Levi-Civita covariant derivative on TM
corresponding to the metric g. Then the following statements are equivalent:

1. The distribution N is integrable.

2. For all i, j ≤ d, and all τ ≤ n,

P τσ(∇ξiω
j
σ −∇ξj ω

i
σ) = 0.

3. For all i, j ≤ d, and all τ ≤ n,

gλα(∇λP )τσ(ωi ∧ ωj)σα = 0,

where ∇λ = ∇∂/∂xλ .

4. For all i, j ≤ d, and all τ ≤ n,

P τσgσλ(∇ξiξ
λ
j −∇ξj ξ

λ
i ) = 0.

5. The sub-bundle C(M) is invariant under the following skew-symmetric bracket
on 1-forms generated by the bracket of vector fields:

[α, β]g = [α], β]][

i.e. if α, β ∈ Γ(C(M)), then [α, β]g ∈ Γ(C(M)).
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Proof. Since the Levi-Civita connection of g is torsion-free, we know that

[ξi, ξj ] = ∇ξi
ξj −∇ξj

ξi.

Therefore, in a local chart (xα),

Aτ
λ[ξi, ξj ]λ = Aτ

λ(∇ξi
ξλ
j −∇ξj

ξλ
i ) = P τσgσλ(∇ξi

ξj −∇ξj
ξi) =

= P τσ(∇ξiω
j
σ −∇ξj ω

i
σ).

In the last step we have used the fact that lifting and lowering of indices by the metric
g commutes with the covariant derivative ∇ defined by the Levi-Civita connection of
g.

Recalling from the discussion before the Theorem that the integrability of the
distribution N is equivalent to the nullity of A[ξi, ξj ] for all i, j 5 d, we see that
statements 1.,2., and 4. are equivalent.

To prove the equivalence of these statements to the statement 3. we notice that

P τσ(∇ξi
ωj

σ −∇ξj
ωi

σ) = P τσ(ξλ
i ∇λωj

σ − ξλ
j ∇λωi

σ) =

= P τσgλα(ωi
α∇λωj

σ − ωj
α∇λωi

σ) = gλα(∇λP )τσ(ωi
σωj

α − ωi
αωj

σ) =

= gλα(∇λP )τσ(ωi ∧ ωj)σα.

Here, at the third step we have used the following equality

P τσgλαωi
α∇λωj

σ = −gλα(∇λP )τσωi
σωj

α,

since P τσωj
σ = 0 (similarly for the second term).

To prove the equivalence of the condition 5. with the other statements we act
as follows. Let α = αiω

i and β = βjω
j be any two sections of sub-bundle C(M) ⊂

T ∗(M). Then α] =
∑

i αiξi and β] =
∑

i βjξj . So we have

[α, β]g = ∇βjξj (αiω
i)−∇αiξi(βjω

j)

= βj

[
αi∇ξj ω

i +
∂αi

∂xk
ξk
j ωi

]
− αi

[
βj∇ξiω

j +
∂βj

∂xk
ξk
i ωj

]

= αiβj(∇ξj ω
i −∇ξiω

j) + β](αi)ωi − α](βj)ωj

= αiβj(∇ξj ω
i −∇ξiω

j) + (
∑

j

βjξ
k
j )

∂αi

∂xk
ωi − (

∑

i

αiξ
k
i )

∂βj

∂xk
ωj

= αiβj [ωi, ωj ]g + (β](αi)− α](βi))ωi.(3.1)

At the last step we have used the following (recall that ωi = (ξi)[)

∇ξj ω
i −∇ξiω

j = (∇ξj ξi −∇ξiξj)[ = [ξi, ξj ][ = [ωi ], ωj ]][ = [ωi, ωj ]g.

The second term in the right side of (3.1) is always in the kernel C(M) of P , thus
applying P to both sides yields

P τσ([α, β]g)σ = αiβjP
τσ([ωi, ωj ]g)σ = αiβjP

τσgσλ(∇ξiξ
λ
j −∇ξj ξ

λ
i ).

Therefore, condition 4. above holds if and only if the space of sections of the bundle
C(M) of Casimir covectors is invariant under the bracket [−,−]g. ¤
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Corollary 1. If (∇(ωi)]P )τσωj
σ = 0 for all σ, i and j, i.e. if ∇(ωi)]P |C(M) = 0 for

all i, then the distribution N is integrable.

Proof. In the proof of the equivalence of statements 1. and 2. with statement 3. in
the Theorem, it was shown that

P τσ(∇ξi
ωj

σ −∇ξj
ωi

σ) = gλα(∇λP )τσ(ωi
αωj

σ − ωj
αωi

σ) =

= gλαωi
α(∇λP )τσωj

σ − gλαωj
α(∇λP )τσωi

σ = ξλ
i (∇λP )τσωj

σ − ξλ
j (∇λP )τσωi

σ =

= (∇ξi
P )τσωj

σ − (∇ξj
P )τσωi

σ.

Since ξi = (ωi)] for each i, if ∇(ωi)]P |C(M) = 0, then condition 3. of the Theorem is
fulfilled. ¤

The following criteria specify the part of the A. Lichnerowicz condition that P is
g-parallel (see [13]) ensuring the integrability of the distribution N :

Corollary 2. If ∇α] : T (M) → T (M) preserves the tangent sub-bundle T (S) to the
symplectic leaves for every α ∈ C(M), then N is integrable.

Proof. If the parallel translation ∇α] along the trajectories of the vector field ξ = α]

preserves T (S), then it also preserves its g-orthogonal complement N , and hence the
dual to parallel translation in the cotangent bundle will preserve sub-bundle C(M) =
N [ (see Lemma 1). That is,

P τσ∇α]βσ = 0

for any β in C(M). Writing this equality in the form (∇α]P )τσ
βσ = 0 and using the

previous Corollary we get the result. ¤

Remark 1. Lichnerowicz’s condition, i.e. the requirement that ∇P = 0, guarantees
much more than the integrability of the distribution N and, therefore, the local splitting
of M into a product of a symplectic leaf S and complemental manifold N with zero
Poisson tensor. It also guarantees regularity of the Poisson structure, and reduction of
the metric g to the block diagonal form g = gS +gN , with the corresponding metrics on
the symplectic leaves and maximal integral manifolds Nm of N being independent on
the complemental variables (i.e. the metric gS on the symplectic leaves is independent
from the coordinates y along Nm). Furthermore, the condition ∇P = 0 also ensures
the independence of the symplectic form ωS from the transversal coordinates y (see
[13], Remark 3.11). Finally from ∇gS ωS = 0 follows the existence of a gS-parallel
Kahler metric on the symplectic leaves.

Corollary 3. Let ∇λωi = 0 for all λ, i (i.e. the 1-forms ωi = dci are ∇g-covariant
constant). Then

i) The distribution N is integrable,

ii) the vector fields ξi are Killing vector fields of the metric g, and

iii) the Casimir functions ci are harmonic: ∆gc
i = 0.
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Proof. The first statement is a special case of condition 3. in the Theorem above.
To prove the second, we calculate the Lie derivative of g in terms of the covariant
derivative ∇ωi,

(3.2)

(Lξig)σλ = gγλ∇σξγ
i + gσγ∇λξγ

i = ∇σωi
λ +∇λωi

σ =
∂ωi

λ

∂xσ
+

∂ωi
σ

∂xλ
−ωi

γ(Γγ
σλ +Γγ

σλ) =

=
∂2ci

∂xσxλ
+

∂ci

∂xλxσ
− 2ωi

γΓγ
σλ = 2

∂2ci

∂xσxλ
− 2ωi

γΓγ
σλ = 2∇λωi

σ.

Thus, if the condition of the Corollary is fulfilled, ξi are Killing vector fields. The
third statement follows from

∆gc
i = divg(ξi = (dci)]) =

1
2
Trg(Lξig) =

1
2
gλµ(Lξig)λµ.

¤

3.1 Nijenhuis Tensor

Conventionally the integrability of different geometrical structures presented by a
(1, 1)-tensor field can be characterized in terms of the corresponding Nijenhuis tensor.
Thus, it is interesting to see the relation of our criteria presented above to the nullity
of the corresponding Nijenhuis tensor.

Definition 1. Given any (1, 1) tensor field J on M , there exists a tensor field NJ of
type (1, 2) (called the Nijenhuis torsion of J) defined as follows (see [9], Sec.1.10):

NJ(ξ, η) = [Jξ, Jη]− J [Jξ, η]− J [ξ, Jη] + J2[ξ, η]

for all vector fields ξ, η.

If J is an almost product structure, i.e. J2 = Id, then NJ = 0 is equivalent to
the integrability of J . In fact, given such a structure on M , we can define projectors
v = (1/2)(Id + J) and h = (1/2)(Id − J) onto complementary distributions Im(v)
and Im(h) in TM such that at each point x ∈ M ,

TxM = Im(v)x ⊕ Im(h)x.

It is known (see [9], Sec.3.1) that J is integrable if and only if Im(v) and Im(h) are
integrable, and that the following equivalences hold:

NJ = 0 ↔ Nh = 0 ↔ Nv = 0.

Consider now the two complementary distributions T (S) and N discussed above.
Suppose that v is g-orthogonal projection onto the distribution T (S), and h is g-
orthogonal projection onto N . Applying these results in this setting we see that that
the distribution N is integrable if and only if Nv = 0.

Since v2 = v, and since any ξ ∈ T (M) can be expressed as ξ = vξ + hξ, we have

Nv(ξ, η) = [vξ, vη]− v[vξ, vη + hη]− v[vξ + hγ, vη] + v[vγ + hγ, vη + hη]
= (Id− v)[vξ, vη] + v[hγ, hη] = h[vξ, vη] + v[hξ, hη]
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for all ξ and η in T (M). Since T (S) is integrable we have [vξ, vη] ∈ T (S), and so

Nv(ξ, η) = v[hξ, hη].

As a result, we can restrict ξ and η to be sections of the distribution N to get the
following integrability condition for N in terms of (1,1)-tensor v:

N is integrable ↔ Nv(ξ, η)µ = vµ
ν [ξ, η]ν ∗= −∂jv

µ
ν (ξ ∧ η)jν = 0,

for all µ and all ξ, η ∈ Γ(N ). The equality (∗) on the right is proved in the same way
as the similar result for the action of P τσ in the proof of statement (3) of Theorem 1.

The tensor Aµ
ν = gνσP σµ discussed above can be considered to be a linear mapping

from T (M) to T (S), but since A is not idempotent, it does not define a projection.
However, the tensors A and v, having the same kernel and image are related in the
sense that the integrability of N is also equivalent to

Aµ
ν [ξ, η]ν = −∂σAµ

ν (ξ ∧ η)σν = 0,

for all sections ξ and η of the distribution N (using the same argument as for the
tensor vµ

σ above).
In fact, since the linear mappings A, v of Tm(M) have the same kernel and image

for all m ∈ M , there exists a (non-unique) pure gauge automorphism D : T (M) →
T (M) of the tangent bundle (i.e. inducing the identity mapping of the base M and,
therefore, defined by a smooth (1,1)-tensor field Dµ

ν ) such that Aµ
σ = Dµ

ν vν
σ. For any

couple ξ and η of sections from Γ(N ), we have

Aµ
σ[ξ, η]σ = −∂νAµ

σ(ξ ∧ η)νσ = −∂νDµ
κ(vκ

σ(ξ ∧ η)νσ + Dµ
κ∂νvκ

σ(ξ ∧ η)νσ =
= −Dµ

κ∂νvκ
σ(ξ ∧ η)νσ = Dµ

κNv(ξ, η).

This proves

Theorem 2. There exists a (not unique) invertible linear automorphism D of the
bundle T (M) such that for all couples of vector fields ξ, η ∈ Γ(N )

A[ξ, η] = D(Nv(ξ, η)).

Thus, Nv|N×N ≡ 0 iff A[ξ, η] = 0 for all ξ, η ∈ Γ(N ).

4 Local criteria for integrability

Since M is regular, any point in M has a neighborhood in which the Poisson tensor P
has, in Darboux-Weinstein (DW) coordinates (yA, xi), the following canonical form
(see [14])

P =




0p×p 0p×2k

02k×p

(
0k −Ik

Ik 0k

)



We will use Greek indices λ, µ, τ for general local coordinates, small Latin i, j, k for
the canonical coordinates along symplectic leaves and capital Latin indices A,B,C
for transversal coordinates. In these DW-coordinates we have, since P is constant,

(∇λP )τσ = P jσΓτ
jλ − P jτΓσ

jλ.
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Using the structure of the Poisson tensor we get, in matrix form,

(∇λP )τσ =
(

0p×p P jsΓT
jλ

−P itΓs
jλ P jsΓt

jλ − P jtΓs
jλ

)
,

where the index τ takes values (T, t), and the index σ takes values (S, s), transversally
and along the symplectic leaf respectively.

In DW-coordinates we choose ωτ = dyτ as a basis for the co-distribution C(M).
Now we calculate (using the symmetry of the Levi-Civita connection Γ)

(∇λP )τσ(dyI ∧ dyJ)ασ = −δI
αP jτΓJ

jλ + δJ
αP jτΓI

jλ,

so that
gλα(∇λP )τσ(dyI ∧ dyJ )ασ = P jτ [gJλΓJ

jλ − gIλΓI
jλ].

This expression is zero if τ = T , so the summation goes by τ = t only.
Substituting the Poisson Tensor in its canonical form we get the integrability

criteria 3. of Theorem 1 in the form

gJλΓI
λt − gIλΓJ

λt = 0, ∀ I, J, t.

Using the metric g to lower indices, we finish the proof of the following

Theorem 3. Let (yI , xi) be local DW-coordinates in M . Use capital Latin in-
dices for transversal coordinates y along N and small Latin indices for coordinates x
along symplectic leaves. Then the distribution N is integrable if and only if ΓJIt =
ΓIJt, ∀ I, J, t.

5 Examples

5.1. 4-dim example of non-integrable N . Here we construct an (example of the
lowest possible dimension where the distribution Ng is not integrable. (M = R4, P )
will be a 4-d Poisson manifold and rank(P ) = 2 at all points of M .

Let P ij be the Poisson tensor given in the global coordinates xα by the following

4×4 matrix: P =
(

0 0 0 0
0 0 0 0
0 0 0 1
0 0 −1 0

)
. Let ω1 = dx1, and ω2 = dx2. Then {ω1, ω2} is a basis

for the kernel C(M) of P , and

(5.1) (ω1 ∧ ω2)ασ =





1, α = 1, σ = 2
−1, α = 2, σ = 1

0, otherwise.

Let now g be an arbitrary pseudo-Riemannian metric defined on M = R4 by a non-
degenerate symmetric (0,2)-tensor gλµ. The corresponding g-orthogonal distribution
is denoted by N and the Levi-Civita connection of the metric g by ∇.

Consider ∇λP τσ = ∂λP τσ +P τµΓσ
λµ +P σµΓτ

λµ. Since P is constant, the first term
of this expression is always zero. Furthermore, since each ωk is in the kernel of P ,
we see that the third term in this expression will contract to zero with (ω1 ∧ ω2)ασ.
Therefore, using (5.1) we get

gλα∇λP τσ(ω1 ∧ ω2)ασ = gλαP τµΓσ
λµ(ω1 ∧ ω2)ασ = gλ1P τµΓ2

λµ − gλ2P τµΓ1
λµ.
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The only values of τ for which P τµ 6= 0 are τ = 3 and τ = 4. We consider each case
individually:

τ = 3 : gλα∇λP τσ(ω1 ∧ ω2)ασ = gλ1P 34Γ2
λ4 − gλ2P 34Γ1

λ4 =

= gλ1Γ2
λ4−gλ2Γ1

λ4 =
1
2
(gλ1g2δ−gλ2g1δ)(gλδ,4 +g4δ,λ−gλ4,δ) = gλ1g2δ(g4δ,λ−g4λ,δ).

τ = 4 : gλα∇λP τσ(ω1 ∧ ω2)ασ = gλ1P 43Γ2
λ3 − gλ2P 43Γ1

λ3 = −gλ1Γ2
λ3 + gλ2Γ1

λ3 =

=
1
2
(−gλ1g2δ + gλ2g1δ)(gλδ,3 + g3δ,λ − gλ3,δ) = gλ1g2δ(g3λ,δ − g3δ,λ).

Thus, the integrability condition takes the form of the following system of equations

(5.2)

{
gλ1g2δ(g3λ,δ − g3δ,λ) = 0,

gλ1g2δ(g4δ,λ − g4λ,δ) = 0.

equivalent to the symmetry conditions given in Theorem 3. Both expressions in (5.2)
are zero if g is diagonal or block-diagonal with 2x2 matrix blocks. For these types of
metric, the transversal distribution N is integrable.

On the other hand, let g =
( 1 0 f 0

0 1 0 0
f 0 1 0
0 0 0 1

)
, where f(x) satisfies to the condition

∂2f 6= 0. This symmetrical matrix has 1, 1, 1 + f, 1 − f as its eigenvalues. Thus
g determines the Riemannian metric in the region |f | < 1, and the second of the
conditions (9): gλα∇λP τσ(ω1 ∧ ω2)ασ = 0 fails since, for τ = 4 we have:

gλα∇λP 4σ(ω1 ∧ ω2)ασ = gλ1g2δ(g3λ,δ − g3δ,λ) = gλ1g3λ,2 = g11g31,2 = ∂2f 6= 0.

As an example of such a function f for which both conditions (i.e. conditions
|f | < 1 and ∂2f 6= 0) are fulfilled in the whole space R4 we can take the func-
tion f(x1, . . . , x4) = 1

π tan−1(x2) where the principal branch of tan−1(x) is chosen
(taking values between −π/2 and π/2).

We can also see that the distribution N is not integrable by a direct computation.
Vector fields ξ1 = ∂1 + f∂3, ξ2 = ∂2 form the local basis vectors for N . Their Lie
bracket is [ξ1, ξ2] = ∂2f∂3, which is not in the span of {ξ1, ξ2} (since ∂2f 6= 0). Thus,
distribution N is not integrable.

Remark 2. The very possibility to choose a global metric g such that the distribution
Ng is integrable is determined mostly by the topological properties of the “bundle” of
leaves of the symplectic foliation, i.e. the existence of a zero curvature Ehresmann
connection. More specifically, one can prove the following

Proposition 1. Let (M,π, B; (F, ω)) be a symplectic fibration (see [3]) with the model
symplectic fiber (F, ω), base B and the total Poisson space M . If the bundle (M, π,B)
is topologically non-trivial, then the Poisson manifold (M,P = ω−1

b cannot be endowed
with a (global) pseudo-Riemannian metric g such that the orthogonal distribution Ng

would be integrable.

For its proof see [5].
Thus, if we take an arbitrary nontrivial bundle over a simply-connected manifold

B, it can not have a nonlinear connection of zero curvature. An example is the
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tangent bundle (T (CP (2)), π,CP (2)) over B = CP (2), where the standard symplectic
structure on B = CP (2) determines the (constant) symplectic structure along the
fibers.

5.2. Examples of integrability of N . Linear Poisson structures (Surio-
Kostant-Kirillov bracket) in the dual space g∗ to the semi-simple Lie algebras g en-
dowed with the metric induced by the Killing form (dual Killing metric), see [8],
deliver a family of examples where orthogonal (to the coadjoint orbits, see [7]) distri-
bution N is integrable. More specifically, in the paper [5] it is shown that restriction of
the Poisson structure and the dual Killing metric to the subspace of regular elements
g∗reg has the integrable orthogonal distribution N in the following cases:

1. g-compact semi-simple Lie algebra, M = g∗reg with the dual Killing metric.
Furthermore, via the identification of g∗ with g using Killing metric, each
connected component (Weyl Chamber) of the Lie algebra t of a maximal torus
T ⊂ G is a maximal integral surface of the distribution N at each point x.

2. g-real semi-simple Lie algebra, M = g∗reg with the dual Killing metric. Maximal
integral submanifolds of N are images under the identification iK : g ≡ g∗ of
(the regular parts of) Cartan subalgebras of g.

3. Let g = e(3) be the Euclidian Lie algebra in dimension 3. For any choice of
(constant) non-degenerate ad-invariant metric on the subspace M = g∗reg of 4d
co-adjoint orbits of dual space e(3)∗, the distribution N is integrable.

6 Conclusion

In this work we discuss necessary and sufficient conditions for the distribution N on
a regular Poisson manifold (M, P ) defined as orthogonal complement of tangent to
symplectic leaves with respect to some (pseudo-)Riemannian metric g on M to be
integrable. We present these conditions in different forms, including a condition in
terms of a symmetry of Christoffel coefficients of the Levi-Civita connection of the
metric g and get some Corollaries, one of which specifies the part of the Lichnerowicz
(∇P = 0) condition ensuring integrability of N (see [13], 3.11). We present examples
of non-integrable N (the model 4d case and the case of a nontrivial symplectic fibra-
tion). In the preprint [5] we have proved integrability of N on the regular part of the
dual space g∗ of a real semi-simple Lie algebra g and the same in the case of the 3d
Euclidian Lie algebra e(3) with a linear Poisson structure.

As the case of a symplectic fibration shows, the integrability of N is possible only
on a topologically trivial bundle. Thus, it would be interesting to study maximal
integral submanifolds of N in the case of nontrivial symplectic bundles. In particular,
it would be interesting to get conditions on the metric g under which these maximal
integral submanifolds would have maximal possible dimension.
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