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Abstract. In this paper, we construct a framed f -structure on the slit
tangent space of a Rizza manifold. This induces on the indicatrix bundle
an almost contact metric. We find the conditions under which this struc-
ture reduces to a contact or to a Sasakian structure. Finally we study
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1 Introduction

In [15, 16], G. B. Rizza introduced on almost complex manifolds (M, J), the so-called
Rizza condition. For Finsler structures (M, L) - where L is the Finsler metric, a
triple (M, J,L) which satisfies the Rizza condition is called a Finsler-Rizza manifold.
It was shown by Heil ([4]) that if the fundamental tensor gij of the Finsler metric
L is compatible with the almost complex structure J , then the Finsler structure is
Riemannian. This leads to considering a weaker assumption on the Finsler metric,
like the Rizza condition. The notion of Rizza manifolds was developed further in
Finslerian framework by Y. Ichijyō, who showed that every tangent space to a Rizza
manifold is a complex Banach space and that Rizza condition does not necessarily
reduce the Finsler metric to a Riemannian one ([7, 8]). He also defined a notion
of Kähler Finsler metric and showed that for a Kähler Finsler manifold, the almost
complex structure is integrable. Recently, several mathematicians studied Rizza and
Kähler Finsler manifolds ([5, 9, 10, 13, 17]).

Let (M,L) be an n-dimensional Finsler manifold (n even), admitting an almost
complex structure J i

j(x). Let gij(x, y) = 1
2 ∂̇i∂̇jL

2(x, y) be the associated Finsler
metric tensor field [11, 12, 14]. We say that the fundamental function L(x, y) satisfies
the Rizza condition, if

L(x, φθy) = L(x, y), ∀θ ∈ R, where φi
θj = δi

j cos θ + J i
j sin θ.
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In this case, M is called an almost Hermitian Finsler manifold or simply, a Rizza
manifold. The Rizza condition practically requires that, for all y ∈ TxM , the Finsler
norm L should be constant on the orbit y → φθ(y), θ ∈ R, which lives inside the fiber
TxM . We note that each such orbit is determined by the action on y ∈ TxM of a
special element φ of the loop group ΛAut(TxM) of id−automorphisms of the tangent

bundle, defined by θ ∈ S1 φ−→ φθ = I · cos θ + J · sin θ ∈ Aut(TxM).

In [6], it was shown that the Rizza condition holds if the following equivalent
conditions hold true:1

• gpq(x, φθy)φp
θiφ

q
θj = gij(x, y), ∀θ ∈ R;

• gij(x, y)J i
m(x)ymyj = 0; (gim(x, y)− gpq(x, y)Jp

i (x)Jq
m(x)) ym = 0;

• gim(x, y)Jm
j (x) + gjm(x, y)Jm

i (x) + 2Cijm(x, y)Jm
r (x)yr = 0, where Cijm is the

Cartan tensor of the Finsler metric.

As well, it was shown that if the Finsler metric L satisfies gpq(x, y)Jp
i (x)Jq

j (x) =
gij(x, y), then it reduces to a Riemannian metric and accordingly, (J, g) reduces to
an almost Hermitian structure.
Now let M be a Rizza manifold. Then

(1.1) g̃ij(x, y) =
1
2

(
gij(x, y) + gpq(x, y)Jp

i (x)Jq
j (x)

)
,

is a homogeneous symmetric generalized metric on TM , which is called a generalized
Finsler metric; this satisfies the relation g̃pq(x, y)Jp

i (x)Jq
j (x) = g̃ij(x, y). Also, in a

Rizza manifold, the relation gij(x, y) = ∂̇i∂̇j

(
1
2 g̃pq(x, y)ypyq

)
holds true.

Conversely, for M a manifold admitting an almost complex structure J i
j(x), Ichijyō

showed ([6]) that M admits a Finsler metric which constructs a Rizza structure to-
gether with J i

j(x), if and only if M admits a generalized Finsler metric g̃ij(x, y)
satisfying the following conditions:

• g̃jk(x, y) = g̃pq(x, y)Jp
j (x)Jq

k(x);

• ∂̇kg̃pq(x, y)ypyq = 0;

• (g̃jk(x, y) + ∂̇kg̃jm(x, y)ym)ζjζk is positive definite.

In the following, for a given Rizza manifold (M, J,L) we shall denote

(1.2) Jij(x, y) = gim(x, y)Jm
j (x), J̃ij(x, y) = g̃im(x, y)Jm

j (x).

Then we obtain the following relations ([6])

(1.3) J̃ij = −J̃ji, J̃imJm
j = −g̃ij , J̃ij =

1
2
(Jij − Jji).

By using [6, Theorem, eq. (3)] and denoting yi := gijy
j , we infer

(1.4) g̃ijy
j =

1
2
(gijy

j + gpqJ
p
i Jq

j yj) = yi,

1We shall assume that all the Latin indices run within the range 1, n, and that the Einstein
summation rule for indices applies.
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It follows that

(1.5) g̃ijy
iyj = L2.

Also, the relations (1.2), (1.3) and (1.4) lead to

(1.6) J̃ijy
j = −J̃jiy

j = −g̃jmJm
i yj = −Jm

i ym = −Jj
i yj .

By a contact manifold we mean a differentiable manifold M2n+1 endowed with
with a 1-form η, such that η ∧ (dη)n 6= 0. It is well known ([2]) that given the form
η, there exist a unique vector field ξ, such that dη(ξ, X) = 0 and η(ξ) = 1; this field
is called the characteristic vector field or the Reeb vector field of the contact form η.

We say that a Riemannian metric g is an associated metric for a contact form
η if (i) η(X) = g(X, ξ) and (ii) there exist a field of endomorphisms f , such that
f2 = −I + η ⊗ ξ and dη(X, Y ) = g(fX, Y ). Then we refer to (f, ξ, η, g) as a contact
metric structure and to M2n+1 with such a structure as a contact metric manifold.

An almost contact structure, (f, ξ, η), consists of a field of endomorphisms f , and a
1-form η such that f2 = −I+η⊗ξ and η(ξ) = 1 and an almost contact metric structure
owns a Riemannian metric which satisfies the compatibility condition g(fX, fY ) =
g(X, Y )− η(X)η(Y ).

The product M2n+1 × R carries a natural almost complex structure defined by
J(X, g d

dt ) = (fX − gξ, η(X) d
dt ) and the underlying almost contact structure is said

to be normal if J is integrable. The normality condition can be expressed as N = 0,
where N is defined by N = Nf + dη ⊗ ξ and Nf is the Nijenhuis tensor of f . A
Sasakian manifold is a normal contact metric manifold.

A framed f -structure is a natural generalization of an almost contact structure.
It was introduced by S. I. Goldberg and K. Yano [3]. We recall its definition: let N
be a (2n + s)-dimensional manifold endowed with an endomorphism f of rank 2n of
the tangent bundle, satisfying f3 + f = 0. If there exists on N the vector fields (ξb)
and the 1-forms ηa (a, b = 1, 2, . . . , s) such that

ηa(ξb) = δa
b , f(ξa) = 0, ηa ◦ f = 0, f2 = −I +

s∑
a=1

ηa ⊗ ξa,

where I is the identity automorphism of the tangent bundle, then N is said to be a
framed f-manifold [1].

In this paper, by using an almost complex structure J i
j(x) and the generalized

Finsler metric g̃ij(x, y) defined by (1.1) we introduce an almost Hermitian structure
(G,F ) on TM . Then we obtain a framed f -structure on T̃M = TM\{0} and by
its restriction to the indicatrix bundle IM we introduce an almost contact metric
structure on IM . We further find the conditions under which this structure is a
contact metric structure and a Sasakian structure. Also, we study these structures
on Kählerian Finsler manifolds.

2 A framed f- structure on T̃M

Let M be a Rizza manifold, and let TM be the tangent bundle over M . We shall
further use a local frame (δi, ∂̇i) of TM , where we put δi = ∂i − Gm

i
˙∂m, ∂̇i = ∂

∂yi ,
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∂i = ∂
∂xi and Gm

i are the components of an Ehresmann connection on M . Then we
can globally define on TM an (1,1)-tensor field F , such that

(2.1) F (δi) = Jk
i ∂̇k, F (∂̇i) = Jk

i δk.

Since J i
kJk

j = −δi
j , it is obvious that F defines an almost complex structure on TM .

Moreover, we can introduce an inner product 〈 · , · 〉 such that

(2.2) 〈δi, δj〉 = g̃ij , 〈δi, ∂̇j〉 = 0, 〈∂̇i, ∂̇j〉 = g̃ij .

Then the inner product gives on TM a globally defined Riemann metric G, as follows

(2.3) G = g̃ijdxidxj + g̃ijδy
iδyj ,

where (dxi, δyi) is the dual basis of (δi, ∂̇i) and δyi = dyi + Gi
mdxm. Using (2.1) and

(2.3), we obtain

G(F (δi), F (δj)) = Jk
i J l

jG(∂̇k, ∂̇l) = Jk
i J l

j g̃kl = g̃ij = G(δi, δj).

Similarly, we obtain G(F (∂̇i), F (∂̇j)) = g̃ij = G(∂̇i, ∂̇j) and G(F (δi), F (∂̇j)) = 0 =
G(δi, ∂̇j), which ultimately lead to

Theorem 2.1. On every Rizza manifold M , its tangent bundle TM admits an al-
most Hermitian structure (G, F ), where F and G are defined by (2.1) and (2.3),
respectively.

Now we define the vector fields ξ1, ξ2 and 1-forms η1, η2 on T̃M respectively by

(2.4) ξ1 := ymJ i
mδi, ξ2 := yi∂̇i

and

(2.5) η1 :=
1
L2

ymJ̃imdxi, η2 :=
1
L2

yiδy
i.

Lemma 2.2. Let F be defined by (2.1), ξ1, ξ2 be defined by (2.4) and η1, η2 be defined
by (2.5). Then we have

(2.6) F (ξ1) = −ξ2, F (ξ2) = ξ1,

and

(2.7) η1 ◦ F = η2, η2 ◦ F = −η1.

Proof. Relation (2.6) immediately follows from (2.1) and (2.4). To prove (2.7), we
use the adapted basis (δi, ∂̇i) and (1.3), which infer

(η1 ◦ F )(∂̇i) = Jk
i η1(δk) =

1
L2

ymJk
i J̃km =

1
L2

g̃miy
m =

1
L2

yi = η2(∂̇i),

(η2 ◦ F )(δi) = Jk
i η2(∂̇k) =

1
L2

Jk
i yk =

1
L2

Jk
i g̃kry

r = − 1
L2

J̃iry
r = −η1(δi),

and (η1 ◦ F )(δi) = 0 = η2(δi), (η2 ◦ F )(∂̇i) = 0 = η1(∂̇i), which lead to (2.7). ¤
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Lemma 2.3. Let G be defined by (2.3), ξ1, ξ2 be defined by (2.4) and η1, η2 be defined
by (2.5). Then we have

(2.8) η1(X) =
1
L2

G(X, ξ1), η2(X) =
1
L2

G(X, ξ2),

and

(2.9) ηa(ξb) = δa
b , a, b = 1, 2,

where X ∈ X (T̃M).

Proof. In the adapted basis (δi, ∂̇i), we obtain

G(δi, ξ1) = G(δi, y
kJj

kδj) = ykJj
k g̃ij = ykJ̃ik = L2η1(δi).

Similarly, we infer G(∂̇i, ξ2) = L2η2(∂̇i), G(∂̇i, ξ1) = 0 = L2η1(∂̇i) and G(δi, ξ2) = 0 =
L2η2(δi), which completes the proof of (2.8). As well, using (1.3) and (1.5) we get

η1(ξ1) = η1(ykJ i
kδi) =

1
L2

ykJ i
kymJ̃im =

1
L2

ykymg̃mk = 1,

and η1(ξ2) = 0, which prove the first relation of (2.9). In a similar way, one can prove
the second relation of (2.9). ¤

Using the almost complex structure F , we define a new tensor field f of type (1, 1)
on T̃M by

(2.10) f = F + η1 ⊗ ξ2 − η2 ⊗ ξ1.

By using the above relation, (2.6) and (2.9) we infer that f(ξ1) = f(ξ2) = 0. Similarly,
from (2.7) and (2.9)we conclude that (η1 ◦ f)(X) = (η2 ◦ f)(X) = 0, where X ∈
X (T̃M). These relations and (2.6), (2.10) give us

f2(X) = F (f(X)) = F 2(X) + η1(X)F (ξ2)− η2(X)F (ξ1) = −X + η1(X)ξ1 + η2(X)ξ1.

Therefore we have

Lemma 2.4. The following properties hold true for tensor field f defined by (2.10):

f(ξa) = 0, ηa ◦ f = 0, a = 1, 2,(2.11)

f2(X) = −X + η1(X)ξ1 + η2(X)ξ2, X ∈ X (T̃M).(2.12)

Theorem 2.5. Let f, (ξa), (ηa), a = 1, 2 be defined respectively by (2.10), (2.4) and
(2.5). Then the triple (f, {ξa}, {ηa}) provides a framed f -structure on T̃M .

Proof. Considering Lemma 2.4 and relation (2.9), in order to complete the proof, we
need to prove f3+f = 0 and to show that f is of rank 2n−2. Since f(ξ1) = f(ξ2) = 0,
by using (2.11) we derive that f3(X) = −f(X), for all X ∈ X (T̃M). Now we need
to show that ker f = Span{ξ1, ξ2}. It is clear that Span{ξ1, ξ2} ⊆ ker f , because
f(ξ1) = f(ξ2) = 0. Now let X ∈ ker f ; then f(X) = 0 implies that F (X)+η1(X)ξ2−
η2(X)ξ1 = 0. Thus we infer that F 2(X) = η2(X)F (ξ1)−η1(X)F (ξ2). Since F 2 = −I,
it follows from Lemma 2.2 that X = η1(X)ξ1 + η2(X)ξ2, i.e., X ∈ Span{ξ1, ξ2}. ¤
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Theorem 2.6. The Riemannian metric G defined by (2.3) satisfies

G(f(X), f(Y )) = G(X, Y )− L2η1(X)η1(Y )− L2η2(X)η2(Y ),

for X, Y ∈ X (T̃M).

Proof. By using (2.10), we get the local expression of f as follows:

f(δi) =
(
Jk

i +
1
L2

J̃iry
ryk

)
∂̇k,(2.13)

f(∂̇i) =
(
Jk

i −
1
L2

Jk
r yryi

)
δk.(2.14)

By using (2.3), (2.13) we obtain

G(f(δi), f(δj)) = Jk
i Jh

j g̃kh +
yr

L2

[
J̃jrJ

k
i yhg̃kh + J̃irJ

h
j ykg̃kh +

1
L2

J̃irJ̃jly
lykyhg̃kh

]
.

By using (1.5) and (1.6), the above equation leads to

(2.15) G(f(δi), f(δj)) = g̃ij − 1
L2

J̃irJ̃jkyryk.

But we have the relations

G(δi, δj) = g̃ij , η1(δi)η2(δj) =
1
L4

yrJ̃iry
kJ̃jk η2(δi)η2(δj) = 0,

which allow to rewrite (2.15) as follows

G(f(δi), f(δj)) = G(δi, δj)− L2η1(δi)η1(δj)− L2η2(δi)η2(δj).

We similarly obtain

G(f(∂̇i), f(∂̇j)) = g̃ij − 1
L2

yiyj = G(∂̇i, ∂̇j)− L2η1(∂̇i)η1(∂̇j)− L2η2(∂̇i)η2(∂̇j),

and
G(f(δi), f(∂̇j)) = 0 = G(δi, ∂̇j)− L2η1(δi)η1(∂̇j)− L2η2(δi)η2(∂̇j),

which completes the proof. ¤

Let us set Ω(X,Y ) = G(fX, Y ) for X, Y ∈ X (T̃M). Then we have

Theorem 2.7. The map Ω is a 2-form on T̃M . Further, the annihilator of Ω is
Span{ξ1, ξ2}, which is an integrable distribution.

Proof. By using (1.4), (2.13) and (2.14), we obtain

Ω(δi, ∂̇j) = G(f(δi), ∂̇j) = Jk
i g̃kj +

1
L2

yrJ̃iry
kg̃kj = J̃ji +

1
L2

J̃iry
ryj ,(2.16)

Ω(∂̇i, δj) = G(f(∂̇i), δj) = (Jk
i −

1
L2

yiy
rJk

r )g̃kj = J̃ji − 1
L2

yiy
rJ̃jr,(2.17)

Ω(δi, δj) = Ω(∂̇i, ∂̇j) = 0.(2.18)
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Since J̃ij = −J̃ji, then from (2.16) and (2.17), we derive that Ω(δi, ∂̇j) = −Ω(∂̇j , δi).
Then, using (2.16) we obtain Ω(X, Y ) = −Ω(Y, X), ∀X, Y ∈ X (T̃M). Thus Ω is
a 2-form on T̃M . We further show that the annihilator of Ω is Span{ξ1, ξ2}. Let
X = Xiδi + X ī∂̇i ∈ X (T̃M). By using (1.4) and (2.16)-(2.16) we get

Ω(X, ξ1) = X īymJj
m(J̃ji − 1

L2
yiy

rJ̃jr) = X īym(g̃im − 1
L2

yiy
r g̃rm) = 0.

We similarly obtain Ω(X, ξ2) = 0. Therefore the annihilator of Ω contains Span{ξ1, ξ2}.
Now let X belong to the annihilator of Ω. Then we have Ω(X, δj) = 0 and Ω(X, ∂̇j) =
0. If we assume X = Xiδi + X ī∂̇i, then these equations give us the relations

Xi(J̃ji +
1
L2

J̃imymyj) = 0,(2.19)

X ī(J̃ji − 1
L2

J̃jmymyi) = 0.(2.20)

Since J̃ij = g̃imJm
j , then by direct calculation we obtain J̃jiJ

j
r g̃rh = δh

i and J̃sr g̃
rh =

−Jh
s . Transvecting (2.19) and (2.20) with Jj

r g̃rh and using these equations we derive
that Xi = 1

L2 XhJ̃hmymysJ i
s and X ī = 1

L2 X h̄yhyi. Thus we deduce that

X =
1
L2

XhJ̃hmymysJ i
sδi +

1
L2

X h̄yhyi∂̇i =
1
L2

XhJ̃hmymξ1 +
1
L2

X h̄yhξ2.

Therefore Span{ξ1, ξ2} contains the annihilator of Ω, and consequently the annihilator
of Ω is Span{ξ1, ξ2}. Also we obtain [ξ1, ξ2] = yjJ i

jδi = ξ1. Hence the distribution
Span{ξ1, ξ2} is integrable. ¤

3 Almost contact structure on the indicatrix bundle

Let (M, J,L) be a Finsler-Rizza manifold, and let IM be its indicatrix bundle of
(M, L), i.e.,

IM = {(x, y) ∈ T̃M |L(x, y) = 1},
which is a submanifold of dimension 2n − 1 of T̃M . Note that ξ2 defined in (2.4) is
a unit vector field on IM , since G(ξ2, ξ2) = 1. It is easy to show that ξ2 is a normal
vector field on IM with respect to the metric G. Indeed, if the local equations of IM
in T̃M are given by

xi = xi(uγ), yi = yi(uγ), γ ∈ {1, . . . , 2n− 1},

then we have
∂L

∂xi

∂xi

∂uγ
+

∂L

∂yi

∂yi

∂uγ
= 0.

Since F is a horizontally covariant constant, i.e., ∂L
∂xi = Nk

i
∂L
∂yk , it follows that

(3.1)
(
Nk

i

∂xi

∂uγ
+

∂yk

∂uγ

) ∂L

∂yk
= 0.
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The natural frame field { ∂
∂uγ } on IM is given by

(3.2)
∂

∂uγ
=

∂xi

∂uγ

∂

∂xi
+

∂yi

∂uγ

∂

∂yi
=

∂xi

∂uγ
δi +

(
Nk

i

∂xi

∂uγ
+

∂yk

∂uγ

) ∂

∂yk
.

Thus by using (3.1) and the equality yk

L = ∂L
∂yk , we obtain

(3.3) G
( ∂

∂uγ
, ξ2

)
= L

(
Nk

i

∂xi

∂uγ
+

∂yk

∂uγ

) ∂L

∂yk
= 0.

Thus ξ2 is orthogonal to any tangent to IM vector. Also, the vector field ξ1 is tangent
to IM , since G(ξ1, ξ2) = 0.

Lemma 3.1. The hypersurface IM is invariant with respect to f , i.e., f(Tu(IM)) ⊆
Tu(IM), ∀u ∈ IM .

Proof. By using (2.8) and the second equation of (2.11), we get

G

(
f

(
∂

∂uγ

)
, ξ2

)
= (η2 ◦ f)

(
∂

∂uγ

)
= 0., ∀γ = 1, 2, . . . , 2n− 1.

Thus the hypersurface IM is invariant with respect to f . ¤

Lemma 3.2. Let the framed f -structure be given by Theorem 2.5. Then restricting
this to IM , we have

η1 = ymJ̃imdxi, η2 = 0, f(X) = F (X) + η1(X)ξ2, ∀X ∈ X (IM).

Proof. Since L2 = 1 on IM and η2(X) = G(X, ξ2) = 0, the claim follows. ¤

Denoting η̄ = η1|IM , ξ̄ = ξ|IM , f̄ = f |IM and Ḡ = G|IM , then from Theorem 2.6
we get Ḡ(f̄(X), f̄(Y )) = Ḡ(X, Y ) − η̄(X)η̄(Y ). Therefore Theorem 2.5 and Lemma
3.2 imply that

Theorem 3.3. Let the framed f -structure be given by Theorem 2.5. Then (f̄ , ξ̄, η̄, Ḡ)
defines an almost contact metric structure on IM .

If we put δ̇j = f̄(δj), then we get n local vector fields which are tangent to IM ,
since IM is an invariant hypersurface. These, together with δi, i = 1, . . . , n, are all
tangent to IM and they are not linearly independent. But, considering δi, i = 1, . . . , n
and δ̇j with j = 1, . . . , n− 1, we obtain a set (δi, δ̇j) of local vector fields which form
a local bases in the fibers of the tangent bundle to IM . By using (2.13) and the
definition of η̄, we obtain

(3.4) dη̄(δi, δ̇j) = −
(
Jk

j J̃ik + ym(∂̇kJ̃im)Jk
j + yrykJ̃jrJ̃ik + yrJ̃jry

myk∂̇kJ̃im

)
.

It is easy to see that J̃im is positive homogenous of degree 0. Thus we have yk∂̇kJ̃im =
0. Also, we have Jk

j J̃ik = −g̃ij . By using these relations and (3.4), we obtain

dη̄(δi, δ̇j) = g̃ij − J̃ikJ̃jry
ryk − ym(∂̇kJ̃im)Jk

j .
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It is known that ∇iy
m = 0, where ∇ means h-covariant derivative with respect to

the Cartan Finsler connection (Γi
jk, Gi

j). From this equation we derive that δiy
m =

−yrΓm
ri . Thus we get

dη̄(δi, δj) = ym(∇iJ̃jm −∇j J̃im).

Also, we infer dη̄(δ̇i, δ̇j) = 0. On the other hand, the relation

Ḡ(f̄(X), f̄(Y )) = Ḡ(X, Y )− η̄(X)η̄(Y )

gives us

Ω(δi, δ̇j) = g̃ij − J̃irJ̃jsy
rys, and Ω(δi, δj) = Ω(δ̇i, δ̇j) = 0.

These relations imply that Ω = dη̄ if and only if

∇iJ̃jm −∇j J̃im = 0, and ym(∂̇kJ̃im)Jk
j = 0.

Thus we have the following.

Theorem 3.4. Let M be a Rizza manifold endowed with the Cartan Finsler connec-
tion. Then (f̄ , ξ̄, η̄, Ḡ) is a contact metric structure on IM if and only if ym∂̇j J̃im = 0
and ∇iJ̃jm = ∇j J̃im.

It is known that a Rizza manifold satisfying ∇kJ i
j = 0 is said to be a Kählerian

Finsler manifold. Further, if gij is a Riemannian metric, then we call it Kählerian
Riemann manifold. It was proved (Ichijyō, [6]) that if M be a Kählerian Finsler
manifold, then M is Landsberg space, and that the following relations hold true

∇kJ i
j = 0, ∇kgij = ∇kg̃ij = 0, ∇kJ̃ij = 0

on Kählerian Finsler manifolds. These relations and Theorem 3.4 lead to

Corollary 3.5. If M is a Kählerian Finslerian manifold, then (f̄ , ξ̄, η̄, Ḡ) is a contact
Riemannian structure on IM if and only if ym∂̇j J̃im = 0.

Now, let gij be a Riemannian metric. Then we have ∂̇kgij = 0, and consequently,
∂̇kg̃ij = 0. Therefore we obtain ∂̇kJ̃im = 0, since J̃im = g̃ijJ

j
m and Jj

m is a function
depending on (xh) only. This leads to the following

Corollary 3.6. If M is a Kählerian Riemann manifold, then (f̄ , ξ̄, η̄, Ḡ) is a contact
Riemannian structure on IM .

We further obtain sufficiency conditions for the contact metric structure (f̄ , ξ̄, η̄, Ḡ)
given by Theorem 3.4, to be Sasakian.

Theorem 3.7. Let M be a Rizza manifold endowed with the Cartan Finsler connec-
tion. Then (f̄ , ξ̄, η̄, Ḡ) on IM is Sasakian if and only if

∇iJ
h
j + Jr

j Lh
ir = ∇jJ

h
i + Jr

i Lh
jr,(3.5)

Rk
ji = (Jk

j J̃il − Jk
i J̃jl)yl,(3.6)

ymJ̃im

[
yhJr

h∇rJ
k
j + yh(Jk

l + J̃lsy
syk)∇jJ

l
h + yhylykJr

h∇rJ̃jl

]
= 0,(3.7)
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yrym
[
(J̃ir∇jJ

k
m − J̃jr∇iJ

k
m) + Jh

mynJk
nys(J̃ir∇hJ̃js − J̃jr∇hJ̃is)

+Jh
m(J̃jr∇hJ l

i − J̃ir∇hJ l
j) + Jh

mLs
hlJ

k
s (J̃jrJ

l
i − J̃irJ

l
j)

]
= 0,(3.8)

where Ls
hl = ym∇mCs

hl is the Landsberg tensor.

Proof. The Nijenhuis tensor field of f̄ is defined by

(3.9) Nf̄ (δi, δj) = [δ̇i, δ̇j ]− f̄ [δ̇i, δj ]− f̄ [δi, δ̇j ] + f̄2[δi, δj ].

By using (2.13), (2.14) and the relation yh(∂̇hJ̃ir) = 0, we obtain

(3.10) [δ̇i, δ̇j ] =
[
Jh

i (∂̇hJ̃jl)ylyk + Jk
i J̃jly

l − Jh
j (∂̇hJ̃il)ylyk − Jk

j J̃ily
l
]
∂̇k.

Also, (2.13), (2.14) and the relation δjy
l = −yrΓl

rj give us

f̄ [δ̇i, δj ] + f̄ [δi, δ̇j ] =
[
∇iJ

h
j −∇jJ

h
i + ylyh(∇iJ̃jl −∇j J̃il)

+Jr
j Lh

ir − Jr
i Lh

jr

]
Jk

hδk.(3.11)

Similarly, we infer

(3.12) f̄2[δi, δj ] = −Rk
ij ∂̇k = Rk

ji∂̇k,

where Rk
ij = δjG

k
i − δiG

k
j . Setting (3.10), (3.11) and (3.12) into (3.9), we get

Nf̄ (δi, δj) =
[
∇jJ

h
i −∇iJ

h
j + ylyh(∇j J̃il −∇iJ̃jl) + Jr

i Lh
jr − Jr

j Lh
ir

]
Jk

hδk

+
[
Rk

ji + Jh
i (∂̇hJ̃jl)ylyk + Jk

i J̃jly
l − Jh

j (∂̇hJ̃il)ylyk − Jk
j J̃ily

l
]
∂̇k.(3.13)

By consideration of dη̄(δi, δj) = ym(∇iJ̃jm −∇j J̃im), we obtain

(dη̄ ⊗ ξ̄)(δi, δj) = yl(∇iJ̃jl −∇j J̃il)yhJk
hδk.

Therefore we get

N(δi, δj) =
[
(∇jJ

h
i −∇iJ

h
j + Jr

i Lh
jr − Jr

j Lh
ir)J

k
h

]
δk +

[
Rk

ji + Jh
i (∂̇hJ̃jl)ylyk

+Jk
i J̃jly

l − Jh
j (∂̇hJ̃il)ylyk − Jk

j J̃ily
l
]
∂̇k.(3.14)

Similarly, we obtain

N(δ̇i, δj) = −f̄Nf̄ (δi, δj) +
[
ymyrJk

r (Jh
i ∂̇hJ̃jm − Jh

j ∂̇hJ̃im) + ymJ̃im(δk
j

−J̃jsy
sJk

hyh − yrJs
r Rh

sjJ
k
h )

]
δk +

[
ymJ̃imyh(Jr

h∇rJ
k
j

+Jk
l ∇jJ

l
h + J̃lsy

syk∇jJ
l
h + ylykJr

h∇rJ̃jl)
]
∂̇k,(3.15)
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and

N(δ̇i, δ̇j) = −Nf̄ (δi, δj) +
[
yrymJkm(∇j J̃ir −∇iJ̃jr) + yrym(J̃ir∇jJ

k
m − J̃jr∇iJ

k
m)

+yrymJh
mynJk

nys(J̃ir∇hJ̃js − J̃jr∇hJ̃is) + yrymJh
m(J̃jr∇hJ l

i − J̃ir∇hJ l
j)

+yrymJh
mLs

hlJ
k
s (J̃jrJ

l
i − J̃irJ

l
j)

]
δk +

[
yrymJs

m(J̃irR
k
js − J̃jrR

k
is)

+yrJ̃iry
sJ̃jsy

mJ l
mynJh

nRk
lh − yrJ̃irJ

k
j + yrJ̃jrJ

k
i

]
∂̇k.(3.16)

Since (f̄ , ξ̄, η̄, Ḡ) is a contact structure, then from Theorem 3.4 we have ym∂̇j J̃im = 0
and ∇iJ̃jm = ∇j J̃im. Setting these equations into (3.14), (3.15) and (3.16), we imply
that (f̄ , ξ̄, η̄, Ḡ) is Sasakian if and only if

Jk
h (∇iJ

h
j + Jr

j Lh
ir) = Jk

h (∇jJ
h
i + Jr

i Lh
jr),(3.17)

Rk
ji = (Jk

j J̃il − Jk
i J̃jl)yl,(3.18)

ymJ̃imδk
j − J̃imymJ̃jsy

sJk
hyh − ymJ̃imyrJs

r Rh
sjJ

k
h = 0,(3.19)

ym[J̃imyhJr
h∇rJ

k
j + J̃imyh(Jk

l + J̃lsy
syk)∇jJ

l
h + J̃imyhylykJr

h∇rJ̃jl] = 0,(3.20)

yrym
[
(J̃ir∇jJ

k
m − J̃jr∇iJ

k
m) + Jh

mynJk
nys(J̃ir∇hJ̃js − J̃jr∇hJ̃is)

+Jh
m(J̃jr∇hJ l

i − J̃ir∇hJ l
j) + Jh

mLs
hlJ

k
s (J̃jrJ

l
i − J̃irJ

l
j)

]
= 0,(3.21)

yrymJs
m(J̃irR

k
js − J̃jrR

k
is) + yrJ̃iry

sJ̃jsy
mJ l

mynJh
nRk

lh

−yrJ̃irJ
k
j + yrJ̃jrJ

k
i = 0.(3.22)

It is easy to check that if (3.18) holds, then (3.19) and (3.22) hold true as well. This
completes the proof. ¤

Now, if M is a Kählerian Finsler manifold, then we have ∇iJ
k
j = ∇iJ̃jk = 0 and

Lk
ij = 0. Thus, the relations (3.5), (3.7) and (3.8) hold true, and we have the following

Theorem 3.8. Let (M,F ) be a Kählerian Finsler manifold with the Cartan Finsler
connection. Then (f̄ , ξ̄, η̄, Ḡ) on IM is Sasakian if and only if the following relation
holds:

Rk
ji = (Jk

j J̃il − Jk
i J̃jl)yl.
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