Structure of the indicatrix bundle
of Finsler-Rizza manifolds
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Abstract. In this paper, we construct a framed f-structure on the slit
tangent space of a Rizza manifold. This induces on the indicatrix bundle
an almost contact metric. We find the conditions under which this struc-
ture reduces to a contact or to a Sasakian structure. Finally we study
these structures on Kéhlerian Finsler manifolds.
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1 Introduction

In [15, 16], G. B. Rizza introduced on almost complex manifolds (M, J), the so-called
Rizza condition. For Finsler structures (M, L) - where L is the Finsler metric, a
triple (M, J, L) which satisfies the Rizza condition is called a Finsler-Rizza manifold.
It was shown by Heil ([4]) that if the fundamental tensor g;; of the Finsler metric
L is compatible with the almost complex structure J, then the Finsler structure is
Riemannian. This leads to considering a weaker assumption on the Finsler metric,
like the Rizza condition. The notion of Rizza manifolds was developed further in
Finslerian framework by Y. Ichijyo, who showed that every tangent space to a Rizza
manifold is a complex Banach space and that Rizza condition does not necessarily
reduce the Finsler metric to a Riemannian one ([7, 8]). He also defined a notion
of Kéahler Finsler metric and showed that for a K&hler Finsler manifold, the almost
complex structure is integrable. Recently, several mathematicians studied Rizza and
Kaéhler Finsler manifolds ([5, 9, 10, 13, 17]).

Let (M, L) be an n-dimensional Finsler manifold (n even), admitting an almost
complex structure Ji(x). Let gij(z,y) = 10,0;L*(x,y) be the associated Finsler
metric tensor field [11, 12, 14]. We say that the fundamental function L(z,y) satisfies
the Rizza condition, if

L(z,poy) = L(z,y), VO € R, where qﬁéj = (5; cosf + J} sin 6.
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In this case, M is called an almost Hermitian Finsler manifold or simply, a Rizza
manifold. The Rizza condition practically requires that, for all y € T, M, the Finsler
norm L should be constant on the orbit y — ¢y(y), 8 € R, which lives inside the fiber
T.M. We note that each such orbit is determined by the action on y € T, M of a
special element ¢ of the loop group AAut(T, M) of id—automorphisms of the tangent

bundle, defined by 6 € S! 2, pg=1-cosf+ J-sinf € Aut(T,M).
In [6], it was shown that the Rizza condition holds if the following equivalent
conditions hold true:!
L4 gpq(xa ¢9y) §1¢3J = ng(xa l/)7 Vo € R7
o 9ij (@, 9) I, (@)y™y" = 0; (gim (2, y) — gpg(,y) T} (x) T4, () y™ = 0;
® Gim (2, y) I () + gjm (2, ) I () + 2Cijm (2, y) J" (x)y" = 0, where Cijp, is the
Cartan tensor of the Finsler metric.

As well, it was shown that if the Finsler metric L satisfies g,q(,y)J} (2)J](2) =
9ij(z,y), then it reduces to a Riemannian metric and accordingly, (J, g) reduces to
an almost Hermitian structure.

Now let M be a Rizza manifold. Then

(11) G 9) = 5 (913(59) + o) T (@) T2() )

is a homogeneous symmetric generalized metric on T'M, which is called a generalized
Finsler metric; this satisfies the relation g,q(z,y)J} ()J{(z) = gij(z,y). Also, in a

Rizza manifold, the relation g;;(z,y) = 8183 (%ﬁpq (z, y)ypyq) holds true.

Conversely, for M a manifold admitting an almost complex structure J;(x), Ichijyo
showed ([6]) that M admits a Finsler metric which constructs a Rizza structure to-
gether with J}(x), if and only if M admits a generalized Finsler metric g;;(z,y)
satisfying the following conditions:

L4 gjk(xa y) = gpq(xa y)J]p(x)J]g(m)v

* Dhpq(T, Y)yPy? = 0;

o (gir(z,y)+ ak'gvjm(x, y)y™)¢ ¢k is positive definite.

In the following, for a given Rizza manifold (M, J, L) we shall denote

Then we obtain the following relations ([6])

- - I |
(1.3) Jij = ~Jji Jimd" = =gig, Jig = 5(Jig = Jj)-
By using [6, Theorem, eq. (3)] and denoting y; := g;;47, we infer

1 A ,
(1.4) 95y’ = i(gijyj + Gpg LTI ) = v,

1We shall assume that all the Latin indices run within the range I,n, and that the Einstein
summation rule for indices applies.
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It follows that

(1.5) gijy'y’ = L.

Also, the relations (1.2), (1.3) and (1.4) lead to

(1.6) Ty’ = =Ty’ = =Gm Iy = =Ty = —J}y;.

By a contact manifold we mean a differentiable manifold M?"*! endowed with
with a 1-form 7, such that n A (dn)™ # 0. It is well known ([2]) that given the form
7, there exist a unique vector field &, such that dn(¢, X) = 0 and 7(¢) = 1; this field
is called the characteristic vector field or the Reeb vector field of the contact form 7.

We say that a Riemannian metric g is an associated metric for a contact form
n if (1) n(X) = ¢g(X,€) and (ii) there exist a field of endomorphisms f, such that
fP=-T+n®&and dn(X,Y) = g(fX,Y). Then we refer to (f,£,m,9) as a contact
metric structure and to M?"t! with such a structure as a contact metric manifold.

An almost contact structure, (f,&,n), consists of a field of endomorphisms f, and a
1-form 7 such that f? = —I+n®¢ and n(€) = 1 and an almost contact metric structure
owns a Riemannian metric which satisfies the compatibility condition g(fX, fY) =
9(X,Y) = n(X)n(Y).

The product M?**! x R carries a natural almost complex structure defined by
J(X,g%) =(fX - gg,n(X)%) and the underlying almost contact structure is said
to be normal if J is integrable. The normality condition can be expressed as N = 0,
where N is defined by N = Ny + dn ® £ and Ny is the Nijenhuis tensor of f. A
Sasakian manifold is a normal contact metric manifold.

A framed f-structure is a natural generalization of an almost contact structure.
It was introduced by S. I. Goldberg and K. Yano [3]. We recall its definition: let N
be a (2n 4 s)-dimensional manifold endowed with an endomorphism f of rank 2n of
the tangent bundle, satisfying f3 + f = 0. If there exists on N the vector fields (&)
and the 1-forms 7% (a,b=1,2,...,s) such that

n(&) =0 f)=0, nof=0, fi=-I+)Y n"®&,
a=1

where [ is the identity automorphism of the tangent bundle, then N is said to be a
framed f-manifold [1].

In this paper, by using an almost complex structure J;: (z) and the generalized
Finsler metric g;;(z,y) defined by (1.1) we introduce an almost Hermitian structure
(G,F) on TM. Then we obtain a framed f-structure on TM = TM\{0} and by
its restriction to the indicatrix bundle IM we introduce an almost contact metric
structure on IM. We further find the conditions under which this structure is a
contact metric structure and a Sasakian structure. Also, we study these structures
on Kahlerian Finsler manifolds.

2 A framed f- structure on T™

Let M be a Rizza manifold, and let TM be the tangent bundle over M. We shall
further use a local frame (9;,0;) of TM, where we put §; = 9; — GI"Op,, 0; = 8%1‘7
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0; = % and GJ" are the components of an Ehresmann connection on M. Then we

can globally define on TM an (1,1)-tensor field F', such that

(2.1) F(6;) = Jfoh,  F(Di) = Jf oy

Since J,iJj’-C = —0?, it is obvious that F' defines an almost complex structure on T'M.
Moreover, we can introduce an inner product ( -, - ) such that

(2.2) (6:,65) = Gijr (00,0;) =0, (94, 0;) = Guy-

Then the inner product gives on T'M a globally defined Riemann metric G, as follows
(2.3) G = gijdz'dx’ + §;;0y' 5y,

where (dz?,dy') is the dual basis of (§;,9;) and 6y’ = dy’ + G?, de™. Using (2.1) and
(2.3), we obtain

G(F(8:), F(8;)) = JF TGOy, D) = I TG = Go = G(8:,6).
Similarly, we obtain G(F(0;), F(9;)) = gi; = G(9;,;) and G(F(6,), F(9;)) = 0 =
G(0;,0;), which ultimately lead to

Theorem 2.1. On every Rizza manifold M, its tangent bundle TM admits an al-
most Hermitian structure (G, F), where F and G are defined by (2.1) and (2.3),
respectively.

Now we define the vector fields &1, & and 1-forms o', 7% on ™ respectively by

(2.4) &=y TL0 & =y'0;
and

1 m T 7 1 7
(2.5) 0= g3y " Jimda', 0= vy

Lemma 2.2. Let F' be defined by (2.1), &1,&2 be defined by (2.4) and n*,n? be defined
by (2.5). Then we have

(2.6) F(&) ==&, F(&)==%,
and
(2.7) ntoF=n* n’oF=-n"

Proof. Relation (2.6) immediately follows from (2.1) and (2.4). To prove (2.7), we
use the adapted basis (d;,0;) and (1.3), which infer

: 1o~ 11 .
(771 o F)(al) = anl(tsk) = ﬁy Jzk']km = ﬁgnny = ﬁyz = 772(82)7
o 1o . 1.,
(n* 0 F)(6:) = Jin* (k) = 13779k = 758 0my” = = 75Tt = =1 (84),

and (n' o F)(8;) = 0=1n%(0;), (n*o F)(az) =0=n! (81), which lead to (2.7). O
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Lemma 2.3. Let G be defined by (2.3), &1,&2 be defined by (2.4) and n1, 12 be defined
by (2.5). Then we have

(2.9 PX) = 2500X.6), P(X) = 2;0(X.6)
and
(2.9 W@) =5, ab=12

where X € X(m)
Proof. In the adapted basis (;, 8'1-), we obtain

G(6;,&1) = G(3i, 4" T18;) = y* T1gij = " Tux = L1 (5)).

Similarly, we infer G(8;, &) = L*2(8;), G(9;,&1) = 0 = L2n*(9;) and G(6;, &) =0 =
L?n2(8;), which completes the proof of (2.8). As well, using (1.3) and (1.5) we get

J 1 i, m T 1 mes
771(51) = Ul(yka5i) = ﬁykay Jim = ﬁyky Imk = 1,

and n' (&) = 0, which prove the first relation of (2.9). In a similar way, one can prove
the second relation of (2.9). O

Using the almost complex structure F', we define a new tensor field f of type (1, 1)
on TM by

(2.10) f=F+n'0& -,

By using the above relation, (2.6) and (2.9) we infer that f(&;) = f(£2) = 0. Similarly,
from (2.7) and (2.9)we conclude that (n! o f)(X) = (n? o f)(X) = 0, where X €

X(TM). These relations and (2.6), (2.10) give us
FA(X) = F(f(X)) = F*(X) + 0" (X)F (&) — n*(X)F(&1) = =X + 0" (X)&1 + 1 (X)ér.
Therefore we have

Lemma 2.4. The following properties hold true for tensor field f defined by (2.10):

(2.11) f(ga) =0, n%of=0, a=1,2,
(2.12) FAX) = =X + 71 (X)& +n2(X)&, X € X(TM).

Theorem 2.5. Let f, (&), (n%),a = 1,2 be defined respectively by (2.10), (2.4) and
(2.5). Then the triple (f,{&a}, {n®}) provides a framed f-structure on TM.

Proof. Considering Lemma 2.4 and relation (2.9), in order to complete the proof, we
need to prove f3+ f = 0 and to show that f is of rank 2n—2. Since f(£1) = f(&2) = 0,
by using (2.11) we derive that f3(X) = —f(X), for all X € X(m) Now we need
to show that ker f = Span{&;,&}. Tt is clear that Span{&;,&} C ker f, because
f(&) = f(&) = 0. Now let X € ker f; then f(X) = 0 implies that FI(X) +n'(X)& —
n?(X)& = 0. Thus we infer that F2(X) = n?(X)F (&) —n'(X)F(&). Since F?2 = —1,
it follows from Lemma 2.2 that X = n'(X)& + n?(X)&e, ie., X € Span{&y, &} O
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Theorem 2.6. The Riemannian metric G defined by (2.3) satisfies
G(f(X), f(Y)) = G(X,Y) = L*n"(X)n'(Y) — L*n*(X)n*(Y),
for XY € X(TM).

Proof. By using (2.10), we get the local expression of f as follows:
1 ~ .
(2.13) f(d:) = (Jf + ﬁJiryTy’“)ak,
. 1 .
(2.14) F@0) = (= Iy i) b

By using (2.3), (2.13) we obtain

~ T~ ~ ~ ~ 1 ~ ~ ~
G(f(8:), £(87)) = JF T} Grn + % {erc]ikyhgkh + Jir Iy G + ﬁjirjjlylykyhgkh]-

By using (1.5) and (1.6), the above equation leads to

1 ~ ~
Jir Ty y".

(2.15) G(f(5:), £(5)) = 9ij — 13

But we have the relations

N 1~ o~
G(8i,65) = Gijs 771(5i)772(5j)=py Jiuy* Tie 07 (8:)m*(8;) =0,

which allow to rewrite (2.15) as follows

G(f(6:), F(65)) = G(8:,6;) — L*n" (6:)n* (6;) — L0 (8:)n*(6;).
We similarly obtain

GUF(6), £(B5)) = Gy — —s sy = G(01,8;) — L0 (D)0 (3;) — L2n? (D) (6,
(@), f( J)) Gij LQyZy] (i J) n (0)n ( ]) n=(0:)n”( J)v
and . . . .
G(f(6:), F(9))) = 0= G(8:,0;) — L*n" ;)0 (9;) — L*1* (8:)1°(9y),

which completes the proof. ([l

Let us set Q(X,Y) = G(fX,Y) for X,Y € X(TM). Then we have

Theorem 2.7. The map § is a 2-form on TM. Further, the annihilator of Q) is
Span{&1,&2}, which is an integrable distribution.

Proof. By using (1.4), (2.13) and (2.14), we obtain

) ) ~ 1 rT ~ T I = T
(2.16) Q(0;,0;) = G(f(8;),0;) = JFgn; + 72Y TG = Jji + ﬁJiry Yjs

. . 1 _ _ 1~
(2.17) Q(0:,65) = G(£(9y),6;) = (JF — ﬁyiyr*]rk)gkj = Jji — T3V Jjrs

(2.18)  Q(8;,6;) = Q(d;,8;) = 0.
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Since jij = —jji, then from (2.16) and (2.17), we derive that Q(éi,éj) = —Q(éj,éi).

Then, using (2.16) we obtain Q(X,Y) = —Q(Y, X), VX,Y € X(TM). Thus Q is

a 2-form on TM. We further show that the annihilator of Q is Span{&;,&>}. Let
X = X5, + X'0; € X(TM). By using (1.4) and (2.16)-(2.16) we get

e T o T
AUX, &) = X"y T3 (i — ﬁyiyrjjr) = X"y (Gim — T2YiY Grm) = 0.

We similarly obtain Q(X, 2) = 0. Therefore the annihilator of (2 contains Span{¢y, 2}
Now let X belong to the annihilator of €2. Then we have Q(X,0;) = 0 and Q(X, ;) =

0. If we assume X = X§; + X zéi, then these equations give us the relations

i T 1 m
(2.19) X' (Jji+ 5 Tmy ™) = 0,

(2.20) X' (Jji = 73 Tmy™ i) = 0,

Since jij = ﬁimJJm, then by direct calculatiop we obtain jji.]ﬂﬁrh = 0" and Lg’"h =
—JI. Transvecting (2.19) and (2.20) with Jﬂiﬁrh and using these equations we derive
that X* = X" Jpmy™y*Ji and X' = % X"y,y’. Thus we deduce that

1~ , U B 1
X = ﬁXthmymstéc% + ﬁthhylﬁi = ﬁXthmym& - ﬁthhéz.

Therefore Span{{1, &2} contains the annihilator of Q, and consequently the annihilator
of Q is Span{&;,&}. Also we obtain [&1,&] = ijj?éi = &;. Hence the distribution
Span{&1,&,} is integrable. O

3 Almost contact structure on the indicatrix bundle

Let (M, J,L) be a Finsler-Rizza manifold, and let M be its indicatrix bundle of
(M, L), ie.,
IM = {(z,y) € TM|L(z,y) = 1},

which is a submanifold of dimension 2n — 1 of TM. Note that &5 defined in (2.4) is
a unit vector field on I M, since G(&2,&2) = 1. It is easy to show that & is a normal
vector field on M with respect to the metric G. Indeed, if the local equations of 1M
in TM are given by

=2 (), ¥ =y'(), ye{l,...,2n—1},
then we have

0L Ox' L OL Oy B
0xt OuY Oyt duY

Since F' is a horizontally covariant constant, i.e., g wL = Nikg—yLk, it follows that

Cour T QuY

(et 201

(3.1)
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The natural frame field {%} on IM is given by

0 oxt 0 oyt 0 oxt ort  oyF\ 0
(3.2) g _ - = ¢+( & 7)716
ouy  OuY Ox ou™ dy ouY ouy  Our/ dy
Thus by using (3.1) and the equality % = gTL,C, we obtain
0 _ ROzt Oy OL
(3:3) 6 (G8) = LN 5 + 5ur ) 5y =

Thus & is orthogonal to any tangent to IM vector. Also, the vector field & is tangent
to IM, since G(&1,&2) = 0.

Lemma 3.1. The hypersurface IM is invariant with respect to f, i.e., f(T,(IM)) C
T,(IM), Yu € IM.

Proof. By using (2.8) and the second equation of (2.11), we get

9 9
G("c(aw)’&) — (%o f) (aw) =0, Vy=12...,2n—1

Thus the hypersurface IM is invariant with respect to f. O

Lemma 3.2. Let the framed f-structure be given by Theorem 2.5. Then restricting
this to IM, we have

0t =y " Jimda’, P =0, f(X)=F(X)+ 0 (X)&, VX € X(IM).
Proof. Since L?> =1 on IM and n?(X) = G(X, &) = 0, the claim follows. O

Denoting 7 :7171|1M, 5_: €liar, f = flim and G = G|1ar, then from Theorem 2.6
we get G(f(X), f(Y)) = G(X,Y) — 7(X)7(Y). Therefore Theorem 2.5 and Lemma
3.2 imply that

Theorem 3.3. Let the framed f-structure be given by Theorem 2.5. Then (f,€,7, G)
defines an almost contact metric structure on IM.

If we put 5j = f(éj), then we get n local vector fields which are tangent to 1M,
since IM is an invariant hypersurface. These, together with §;,7 = 1,...,n, are all
tangent to 1M and they are not linearly independent. But, considering §;,i =1,...,n
and 5j with j =1,...,n — 1, we obtain a set (J;, 51) of local vector fields which form
a local bases in the fibers of the tangent bundle to /M. By using (2.13) and the
definition of 7, we obtain

(34) dﬁ(au 6]) = - (ijik: + ym(akim)JJk + yryk=7jr:]vik + yT*Tjrymykakim) .

It is easy to see that Jim is positive homogenous of degree 0. Thus we have ykék .Zm =
0. Also, we have J;‘Jik = —gi;;. By using these relations and (3.4), we obtain

dﬁ(5i75j) = Gij — jz'kjjryryk — ym(ﬁ'kim)Jf.
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It is known that V,;y™ = 0, Whe_re V means h-covariant derivative with respect to
the Cartan Finsler connection (I'};,G}). From this equation we derive that 6;y™ =
—y"I'7%. Thus we get

dn(0i,65) = y" (Vidjm — Vidim).
Also, we infer d7j(d;,0;) = 0. On the other hand, the relation

G(f(X),f(Y)) = G(X,Y) = 5(X)p(Y)
gives us
00:,0;) = Gij — Jundjsy"y®, and  Q(8;,8;) = Q(8;,0;) =0
These relations imply that 2 = d5 if and only if
Vijjm — ijim =0, and ym(akjm)Jf =0.
Thus we have the following.

Theorem 3.4. LetiM be a Rizza manifold endowed with the Cartan Finsler connec-
tion. Then ( G) is a contact metric structure on IM if and only if y™0;Jim = 0

,E,1]
and Vijjm =V,J

It is known that a Rizza manifold satisfying Vk,]} = 0 is said to be a Kahlerian
Finsler manifold. Further, if g;; is a Riemannian metric, then we call it Kdhlerian
Riemann manifold. Tt was proved (Ichijyd, [6]) that if M be a Kéahlerian Finsler
manifold, then M is Landsberg space, and that the following relations hold true

Vid; =0, Vigi; = Vigi; =0, Vidij =0
on Kéahlerian Finsler manifolds. These relations and Theorem 3.4 lead to

Corollary 3.5. If M is a Kdhlerian Finslerian manifold, then (f,&,7,G) is a contact
Riemannian structure on IM if and only if y™0;Jim = 0.

Now, let g;; be a Riemannian metric. Then we have O gi; = 0, and consequently,

8kgw = 0. Therefore we obtain 8szm = 0, since Jlm = Gij JJ and JJ, is a function
depending on (z") only. This leads to the following

Corollary 3.6. If M is a Kihlerian Riemann manifold, then (f,€,7,G) is a contact
Riemannian structure on IM.

We further obtain sufficiency conditions for the contact metric structure (f, €, 7, G)
given by Theorem 3.4, to be Sasakian.

Theorem 3.7. Let M be a Rizza manifold endowed with the Cartan Finsler connec-
tion. Then (f,£,7,G) on IM is Sasakian if and only if

(3.5) ViJl 4+ JTLE =V, J” + J’”L;LT,
(3.7) " i (Y TRV TE + 4" (IF 4+ Ty )V L+ y YR TRV T =0,
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YY" | (T Vidn, = T3 Vi) + Iy Iy (JioeVidjs = i Vinedis)
(88) AT Vad! = T Vdl) + T LigJE (Tt = T dD)] =0,
where L3, = y"V,,C}, is the Landsberg tensor.
Proof. The Nijenhuis tensor field of f is defined by
(3.9) N(6:,85) = [04,0;] — f10s,8;] — f16:,0;] + F2[6:, 5.
By using (2.13), (2.14) and the relation y"(8,.J;,.) = 0, we obtain
(3.10) [0:,05] = {Jf(ah@l)yly’“ + JE Ty — MO Ta)y'y* — TE Ty | 0.
Also, (2.13), (2.14) and the relation d;y' = —y"T".; give us
ﬂ&@+mmﬁﬂmﬁ—wﬁ+me@—wL)

(3.11) +JTLE — JTLY | TR
Similarly, we infer
(3.12) F?16:,8;] = —R",;0, = R*,,0%,
where Rkij =0,G¥ — 5Z-G§. Setting (3.10), (3.11) and (3.12) into (3.9), we get

Ny (0i,85) = [Vl = Vadl + 'y (Vi = ViTy) + T Ly, = Ty L ] Tk
(3.13) +h@+ﬁ@@m@hdﬁmh4ﬂmﬁww_ﬁﬁﬂ@.
By consideration of di(d;,d;) = ym(Vijjm -V jim), we obtain

(di © €)(04,05) = yl(vz‘jjl - vjjil)yhjilfék-

Therefore we get

M%m:(Wﬁ—mﬁ+ﬂ%fgﬂuﬂ@+h@+ﬁﬁﬁww
(3.14) +JF Tyt — th(ahjil)ylyk - ijizyl} .
Similarly, we obtain

N(6;,8;) = —fN7(8;,0;) + [ymerf(tha'h@m — T Tim) + Y Tim (0
—Tisy IRy =y TR IR |0+ |y T (J5 VT

(3.15) +ﬁw%+Z¢ww%+ngmLﬂ%
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and

N(8:,05) = =N(3i,6;) + y"y™ T*m(VjJip = Vidir) + 4"y (Jiu V3T, = T3 Vi)
Y Y IRy Ty (T VT s — T30 Vndis) + y y" T (T Vad! — T Vi Jh)
"y T Ly JE (T — LJ}-)] Sk + [y’”meSI(ZrR’“js — J;»R%,)

(3.16) " Tyt Ty Ty TR RS, =y T+ nyerﬂ .

Since (f,€,7,G) is a contact structure, then from Theorem 3.4 we have y™d;Ji,, = 0
and V;Jj;, = V;Jim. Setting these equations into (3.14), (3.15) and (3.16), we imply
that (f,&,7,G) is Sasakian if and only if

(3.17) JE(NVJP + LYY = TRV + JULE),

(3.18) Rkji = (Jkazl - Jikjjl)yly

(3.19) " Jim0F — Jimy™ T3y Jiy" — y™ Ty JER"; = 0,

(3.20) Y™ [Jimy" TEV o TE + Ty (JF + Tisy*y*)V 3T + Timy"y'y" T3V Tj1) = 0,

Yy | (T VTS = T Vadk) + Ty TRy (T Vndjs = T3 Vindis)
(3.21)  +J (T Vnd! = T Vpdh) + JL L3 JE (T J! = T Jh) | = 0,
Yy T (T R — T RN + 7 Tyt Tisy™ Ly JA R,
(3.22)  —y JudF 4y T JE =0.

It is easy to check that if (3.18) holds, then (3.19) and (3.22) hold true as well. This
completes the proof. O

Now, if M is a Kahlerian Finsler manifold, then we have VZ-JJIIc = Vijjk =0 and
ij = 0. Thus, the relations (3.5), (3.7) and (3.8) hold true, and we have the following

Theorem 3.8. Let (M, F') be a Kdihlerian Finsler manifold with the Cartan Finsler
connection. Then (f,£,7,G) on IM is Sasakian if and only if the following relation
holds:

Rkji = (ijil - Jikjjl)yl~
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