Second order differential invariants of linear frames

Ján Brajerčík

Abstract

The aim of this paper is to characterize all second order tensorvalued and scalar differential invariants of the bundle of linear frames $F X$ over an n-dimensional manifold X. These differential invariants are obtained by factorization method and are described in terms of bases of invariants. Second order natural Lagrangians of frames have been characterized explicitly; if $n=1,2,3,4$, the number of functionally independent second order natural Lagrangians is $N=0,6,33,104$, respectively.

M.S.C. 2000: 53A55, 58A10, 58A20, 58A32.

Key words: Frame; differential invariant; equivariant mapping; differential group; natural Lagrangian.

1 Introduction

Throughout this paper, a left G-manifold is a smooth manifold endowed with a left action of a Lie group G. A mapping between two left G-manifolds transforming G orbits into G-orbits is said to be G-equivariant. As usual, we denote by \mathbb{R} the field of real numbers. The r-th differential group L_{n}^{r} of \mathbb{R}^{n} is the Lie group of invertible r-jets with source and target at the origin $0 \in \mathbb{R}^{n}$; the group multiplication in L_{n}^{r} is defined by the composition of jets. Note that $L_{n}^{1}=G L_{n}(\mathbb{R})$. For generalities on spaces of jets and their mappings, differential groups, their actions, etc., we refer to [$6,11,13]$.

Let P and Q be two left L_{n}^{r}-manifolds, and U be an open, L_{n}^{r}-invariant set in P. A smooth L_{n}^{r}-equivariant mapping $F: U \rightarrow Q$ is called a differential invariant. If Q is the real line \mathbb{R}, endowed with the trivial action of L_{n}^{r}, an equivariant mapping F is called a scalar invariant.

Let X be an n-dimensional manifold. By an r-frame at a point $x \in X$ we mean an invertible r-jet with source $0 \in \mathbb{R}^{n}$ and target x. The set of r-frames together with its natural structure of a principal L_{n}^{r}-bundle with base X is denoted by $F^{r} X$, and is called the bundle of r-frames over X. For $r=1$, we get the bundle of linear frames, and write $F^{1} X=F X$. If S is a left L_{n}^{r}-manifold, then the bundle with type fibre S, associated with $F^{r} X$ is denoted by $F_{S}^{r} X$.

[^0]If S is a left L_{n}^{1}-manifold, we denote by $T_{n}^{r} S$ the manifold of r-jets with source $0 \in \mathbb{R}^{n}$ and target in S. For finding differential invariants of frames it is convenient to realize $F X$ as a bundle with type fibre L_{n}^{1}, associated with itself. Then, the r-jet prolongation $J^{r} F X$ of $F X$ can be considered as a fibre bundle with type fibre $T_{n}^{r} L_{n}^{1}$, associated with $F^{r+1} X$.

For characterizing natural Lagrangians on $J^{r} F X$, i.e. Lagrangians invariant with respect to all diffeomorphisms of X, it is sufficient to describe all differential invariants defined on the type fiber $P=T_{n}^{r} L_{n}^{1}$ of $J^{r} F X$. The aim of this paper is to give explicit characterization of second order natural Lagrangians.

Most of differential invariants with values in Q appearing in differential geometry correspond with the case when Q is an L_{n}^{1}-manifold. These differential invariants can be described as follows. Let $K_{n}^{r, s}$ be the kernel of the canonical group morphism $\pi_{n}^{r, s}: L_{n}^{r} \rightarrow L_{n}^{s}$, where $r \geq s$. If L_{n}^{r} acts on Q via its subgroup L_{n}^{1}, each continuous, L_{n}^{r}-equivariant mapping $F: U \rightarrow Q$ has the form $F=f \circ \pi$, where $\pi: P \rightarrow P / K_{n}^{r, 1}$ is the quotient projection, $P / K_{n}^{r, 1}$ is the space of $K_{n}^{r, 1}$-orbits, and $f: P / K_{n}^{r, 1} \rightarrow Q$ is a continuous, L_{n}^{1}-equivariant mapping. Indeed, in this scheme $P / K_{n}^{r, 1}$ is considered with the quotient topology, but is not necessarily a smooth manifold. The quotient projection π is continuous but not necessarily smooth. If $P / K_{n}^{r, 1}$ has a smooth structure such that π is a submersion, we call π the basis of differential invariants on P (for more details of a basis, see [12]). The general concepts on equivariant mappings, related with a normal subgroup of a Lie group, and corresponding assertions with the proofs can be found in $[4,8]$.

A method based on this observation was first time applied to the problem of finding differential invariants of a linear connection in [8]. The initial problem was reduced to a more simple problem of the classical invariant theory (see e.g. [14, 15]) to describe all L_{n}^{1}-equivariant mappings from $P / K_{n}^{r, 1}$ to L_{n}^{1}-manifolds. Our aim in this paper is to study invariants of linear frames by the same method, which allows us to simplify expressions of the action of L_{n}^{r} on P.

In this paper, we first introduce the domain of second order differential invariants with values in L_{n}^{1}-manifolds, which is, according to the prolongation theory of manifolds endowed with a Lie group action (see e.g. [6, 7, 11]), the L_{n}^{3}-manifold $P=T_{n}^{2} L_{n}^{1}$. Then we describe the frame action of L_{n}^{3} on $T_{n}^{2} L_{n}^{1}$. This action corresponds to the second jet prolongation of the frame lift of a diffeomorphism of X. Using a tensor decomposition, we also construct the corresponding orbit space of the normal subgroup $K_{n}^{3,1}$ of L_{n}^{3}. We show that this orbit space can be identified with Cartesian products of L_{n}^{1} with some tensor spaces over \mathbb{R}^{n}; in this way the differential invariants with values in L_{n}^{1}-manifolds are described in terms of their basis. Note that the second order differential invariants with values in L_{n}^{2}-manifolds can be easily obtained by the same manner.

These results are subsequently used for extension of the theory of the first order differential invariants of frames in [5], studied in terms of integrals of canonical differential system, to the second order case. Applying factorization method, we give an explicit characterization of second order scalar invariants of frames and Lagrangians, defined on $J^{2} F X$, invariant with respect to all diffeomorphisms on X. In Section 8 we also introduce the concept of canonical odd n-form on $F X$, where $n=\operatorname{dim} X$, which gives an exact description of globally defined invariant object in the role of volume form. In [5], (ordinary) n-form was considered, which is only available over
orientable manifolds. We also extend the remarks of the authors on the use of differential invariants as Lagrangians over non-orientable manifolds. For the theory of odd de Rham forms and odd base forms we refer to [9].

The calculations in this paper rely on the jet description of differential invariants. This is based on the existence of a Lie group (the differential group) whose invariants are exactly the differential invariants. Such description implies, in particular, that the arising theory is comparatively simpler than other versions of the theory of differential invariants.

Using another left action of L_{n}^{1} on itself, called coframe action, it is possible to obtain the corresponding differential invariants of coframes. Note that they can be obtained by the same method. For differential invariants of coframes, see [3]; it represents an extension of Ph.D. thesis of the first author, devoted to the second order case, to the third order case.

There are several types of invariance of Lagrangians on frame bundles. One of them is invariance with respect to the canonical action of L_{n}^{1} on $J^{r} F X$. All $L_{n}^{1}-$ invariant Lagrangians on $J^{r} F X$ are explicitly described in [2].

2 Jet prolongations of L_{n}^{1} manifolds

In this section, the general prolongation theory of left G-manifolds is applied to the case of the Lie group $G=L_{n}^{1}=G L_{n}(\mathbb{R})$. We use the prolongation formula derived in [7], and the terminology and notation of the book [11].

Recall that the r-th differential group L_{n}^{r} of \mathbb{R}^{n} is the group of invertible r-jets with source and target at the origin $0 \in \mathbb{R}^{n}$. The group multiplication in L_{n}^{r} is defined by the composition of jets. Let $J_{0}^{r} \alpha \in L_{n}^{r}$, where $\alpha=\left(\alpha^{i}\right)$ is a diffeomorphism of a neighborhood U of the origin $0 \in \mathbb{R}^{n}$ into \mathbb{R}^{n} such that $\alpha(0)=0$. The first canonical coordinates $a_{j_{1}}^{i}, a_{j_{1} j_{2}}^{i}, \ldots, a_{j_{1} j_{2} \ldots j_{r}}^{i}$, where $1 \leq i \leq n, 1 \leq j_{1} \leq j_{2} \leq \ldots \leq j_{r} \leq n$, on L_{n}^{r} are defined by

$$
\begin{equation*}
a_{j_{1} j_{2} \ldots j_{k}}^{i}\left(J_{0}^{r} \alpha\right)=D_{j_{1}} D_{j_{2}} \ldots D_{j_{k}} \alpha^{i}(0), \quad 1 \leq k \leq r . \tag{2.1}
\end{equation*}
$$

We also define the second canonical coordinates $b_{j_{1}}^{i}, b_{j_{1} j_{2}}^{i}, \ldots, b_{j_{1} j_{2} \ldots j_{r}}^{i}$, on L_{n}^{r} by

$$
b_{j_{1} j_{2} \ldots j_{k}}^{i}\left(J_{0}^{r} \alpha\right)=a_{j_{1} j_{2} \ldots j_{k}}^{i}\left(J_{0}^{r} \alpha^{-1}\right), \quad 1 \leq k \leq r .
$$

Indeed, $a_{j}^{i} b_{k}^{j}=\delta_{k}^{i}$ (the Kronecker symbol).
Let us consider a left L_{n}^{1}-manifold S, and denote by $T_{n}^{r} S$ the manifold of r-jets with source $0 \in \mathbb{R}^{n}$ and target in S. According to the general theory of prolongations of left G-manifolds, $T_{n}^{r} S$ has a (canonical) structure of a left L_{n}^{r+1}-manifold. To define this structure, denote by t_{x} the translation of \mathbb{R}^{n} defined by $t_{x}(y)=y-x$. Consider elements $q \in T_{n}^{r} S, q=J_{0}^{r} \gamma$, and $a \in L_{n}^{r+1}, a=J_{0}^{r+1} \alpha$. Denoting $\bar{\alpha}_{x}=t_{x} \circ \alpha \circ t_{-\alpha^{-1}(x)}$, and $\bar{\alpha}(x)=J_{0}^{1} \bar{\alpha}_{x}$ we get an element of the group L_{n}^{1}. Then formula

$$
\begin{equation*}
a \cdot q=J_{0}^{r}\left(\bar{\alpha} \cdot\left(\gamma \circ \alpha^{-1}\right)\right) \tag{2.2}
\end{equation*}
$$

defines a left action of the differential group L_{n}^{r+1} on $T_{n}^{r} S$. We usually call formula (2.2) the prolongation formula for the action of the group L_{n}^{1} on S. The left L_{n}^{r+1} manifold $T_{n}^{r} S$ is called the r-jet prolongation of the left L_{n}^{1}-manifold S.

3 Frames

Let X be an n-dimensional manifold. Recall that an r-frame at a point $x \in X$ is an invertible r-jet with source $0 \in \mathbb{R}^{n}$ an target at x. The set of r-frames, denoted by $F^{r} X$, will be considered with its natural structure of a principal L_{n}^{r}-bundle over X. We write $F X=F^{1} X ; F X$ is the bundle of linear frames.

For computing differential invariants of frame bundles it is important to realize $F X$ as a fibre bundle with type fibre L_{n}^{1}, associated with itself. Thus, the structure group of $F X$ is the group $L_{n}^{1}=G L_{n}(\mathbb{R})$, with canonical coordinates $\left(a_{j}^{i}\right)$, defined by (2.1). If $\left(p_{j}^{i}\right)$ are the canonical coordinates on the type fibre L_{n}^{1} of fibre bundle $F X$, then the left action of the structure group L_{n}^{1} of $F X$ on the type fibre L_{n}^{1} is represented by the group multiplication $L_{n}^{1} \times L_{n}^{1} \ni\left(J_{0}^{1} \alpha, J_{0}^{1} \eta\right) \rightarrow J_{0}^{1}(\alpha \circ \eta) \in L_{n}^{1}$. In the canonical coordinates, $p_{j}^{i}\left(J_{0}^{1}(\alpha \circ \eta)\right)=a_{k}^{i}\left(J_{0}^{1} \alpha\right) p_{j}^{k}\left(J_{0}^{1} \eta\right)$, which can be written simply by

$$
\begin{equation*}
\bar{p}_{j}^{i}=a_{k}^{i} p_{j}^{k} . \tag{3.1}
\end{equation*}
$$

(3.1) is called the frame action of L_{n}^{1} on itself.
$J^{r} F X$ denotes the r-jet prolongation of $F X$. It follows from the general theory of jet prolongations of fibre bundles that $J^{r} F X$ can be considered as a fibre bundle over X with type fibre $T_{n}^{r} L_{n}^{1}$, associated with $F^{r+1} X$. Equations of the group action of L_{n}^{r+1} on $T_{n}^{r} L_{n}^{1}$ can be obtained from (2.2) and (3.1).

4 The second jet prolongation of the frame action

Now we derive an explicit expression for the action (2.2) of the group L_{n}^{3} on $T_{n}^{2} L_{n}^{1}$, associated with (3.1).

Let U be a neighborhood of the origin $0 \in \mathbb{R}^{n}$. Let α be a diffeomorphism of U onto $\alpha(U) \subset \mathbb{R}^{n}$ such that $\alpha(0)=0$. Then $\bar{\alpha}(x)=J_{0}^{1} \bar{\alpha}_{x}$, where $\bar{\alpha}_{x}=t_{x} \circ \alpha \circ t_{-\alpha^{-1}(x)}$. Let $\gamma: U \rightarrow L_{n}^{1}$ be a mapping. For every $x \in \alpha(U)$ we denote $\psi(x)=\bar{\alpha}(x) \cdot \gamma\left(\alpha^{-1}(x)\right)$, and the dot on the right hand side means the multiplication in the group L_{n}^{1}. In coordinates,

$$
\begin{equation*}
p_{j}^{i}(\psi(x))=p_{j}^{i}\left(\bar{\alpha}(x) \cdot \gamma\left(\alpha^{-1}(x)\right)\right)=a_{s}^{i}(\bar{\alpha}(x)) p_{j}^{s}\left(\gamma\left(\alpha^{-1}(x)\right)\right) . \tag{4.1}
\end{equation*}
$$

Note that in this formula,

$$
\begin{equation*}
a_{s}^{i}(\bar{\alpha}(x))=D_{s} \alpha^{i}\left(\alpha^{-1}(x)\right) . \tag{4.2}
\end{equation*}
$$

Now the chart expression of the frame action is obtained by expressing the r-jet $J_{0}^{r} \psi=J_{0}^{r+1} \alpha \cdot J_{0}^{r} \gamma(2.2)$ in coordinates. Consider the case $r=2$.

Lemma 1. The group action of L_{n}^{3} on $T_{n}^{2} L_{n}^{1}$ induced by the frame action of L_{n}^{1} on L_{n}^{1} is defined by the equations

$$
\begin{align*}
& \bar{p}_{j}^{i}=p_{j}^{s} a_{s}^{i} \\
& \bar{p}_{j, k}^{i}=p_{j, t}^{s} a_{s}^{i} b_{k}^{t}+p_{j}^{s} a_{s t}^{i} b_{k}^{t} \\
& \bar{p}_{j, k l}^{i}=p_{j, t u}^{s} a_{s}^{i} b_{l}^{u} b_{k}^{t}+p_{j, t}^{s}\left(a_{s u}^{i} b_{k}^{u} b_{l}^{t}+a_{s u}^{i} b_{l}^{u} b_{k}^{t}+a_{s}^{i} b_{k l}^{t}\right) \tag{4.3}\\
& \quad+p_{j}^{s}\left(a_{s t u}^{i} b_{l}^{u} b_{k}^{t}+a_{s t}^{i} b_{k l}^{t}\right)
\end{align*}
$$

Proof. First equation is obtained from (4.1) and (4.2), to get the remaining equations, we differentiate (4.1) twice, and then put $x=0$.

5 Differential invariants with values in L_{n}^{1}-manifolds

In this part we are interested in differential invariants $F: T_{n}^{2} L_{n}^{1} \rightarrow Q$, where Q is arbitrary left L_{n}^{1}-manifold. We define the homomorphism

$$
\pi_{n}^{3,1}: L_{n}^{3} \rightarrow L_{n}^{1}, \quad \pi_{n}^{3,1}\left(a_{j}^{i}, a_{j k}^{i}, a_{j k l}^{i}\right)=\left(a_{j}^{i}\right)
$$

Notice that each differential invariant F with values in L_{n}^{1}-manifold satisfies

$$
F(a \cdot q)=\pi_{n}^{3,1}(a) \cdot F(q)
$$

for each $a \in L_{n}^{3}, q \in T_{n}^{2} L_{n}^{1}$.
Let $K_{n}^{3,1}$ denote the kernel of the canonical homomorphism $\pi_{n}^{3,1} ; K_{n}^{3,1}$ is normal subgroup of L_{n}^{3} represented by elements in coordinates written as $\left(\delta_{j}^{i}, a_{j k}^{i}, a_{j k l}^{i}\right)$. Now we restrict the action (4.3) to the subgroup $K_{n}^{3,1}$ of L_{n}^{3}. The following result is fundamental for the discussion of the corresponding orbit spaces.

Lemma 2. The group action of $K_{n}^{3,1}$ on $T_{n}^{2} L_{n}^{1}$ induced by the frame action of L_{n}^{1} on L_{n}^{1} is defined by the equations

$$
\begin{align*}
& \bar{p}_{j}^{i}=p_{j}^{i}, \\
& \bar{p}_{j, k}^{i}=p_{j, k}^{i}+p_{j}^{s} a_{s k}^{i}, \tag{5.1}\\
& \bar{p}_{j, k l}^{i}=p_{j, k l}^{i}+p_{j, l}^{s} a_{s k}^{i}+p_{j, k}^{s} a_{s l}^{i}+\left(p_{j, t}^{i}+p_{j}^{s} a_{s t}^{i}\right) b_{k l}^{t}+p_{j}^{s} a_{s k l}^{i} .
\end{align*}
$$

Proof. We take $a_{j}^{i}=b_{j}^{i}=\delta_{j}^{i}$ in (4.3).
Corollary 1. The action (5.1) is free.
Now we describe orbits of the group actions (5.1). Let us introduce some notation. Using the second canonical coordinates on $T_{n}^{2} L_{n}^{1}$, we denote by q_{j}^{i} the inverse matrix of the matrix p_{j}^{i}; thus, $q_{j}^{i}: T_{n}^{2} L_{n}^{1} \rightarrow \mathbb{R}$ are functions such that $q_{s}^{i} p_{j}^{s}=\delta_{j}^{i}$.

We also use the special notation for symmetrization and antisymmetrization of indexed families of functions through selected indices. Symmetrization (resp. antisymmetrization) in some indices j, k, l, \ldots is denoted by writing a bar (resp. a tilde) over these indices, i.e., by writing $\bar{j}, \bar{k}, \bar{l}, \ldots$ (resp. $\tilde{j}, \tilde{k}, \tilde{l}, \ldots)$.

First, we state some auxiliary assertions on the Young decomposition of tensors of type $(0,3)$. Let us have a tensor $\Delta=\Delta_{j k l}$ and let n be the dimension of the underlying vector space. We define

$$
\begin{align*}
\mathcal{S} \Delta & =\frac{1}{6}\left(\Delta_{j k l}+\Delta_{l j k}+\Delta_{k l j}+\Delta_{j l k}+\Delta_{l k j}+\Delta_{k j l}\right) \\
\mathcal{Q} \Delta & =\frac{1}{3}\left(\Delta_{j k l}+\Delta_{k j l}-\Delta_{l k j}-\Delta_{k l j}\right)+\frac{1}{3}\left(\Delta_{j k l}+\Delta_{l k j}-\Delta_{k j l}-\Delta_{l j k}\right) \tag{5.2}\\
\mathcal{A} \Delta & =\frac{1}{6}\left(\Delta_{j k l}+\Delta_{l j k}+\Delta_{k l j}-\Delta_{j l k}-\Delta_{l k j}-\Delta_{k j l}\right)
\end{align*}
$$

Note that (5.2) can be equivalently written by

$$
\begin{equation*}
\mathcal{S} \Delta=\Delta_{\bar{j} \bar{k} \bar{l}}, \quad \mathcal{Q} \Delta=\frac{1}{3}\left(2 \Delta_{j k l}-\Delta_{l j k}-\Delta_{k l j}\right), \quad \mathcal{A} \Delta=\Delta_{\tilde{j} \tilde{k} l} . \tag{5.3}
\end{equation*}
$$

Lemma 3. (a) If $n \geq 3$, a tensor $\Delta=\Delta_{j k l}$ has a unique decomposition

$$
\Delta=\mathcal{S} \Delta+\mathcal{Q} \Delta+\mathcal{A} \Delta
$$

such that $\mathcal{S}(\mathcal{S} \Delta)=\mathcal{S} \Delta, \mathcal{Q}(\mathcal{Q} \Delta)=\mathcal{Q} \Delta, \mathcal{A}(\mathcal{A} \Delta)=\mathcal{A} \Delta, \mathcal{S}(\mathcal{Q} \Delta)=\mathcal{Q}(\mathcal{S} \Delta)=$ $\mathcal{A}(\mathcal{Q} \Delta)=\mathcal{Q}(\mathcal{A} \Delta)=\mathcal{S}(\mathcal{A} \Delta)=\mathcal{A}(\mathcal{S} \Delta)=0$.
(b) If $n=2$, a tensor $\Delta=\Delta_{j k l}$ has a unique decomposition

$$
\Delta=\mathcal{S} \Delta+\mathcal{Q} \Delta
$$

such that $\mathcal{S}(\mathcal{S} \Delta)=\mathcal{S} \Delta, \mathcal{Q}(\mathcal{Q} \Delta)=\mathcal{Q} \Delta, \mathcal{S}(\mathcal{Q} \Delta)=\mathcal{Q}(\mathcal{S} \Delta)=0$.
Proof. These assertions can be verified by a direct computation.
Corollary 2. For tensor $\Delta=\Delta_{j k l}$ symmetric in the indices k, l there is a unique decomposition

$$
\begin{equation*}
\Delta=\mathcal{S} \Delta+\mathcal{Q} \Delta \tag{5.4}
\end{equation*}
$$

such that $\mathcal{S}(\mathcal{S} \Delta)=\mathcal{S} \Delta, \mathcal{Q}(\mathcal{Q} \Delta)=\mathcal{Q} \Delta, \mathcal{S}(\mathcal{Q} \Delta)=\mathcal{Q}(\mathcal{S} \Delta)=0$.
Finally, we introduce the following functions on $T_{n}^{2} L_{n}^{1}$:

$$
\begin{align*}
& I_{j k}^{i}\left(p_{b}^{a}, p_{b, c}^{a}, p_{b, c d}^{a}\right)=q_{\bar{j}}^{l} p_{l, \tilde{k}}^{i}, \\
& I_{j k l}^{i}\left(p_{b}^{a}, p_{b, c}^{a}, p_{b, c d}^{a}\right)=2 q_{j}^{s} p_{s, k l}^{i}-q_{k}^{s} p_{s, l j}^{i}-q_{l}^{s} p_{s, j k}^{i} \\
& \quad-3\left(q_{\tilde{j}}^{t} p_{t, \bar{l}}^{m} q_{\bar{m}}^{s} p_{s, \bar{k}}^{i}+q_{\bar{j}}^{t} p_{t, \tilde{k}}^{m} q_{\bar{m}}^{s} p_{s, \bar{l}}^{i}\right) \tag{5.5}\\
& \quad+p_{s, m}^{i}\left(2 q_{j}^{s} q_{\bar{k}}^{t} p_{t, \bar{l}}^{m}-q_{k}^{s} q_{\bar{l}}^{t} p_{t, \bar{j}}^{m}-q_{l}^{s} q_{\bar{j}}^{t} p_{t, \bar{k}}^{m}\right) .
\end{align*}
$$

It is obvious that the functions $I_{j k}^{i}$ are antisymmetric in indices j, k, and the functions $I_{j k l}^{i}$ are symmetric in indices k, l, which gives us $I_{j k}^{i}+I_{k j}^{i}=0, I_{j k l}^{i}-I_{j l k}^{i}=0$, respectively. Moreover, we have the identity $I_{j k l}^{i}+I_{l j k}^{i}+I_{k l j}^{i}=0$.

Lemma 4. $K_{n}^{3,1}$-orbits in $T_{n}^{2} L_{n}^{1}$ induced by the frame action of L_{n}^{1} on L_{n}^{1} is defined by the equations

$$
p_{j}^{i}=c_{j}^{i}, \quad I_{j k}^{i}\left(p_{b}^{a}, p_{b, c}^{a}, p_{b, c d}^{a}\right)=c_{j k}^{i}, \quad I_{j k l}^{i}\left(p_{b}^{a}, p_{b, c}^{a}, p_{b, c d}^{a}\right)=c_{j k l}^{i},
$$

where $c_{j}^{i}, c_{j k}^{i}, c_{j k l}^{i} \in \mathbb{R}$ are arbitrary constants such that $\operatorname{det} c_{j}^{i} \neq 0$.
Proof. Consider the action (5.1) of $K_{n}^{3,1}$ on $T_{n}^{2} L_{n}^{1}$, induced by the frame action of L_{n}^{1} on L_{n}^{1}, in standard notation given by $\bar{p}_{j}^{i}=a_{k}^{i} p_{j}^{k}$. Rewrite this action in the form

$$
\begin{equation*}
\bar{p}_{j}^{i}=p_{j}^{i}, \quad \bar{p}_{j, k}^{i}=p_{j, k}^{i}+p_{j}^{s} a_{s k}^{i}, \quad \bar{p}_{j, k l}^{i}=p_{j, k l}^{i}+\chi_{j, k l}^{i}+p_{j}^{s} a_{s k l}^{i} \tag{5.6}
\end{equation*}
$$

where the functions

$$
\begin{equation*}
\chi_{j, k l}^{i}=p_{j, l}^{s} a_{s k}^{i}+p_{j, k}^{s} a_{s l}^{i}+\left(p_{j, t}^{i}+p_{j}^{s} a_{s t}^{i}\right) b_{k l}^{t} \tag{5.7}
\end{equation*}
$$

are symmetric in the indices k, l. From (5.6) we get

$$
\begin{equation*}
\bar{q}_{j}^{i}=q_{j}^{i}, \quad a_{s k}^{i}=q_{\bar{s}}^{j}\left(\bar{p}_{j, \bar{k}}^{i}-p_{j, \bar{k}}^{i}\right), \quad a_{s k l}^{i}=q_{\bar{s}}^{j}\left(\bar{p}_{j, \bar{k} \bar{l}}^{i}-p_{j, \bar{k} \bar{l}}^{i}-\chi_{j, \bar{k} \bar{l}}^{i}\right) . \tag{5.8}
\end{equation*}
$$

Substituting the second equation of (5.8) to (5.6) we have

$$
q_{s}^{j}\left(\bar{p}_{j, k}^{i}-p_{j, k}^{i}\right)=q_{\bar{s}}^{j}\left(\bar{p}_{j, \bar{k}}^{i}-p_{j, \bar{k}}^{i}\right),
$$

which means that we compare the tensor on the left hand side with its symmetric part. It gives us $\bar{q}_{\tilde{j}}^{l} \bar{p}_{l, \tilde{k}}^{i}=q_{\tilde{j}}^{l} p_{l, \tilde{k}}^{i}$. Thus, for the functions $I_{j k}^{i}$, defined by (5.5), we have

$$
\begin{equation*}
I_{j k}^{i}\left(\bar{p}_{b}^{a}, \bar{p}_{b, c}^{a}, \bar{p}_{b, c d}^{a}\right)=I_{j k}^{i}\left(p_{b}^{a}, p_{b, c}^{a}, p_{b, c d}^{a}\right), \tag{5.9}
\end{equation*}
$$

and the functions $I_{j k}^{i}$ are invariant with respect to the action (5.1) of $K_{n}^{3,1}$ on $T_{n}^{2} L_{n}^{1}$. Again, substituting (5.8) to (5.6) we have

$$
q_{j}^{s}\left(\bar{p}_{s, k l}^{i}-p_{s, k l}^{i}-\chi_{s, k l}^{i}\right)=q_{\bar{j}}^{s}\left(\bar{p}_{s, \bar{k} \bar{l}}^{i}-p_{s, \bar{k} \bar{l}}^{i}-\chi_{s, \bar{k} \bar{l}}^{i}\right) .
$$

It means that we compare the tensor

$$
\begin{equation*}
\Delta_{j k l}^{i}=q_{j}^{s}\left(\bar{p}_{s, k l}^{i}-p_{s, k l}^{i}-\chi_{s, k l}^{i}\right), \tag{5.10}
\end{equation*}
$$

symmetric in the subscripts k, l, on the left hand side, with its symmetric part $\mathcal{S} \Delta=$ $\Delta_{\bar{j} \bar{k} \bar{l}}^{i}$. Using decomposition (5.4) for the tensor Δ given by (5.10), we get

$$
\begin{equation*}
\mathcal{Q} \Delta=0 . \tag{5.11}
\end{equation*}
$$

Applying (5.3) to (5.11), and using (5.7), and (5.8), after long calculation we obtain that (5.11) is equivalent to

$$
\begin{equation*}
I_{j k l}^{i}\left(\bar{p}_{b}^{a}, \bar{p}_{b, c}^{a}, \bar{p}_{b, c d}^{a}\right)=I_{j k l}^{i}\left(p_{b}^{a}, p_{b, c}^{a}, p_{b, c d}^{a}\right), \tag{5.12}
\end{equation*}
$$

which means that the functions $I_{j k l}^{i}$, defined by (5.5), are invariant with respect to the action (5.1) of $K_{n}^{3,1}$ on $T_{n}^{2} L_{n}^{1}$.

6 Basis of the second order invariants

Now, from the assertions on equivariant mappings of manifolds (see [4, 8]) we can obtain the exact characteristics of basis of differential invariants with values in $L_{n^{-}}^{1}$ manifolds.

First, let us denote by S_{n}^{0} the vector subspace of the tensor product $\otimes^{2} \mathbb{R}^{n *}=$ $\mathbb{R}^{n *} \otimes \mathbb{R}^{n *}$, defined in the canonical coordinates on \mathbb{R} by the equations

$$
x_{j k}+x_{k j}=0 .
$$

Similarly, S_{n}^{1} denotes the vector subspace of the tensor product $\bigotimes^{3} \mathbb{R}^{n *}=\mathbb{R}^{n *} \otimes$ $\mathbb{R}^{n *} \otimes \mathbb{R}^{n *}$, defined by the equations

$$
x_{j k l}-x_{j l k}=0, \quad x_{j k l}+x_{l j k}+x_{k l j}=0 .
$$

We can summarize the discussion of Section 5 in the following theorem, describing differential invariants on $T_{n}^{2} L_{n}^{1}$ with values in L_{n}^{1}-manifolds.

Theorem 1. (a) The frame action defines on $T_{n}^{2} L_{n}^{1}$ the structure of a left principal $K_{n}^{3,1}$-bundle.
(b) The quotient space $T_{n}^{2} L_{n}^{1} / K_{n}^{3,1}$ is canonically isomorphic to the space $L_{n}^{1} \times$ $\left(\mathbb{R}^{n} \otimes S_{n}^{0}\right) \times\left(\mathbb{R}^{n} \otimes S_{n}^{1}\right)$.

Proof. (a) Since we have already proved that the action (5.1) of $K_{n}^{3,1}$ on $T_{n}^{2} L_{n}^{1}$ is free (see Corollary 1), in order to show that $T_{n}^{2} L_{n}^{1}$ is a principal $K_{n}^{3,1}$-bundle it remains to show that the equivalence " $J_{0}^{2} \gamma \sim J_{0}^{2} \bar{\gamma}$ if and only if there exists an element $J_{0}^{3} \alpha \in K_{n}^{3,1}$ such that $J_{0}^{2} \bar{\gamma}=J_{0}^{3} \alpha \cdot J_{0}^{2} \gamma^{\prime \prime}$ is a closed submanifold in $T_{n}^{2} L_{n}^{1} \times T_{n}^{2} L_{n}^{1}$. But using (5.1) with help of (5.9) and (5.12), we see that this submanifold is defined by the equations

$$
\begin{aligned}
& p_{j}^{i}\left(J_{0}^{2} \bar{\gamma}\right)-p_{j}^{i}\left(J_{0}^{2} \gamma\right)=0, \\
& I_{j k}^{i}\left(J_{0}^{2} \bar{\gamma}\right)-I_{j k}^{i}\left(J_{0}^{2} \gamma\right)=0, \\
& I_{j k l}^{i}\left(J_{0}^{2} \bar{\gamma}\right)-I_{j k l}^{i}\left(J_{0}^{2} \gamma\right)=0,
\end{aligned}
$$

and is therefore closed.
(b) Let $J_{0}^{2} \gamma \in T_{n}^{2} L_{n}^{1}$ and let $\left[J_{0}^{2} \gamma\right]$ be the corresponding class of $J_{0}^{2} \gamma$ in quotient $T_{n}^{2} L_{n}^{1} / K_{n}^{3,1}$. We set

$$
\begin{align*}
& p_{j}^{i}\left(\left[J_{0}^{2} \gamma\right]\right)=p_{j}^{i}\left(J_{0}^{2} \gamma\right), \\
& I_{j k}^{i}\left(\left[J_{0}^{2} \gamma\right]\right)=I_{j k}^{i}\left(J_{0}^{2} \gamma\right), \tag{6.1}\\
& I_{j k l}^{i}\left(\left[J_{0}^{2} \gamma\right]\right)=I_{j k l}^{i}\left(J_{0}^{2} \gamma\right) .
\end{align*}
$$

Relations (5.1), (5.9), and (5.12) imply that coordinates defined by (6.1) do not depend on a representant of given class, and for two different classes there are different sets of numbers. It means that factor projection $\pi: T_{n}^{2} L_{n}^{1} \rightarrow T_{n}^{2} L_{n}^{1} / K_{n}^{3,1}$ can be expressed by

$$
\pi=\left(p_{j}^{i}, I_{j k}^{i}, I_{j k l}^{i}\right)
$$

Thus, canonical isomorphism of bundles maps the class from $T_{n}^{2} L_{n}^{1} / K_{n}^{3,1}$ with coordinates $\left(p_{j}^{i}, I_{j k}^{i}, I_{j k l}^{i}\right)$, to the element of $L_{n}^{1} \times\left(\mathbb{R}^{n} \otimes S_{n}^{0}\right) \times\left(\mathbb{R}^{n} \otimes S_{n}^{1}\right)$ with the same canonical coordinates.

Theorems 1 says that every second order differential invariant of frames factorizes through the corresponding bundle projection. Consider the components of the isomorphisms defined by $p_{j}^{i}: T_{n}^{2} L_{n}^{1} \rightarrow L_{n}^{1}, I_{j k}^{i}: T_{n}^{2} L_{n}^{1} \rightarrow \mathbb{R}^{n} \otimes S_{n}^{0}$, and $I_{j k l}^{i}: T_{n}^{2} L_{n}^{1} \rightarrow \mathbb{R}^{n} \otimes S_{n}^{1}$. We have the following results.

Corollary 3. The mappings $p_{j}^{i}, I_{j k}^{i}$, $I_{j k l}^{i}$ represent a basis of second order invariants of frames with values in left L_{n}^{1}-manifold.

7 Basis of scalar invariants

Note that if G is a Lie group, K is its normal subgroup, and P is a G-manifold then the quotient manifold $(P / K) /(G / K)$ is canonically isomorphic with P / G (see [1]).

This means that for finding scalar invariants of Lie group G, we can equivalently factorize P by normal subgroup K and subsequently by the factor group G / K. Thus, to obtain scalar invariants of L_{n}^{3} on $T_{n}^{2} L_{n}^{1}$ it is sufficient to consider L_{n}^{1}-equivariant mappings defined on $T_{n}^{2} L_{n}^{1} / K_{n}^{3,1}$.

Let us define some functions $\mathcal{I}_{j k}^{i}, \mathcal{I}_{j k l}^{i}$, on $T_{n}^{2} L_{n}^{1}$, by

$$
\begin{align*}
& \mathcal{I}_{j k}^{i}=q_{l}^{i} p_{\hat{k}}^{s} p_{j, s}^{l} \\
& \mathcal{I}_{j k l}^{i}=q_{r}^{i}\left(2 p_{k}^{s} p_{l}^{t} p_{j, s t}^{r}-p_{l}^{s} p_{j}^{t} p_{k, s t}^{r}-p_{j}^{s} p_{k}^{t} p_{l, s t}^{r}\right. \\
& \quad-\frac{3}{2} q_{m}^{u} p_{u, s}^{r}\left(p_{k}^{s} p_{\bar{l}}^{t} p_{j, t}^{m}+p_{l}^{s} p_{\hat{k}}^{t} p_{j, t}^{m}\right)-\frac{5}{2} p_{j, s}^{m} p_{\bar{k}}^{s} p_{\bar{l}, m}^{r} \tag{7.1}\\
& \left.\quad+\frac{1}{2} p_{j}^{s} p_{\bar{k}, m}^{r} p_{\bar{l}, s}^{m}+2 p_{j, m}^{r} p_{\bar{k}}^{s} p_{\bar{l}, s}^{m}\right) .
\end{align*}
$$

We have the following
Theorem 2. The functions $\mathcal{I}_{j k}^{i}, \mathcal{I}_{j k l}^{i}$ represent a basis of second order scalar invariants of frames.

Proof. The group $L_{n}^{1} \simeq L_{n}^{3} / K_{n}^{3,1}$ acts in factor space $T_{n}^{2} L_{n}^{1} / K_{n}^{3,1}$, where the functions $I_{j k}^{i}$ and $I_{j k l}^{i}$ live, by

$$
\begin{equation*}
\bar{I}_{j k}^{i}=a_{r}^{i} b_{j}^{s} b_{k}^{t} I_{s t}^{r}, \quad \bar{I}_{j k l}^{i}=a_{r}^{i} b_{j}^{s} b_{k}^{t} b_{l}^{u} I_{s t u}^{r} \tag{7.2}
\end{equation*}
$$

respectively. Using relations $a_{r}^{i}=q_{r}^{m} \bar{p}_{m}^{i}$, and $b_{j}^{s}=\bar{q}_{j}^{v} p_{v}^{s}$, obtained from (3.1), in (7.2), we have

$$
\bar{q}_{i}^{a} \bar{p}_{b}^{j} \bar{p}_{c}^{k} \bar{I}_{j k}^{i}=q_{r}^{a} p_{b}^{s} p_{c}^{t} I_{s t}^{r}, \quad \bar{q}_{i}^{a} \bar{p}_{b}^{j} \bar{p}_{c}^{k} \bar{p}_{d}^{l} \bar{I}_{j k l}^{i}=q_{r}^{a} p_{b}^{s} p_{c}^{t} p_{d}^{u} I_{s t u}^{r}
$$

which describes L_{n}^{1}-invariant objets in $T_{n}^{2} L_{n}^{1} / K_{n}^{3,1}$. Using (5.5), we get

$$
q_{r}^{a} p_{b}^{s} p_{c}^{t} I_{s t}^{r}=\mathcal{I}_{b c}^{a}, \quad q_{r}^{a} p_{b}^{s} p_{c}^{t} p_{d}^{u} I_{s t u}^{r}=\mathcal{I}_{b c d}^{a}
$$

where $\mathcal{I}_{b c}^{a}, \mathcal{I}_{b c d}^{a}$ are given by (7.1).
Using factorization method, we are allowed to determine the number of independent L_{n}^{3}-invariant functions on $T_{n}^{2} L_{n}^{1}$ as the dimensions of the corresponding factor spaces. Thus, the number of functionally independent invariants $\mathcal{I}_{j k}^{i}, \mathcal{I}_{j k l}^{i}$ is given by

$$
\operatorname{dim}\left(T_{n}^{1} L_{n}^{1} / L_{n}^{2}\right)=\frac{1}{2} n^{2}(n-1), \quad \operatorname{dim}\left(T_{n}^{2} L_{n}^{1} / L_{n}^{3}\right)=\frac{1}{3} n^{2}\left(n^{2}-1\right)
$$

respectively. For instance of $n=1,2,3,4$, the number of independent L_{n}^{3}-invariant functions on $T_{n}^{2} L_{n}^{1}$ is $N=0,6,33,104$, respectively.

Let us consider a left action of the general linear group L_{n}^{1} on the real line \mathbb{R} by

$$
L_{n}^{1} \times \mathbb{R} \ni(a, t) \mapsto\left|\operatorname{det} a^{-1}\right| \cdot t \in \mathbb{R}
$$

The real line, endowed with this action, is an L_{n}^{1}-manifold, denoted by $\widetilde{\mathbb{R}}$.
We also introduce the function \mathcal{I}_{0} defined on $T_{n}^{2} L_{n}^{1}$ by

$$
T_{n}^{2} L_{n}^{1} \ni q \mapsto \mathcal{I}_{0}(q)=\left|\operatorname{det} q_{j}^{i}(q)\right| \in \mathbb{R}
$$

Lemma 5. The function $\mathcal{I}_{0}: T_{n}^{2} L_{n}^{1} \rightarrow \widetilde{\mathbb{R}}$ is a differential invariant.
Proof. Obviously, the function \mathcal{I}_{0} is smooth, and for every $a \in L_{n}^{3}$, and every $q \in T_{n}^{2} L_{n}^{1}$ we have $\mathcal{I}_{0}(a \cdot q)=\left|\operatorname{det} a^{-1}\right| \cdot \mathcal{I}_{0}(q)$.

Corollary 4. Every differential invariant \mathcal{I} defined on $T_{n}^{2} L_{n}^{1}$, with values in $\widetilde{\mathbb{R}}$, is the product of some scalar invariant and the function \mathcal{I}_{0}.

8 Canonical odd n-form on $F X$

In order to compare our results with [5], we recall in this Section the concept of volume form needed for integration on not necessarily orientable manifold.

Any chart $(U, \varphi), \varphi=\left(x^{i}\right)$, on X, induces the fibred chart $(V, \psi), \psi=\left(x^{i}, x_{j}^{i}\right)$, on $F X$. For every frame $\Xi \in V$ we have $\operatorname{det} x_{j}^{i}(\Xi) \neq 0$, and we can define some other coordinates y_{k}^{j} of Ξ by setting $x_{j}^{i} y_{k}^{j}=\delta_{k}^{i}$. We define a function $V \ni \Xi \mapsto\left|\operatorname{det} y_{j}^{i}(\Xi)\right| \in$ \mathbb{R}, associated with the chart (V, ψ). With a chart (V, ψ) we also associate the object

$$
\begin{equation*}
\tilde{\omega}_{(V, \psi)}=\left|\operatorname{det} y_{j}^{i}\right| \cdot \tilde{\varphi} \otimes d x^{1} \wedge d x^{2} \wedge \ldots \wedge d x^{n} \tag{8.1}
\end{equation*}
$$

where $\tilde{\varphi}$ is a field of odd scalars on X, associated with (U, φ) (see [9]). It is easily seen that (8.1) represent a globally defined odd base form on $F X$; we denote this form by $\tilde{\omega}$, and call it canonical odd n-form on X.

This form has the following properties:

1. For each frame field $\zeta: W \rightarrow F X$, where W is an open set on X, the pullback $\zeta^{*} \tilde{\omega}$ is an odd volume form on W.
2. The construction of $\tilde{\omega}$ does not depend on orientability of base manifold X. In the case of orientable and oriented manifolds $X, \tilde{\omega}$ is equivalent to an (ordinary) n-form on $F X$.
3. The form $\tilde{\omega}$ is diff X-invariant, i.e. $(F \alpha)^{*} \tilde{\omega}=\tilde{\omega}$ for all diffeomorphisms α of X, where $F \alpha$ is the canonical lift of α to $F X$.

It should be pointed out that odd n-forms $\zeta^{*} \tilde{\omega}$ may be used as volume forms for integration on the base manifold X. In particular, these forms naturally appears as a components of Lagrangians for variational problems for frame fields. We discuss these questions in the subsequent Section.

9 Second order natural Lagrangians of frames

Our aim in this Section is to characterize all Lagrangians on $J^{2} F X$, invariant with respect to all diffeomorphisms of X. First we recall main concepts to this purpose.

We present basic definitions in full generality (for odd base forms). If the underlying manifold X is orientable, odd base forms may be replaced by ordinary forms.

Let us denote by μ the bundle projection $\mu: F X \rightarrow X$. The canonical jet projection $\mu^{2}: J^{2} F X \rightarrow X$ is, for every $J_{x}^{2} \zeta \in J^{2} F X$, defined by $\mu^{2}\left(J_{x}^{2} \zeta\right)=x$. A second order Lagrangian for $F X$ is any μ^{2}-horizontal n-form λ defined on the second jet prolongation $J^{2} F X$ of $F X$. In a chart $(V, \psi), \psi=\left(x^{i}, x_{j}^{i}\right)$, on $F X$, and the
associated chart $\left(V^{2}, \psi^{2}\right), \psi^{2}=\left(x^{i}, x_{j}^{i}, x_{j, k}^{i}, x_{j, k l}^{i}\right)$, on $J^{2} F X$, a Lagrangian λ has an expression

$$
\lambda=\mathcal{L} \cdot \tilde{\varphi} \otimes \omega_{0}
$$

where $\omega_{0}=d x^{1} \wedge d x^{2} \wedge \ldots \wedge d x^{n}, \tilde{\varphi}$ is a field of odd scalars, and $\mathcal{L}: V^{2} \rightarrow \mathbb{R}$ is the component of λ with respect to (V, ψ) (the Lagrange function associated with (V, ψ)).

We say that a second order Lagrangian λ is natural, if for every diffeomorphism $\alpha: W \rightarrow X$, where W is an open set in X, the canonical lift $F \alpha$ of α to $F X$ is an invariance transformation of λ, i.e.,

$$
\left(J^{2} F \alpha\right)^{*} \lambda=\lambda
$$

on the corresponding open set in $J^{2} F X$.
The following theorem is an application of a general result to the structure we consider in this paper (see $[10,11]$).

Theorem 3. Let X be an n-dimensional manifold. There exists a one-to-one correspondence between natural Lagrangians on $J^{2} F X$ and differential invariants \mathcal{I} : $T_{n}^{2} L_{n}^{1} \rightarrow \widetilde{\mathbb{R}}$.

We denote by $\mathcal{A}_{\text {diff } X}$ the algebra of diff X-invariant functions on $J^{2} F X$. Define in any chart $(V, \psi), \psi=\left(x^{i}, x_{j}^{i}\right)$, on $F X$, functions $\mathcal{L}_{j k}^{i}, \mathcal{L}_{j k l}^{i}$, by

$$
\begin{align*}
& \mathcal{L}_{j k}^{i}=y_{l}^{i} x_{\tilde{k}}^{s} x_{\tilde{j}, s}^{l}, \\
& \mathcal{L}_{j k l}^{i}=y_{r}^{i}\left(2 x_{k}^{s} x_{l}^{t} x_{j, s t}^{r}-x_{l}^{s} x_{j}^{t} x_{k, s t}^{r}-x_{j}^{s} x_{k}^{t} x_{l, s t}^{r}\right. \\
& \quad-\frac{3}{2} y_{m}^{u} x_{u, s}^{r}\left(x_{k}^{s} x_{\tilde{l}}^{t} x_{\tilde{j}, t}^{m}+x_{l}^{s} x_{\tilde{k}}^{t} x_{\tilde{j}, t}^{m}\right)-\frac{5}{2} x_{j, s}^{m} x_{\bar{k}}^{s} x_{l, m}^{r} \tag{9.1}\\
& \left.\quad+\frac{1}{2} x_{j}^{s} x_{\bar{k}, m}^{r} x_{\bar{l}, s}^{m}+2 x_{j, m}^{r} x_{\bar{k}}^{s} x_{\bar{l}, s}^{m}\right)
\end{align*}
$$

(compare with (7.1)). The functions $\mathcal{L}_{j k}^{i}, \mathcal{L}_{j k l}^{i}$, in coordinates expressed by (9.1), are globally defined functions on $J^{2} F X$.

Corollary 5. The functions $\mathcal{L}_{j k}^{i}, \mathcal{L}_{j k l}^{i} \in \mathcal{A}_{\mathrm{diff} X}$, and every function $\mathcal{L} \in \mathcal{A}_{\mathrm{diff} X}$ can be locally written as a differentiable function of the functions $\mathcal{L}_{j k}^{i}, \mathcal{L}_{j k l}^{i}$, defined by (9.1).

The following theorem is an immediate consequence of the invariance theory.
Theorem 4. Every natural Lagrangian λ on $J^{2} F X$ is of the form

$$
\lambda=\mathcal{L} \tilde{\omega},
$$

where $\mathcal{L} \in \mathcal{A}_{\operatorname{diff} X}$ and $\tilde{\omega}$ is canonical odd n-form of $F X$.
Remark 1. Restricting ourselves to the first order natural Lagrangians, Theorem 4 corresponds with the known results published in [5].

Acknowledgments

The author is grateful to the Slovak Research and Development Agency (Grants MVTS SK-CZ-0081-07 and SK-CZ-0006-09), and to the Czech Grant Agency (Grant No. 201/09/0981).

References

[1] N. Bourbaki, Gruppy i algebry Li, III. Gruppy Li, Mir, Moskva, 1976.
[2] J. Brajerčík, $G l_{n}(\mathbb{R})$-invariant variational principles on frame bundles, Balkan J. Geom. Appl., 13, 1 (2008), 11-19.
[3] D.Q. Chao, D. Krupka, 3rd order differential invariants of coframes, Math. Slovaca 49 (1999), 563-576.
[4] J. Dieudonné, Treatise on Analysis, Vol. III, Academic Press, New York - London, 1972.
[5] P.L. García Peréz and J. Muñoz Masqué, Differential invariants on the bundles of linear frames, J. Geom. Phys. 7 (1990), 395-418.
[6] I. Kolář, P.W. Michor and J. Slovák, Natural Operations in Differential Geometry, Springer-Verlag, Berlin, 1993.
[7] D. Krupka, A setting for generally invariant Lagrangian structures in tensor bundles, Bull. Acad. Polon. Sci. Sér. Math. Astr. Phys. 22 (1974), 967-972.
[8] D. Krupka, Local invariants of a linear connection, in: Differential Geometry, Budapest, 1979, Colloq. Math. Soc. János Bolyai 31, North Holland, Amsterdam (1982), 349-369.
[9] D. Krupka, Natural Lagrangian structures, in: Banach Center Publications, Vol. 12, Polish Scientific Publishers, Warszawa (1984), 185-210.
[10] D. Krupka, Natural variational principles, in: Symmetries and Perturbation Theory, Proc. of the Internat. Conf., Otranto, Italy, 2007, G. Gaeta, R. Vitolo, S. Walcher (Eds.), World Scientific (2008), 116-123.
[11] D. Krupka, J. Janyška, Lectures on Differential Invariants, Folia Facultatis Scientiarum Naturalium Universitatis Purkynienae Brunensis, Mathematica 1, University J. E. Purkyně, Brno, 1990.
[12] M. Krupka, Natural Operators on Vector Fields and Vector Distributions, Doctoral Dissertation, Masaryk University, Brno, 1995.
[13] A. Nijenhuis, Natural bundles and their general properties, in: Differential Geometry (In honour of K. Yano), Kinokuniya, Tokyo (1972), 317-334.
[14] T.Y. Thomas, The Differential Invariants of Generalized Spaces, Cambridge University Press, Cambridge, 1934.
[15] H. Weyl, The Classical Groups, Princeton University Press 1946.
Author's address:
Ján Brajerčík
Department of Mathematics, University of Prešov, Ul. 17 Novembra 1, 08116 Prešov, Slovakia.
E-mail: brajerci@unipo.sk

[^0]: Balkan Journal of Geometry and Its Applications, Vol.15, No.2, 2010, pp. 14-25.
 (c) Balkan Society of Geometers, Geometry Balkan Press 2010.

