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Abstract. Our paper introduces and studies the idea of multitime evolu-
tion in the context of solitons.

Section 1 presents some historical data about solitons. Section 2 defines
the multitime sine-Gordon PDE, using a fundamental tensor and a linear
connection. Section 3 describes the multitime sine-Gordon scalar solitons
as special solutions of the multitime sine-Gordon PDE. Section 4 proves
the existence of the multitime sine-Gordon biscalar solitons. Section 5
analyzes the geometric characteristics (fundamental tensor, linear con-
nection) of the sine-Gordon PDE, showing the existence of an infinity of
Riemannian or semi-Riemannian structures such that the new PDE is a
prolongation of the sine-Gordon PDE. The ”two-time” sine-Gordon geo-
metric dynamics, which is presented here for the first time, shows that the
sine-Gordon soliton is generated.
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1 Single-time solitons

The term soliton was introduced in the 1960’s, but the idea to study the solitons had
arisen in the 19th century, when Russell observed a large solitary wave in a canal
near Edinburgh. Nowadays, many model PDEs of nonlinear phenomena are known
to possess soliton solutions. Physically, solitons are very stable independent solitary
waves which have finite energy, and which behave like particles. When they are located
mutually far apart, each of them is approximately a traveling wave with constant
shape and velocity. When two such solitary waves get closer, they interact, they
gradually deform and finally merge into a single wave packet, a 2-soliton. However,
this wave packet soon splits into two solitary waves with the same shape and velocity
before collision. When a 2-soliton meet a 1-soliton, they merge into a 3-soliton and so
on. This happens with the solutions of some nonlinear partial differential equations,
which are named soliton equations. These PDEs include the sine-Gordon equations,
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with some versions and related equations, and the Korteweg-de Vries equations, with
related equations too, etc. Reformulating, the soliton is a solution of a non-linear
evolution equation, which at every moment of time is localized in a bounded domain
of space, such that the size of the domain remains bounded in time while the movement
of the center of the domain can be interpreted as the movement of a particle.

Issued from the geometry of surfaces of constant negative curvature and found
later in the study of some physical phenomena, the single-time sine-Gordon PDE is

(1.1)
∂2u

∂x2
− 1

c2

∂2u

∂t2
= sin u.

2 Multitime sine-Gordon PDE

Partial differential equations (PDEs) arise in many areas of science and technology.
Usually these equations have several variables. Some of them are called spatial vari-
ables and are denoted with xi, i = 1, ..., n or by a vector x = (xi) and others are
called time variables, denoted with tα, α = 1, ..., m or by a vector t = (tα). There
are PDEs that contain only spatial variables and there are PDEs that contain both
spatial variables and time variables. A PDE is called a multitime partial differential
equation if the time (evolution) parameter t is multidimensional. In the last decade
the study of multitime PDEs has received considerable attention (see [3]).

This paper introduces and studies a multitime version (for techniques, see also
[12] - [10]) of the single-time sine-Gordon PDE (see [1], [5], [2]). We search for some
particular solutions of the new equation, or some information about the form of these
solutions. We study also some geometric characteristics of the single-time sine-Gordon
PDE and of multitime sine-Gordon PDE.

A multitime t = (t1, ..., tm) is a point in the manifold Rm. We endow the manifold
Rm with a symmetric linear connection Γγ

αβ and with a fundamental symmetric con-
travariant tensor field g = (gαβ) of constant signature (r, z, s), r + z + s = m. Using
a C2 function u : R× Rm → R, we build the Hessian operator

(HessΓu)αβ =
∂2u

∂tα∂tβ
− Γγ

αβ

∂u

∂tγ
,

and its trace, called ultra-parabolic-hyperbolic operator,

¤Γ,gu = gαβ

(
∂2u

∂tα∂tβ
− Γγ

αβ

∂u

∂tγ

)
, α, β, γ ∈ {1, ..., m}.

Define the multitime sine-Gordon PDE as

(2.1)
∂2u

∂x2
(x, t)− gαβ(t)

(
∂2u

∂tα∂tβ
(x, t)− Γγ

αβ(t)
∂u

∂tγ
(x, t)

)
= sinu(x, t).

3 Multitime sine-Gordon scalar solitons

For the multitime sine-Gordon PDE (2.1), we seek for solutions in the scalar form

(3.1) u(x, t) = φ(x− vαtα) = φ(ξ),
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where (vα), α ∈ {1, ..., m}, is a constant vector and ξ = x − vαtα. These solutions
do not depend on (x, t) coordinates in explicit form. The partial derivatives of the
unknown function u(x, t) are

∂2u

∂x2
= φ′′(ξ),

∂u

∂tα
= φ′(ξ)(−vα),

∂2u

∂tα∂tβ
= φ′′(ξ)vαvβ .

We substitute these derivatives in the PDE (2.1) and we obtain

φ′′(ξ)[1− gαβ(t)vαvβ ]− φ′(ξ)gαβ(t)Γγ
αβ(t)vγ = sin φ(ξ).

Let (vα) be a constant vector. We choose a constant fundamental tensor gαβ such
that gαβvαvβ = V 6= 1, and the constant connection Γγ

αβ = 0. With this choice, the
PDE (2.1) becomes

φ′′(ξ)(1− V ) = sin φ(ξ).

We multiply both sides by φ′(ξ) and write the equation in the form

φ′′φ′ − 1
1− V

φ′ sin φ = 0.

Taking the primitive, we find φ′2

2 + cos φ
1−V = B, B ∈ R, that is φ′ = ±

√
2B(1−V )−2 cos φ

1−V ,

which is equivalent to dφ
dξ = ±

√
2

1−V

√
A− cos φ, where A = B(1− V ). We integrate

again, selecting A = 1. We get the next sequence of equivalences:

±
∫

dφ√
1− cosφ

=

√
2

1− V

∫
dξ ⇔ ±

∫
dφ

sin
φ

2

=
2√

1− V

∫
dξ

⇔ ± ln
∣∣∣∣tg

φ

4

∣∣∣∣ =
ξ√

1− V
+ a, a ∈ R.

Finally, we find two families of solutions, as follows:

a) ln
∣∣∣tgφ

4

∣∣∣ = ξ√
1−V

+ a ⇒ tgφ
4 = c e

ξ√
1−V , c ∈ R, which leads to

φ(ξ) = 4 arctan
(
c e

ξ√
1−V

)
,⇒ u(x, t) = 4 arctan

(
c e

x−vαtα√
1−gαβvαvβ

)
, c ∈ R.

b) − ln
∣∣∣tgφ

4

∣∣∣ = ξ√
1−V

+ a ⇒ ctanφ
4 = c e

ξ√
1−V , c ∈ R, which leads to

φ(ξ) = 4arcctan
(
c e

ξ√
1−V

)
,⇒ u(x, t) = 4arcctan

(
c e

x−vαtα√
1−gαβvαvβ

)
, c ∈ R.

Thus, in the particular case gαβ(t) = constant, Γγ
αβ(t) = 0, we found two families

of solutions of the equation (2.1), which corresponds to the multitime solitons and
respectively to the multitime anti-solitons.

Theorem 3.1. The scalar solutions of the PDE (2.1) split as family of multitime
solitons and family of multitime anti-solitons.
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4 Multitime sine-Gordon biscalar solitons

Let us consider again the multitime sine-Gordon PDE (2.1). We search for solutions
in the biscalar form

(4.1) u(x, t) = 4 arctan
φ(x)
ψ(t)

.

The partial derivatives are

ux =
4ψ(t)φ′(x)

ψ2(t) + φ2(x)
,

utα =
−4φ(x)

ψ2(t) + φ2(x)
∂ψ

∂tα
(t),

uxx = 4ψ(t)
φ′′(x)(ψ2(t) + φ2(x))− 2(φ′(x))2φ(x)

(ψ2(t) + φ2(x))2
,

(4.2) utαtβ = −4φ(x)
(ψ2(t) + φ2(x))

∂2ψ

∂tα∂tβ
(t)− 2ψ(t)

∂ψ

∂tα
(t)

∂ψ

∂tβ
(t)

(ψ2(t) + φ2(x))2
.

After replacing the derivatives (4.2) and ranging the terms, the equation (2.1) becomes

4
(ψ2(t) + φ2(x))2

[
ψ(t)φ′′(x) + gαβ(t)φ(x)

(
∂2ψ

∂tα∂tβ
(t)− Γγ

αβ(t)
∂ψ

∂tγ
(t)

)]
·

· (ψ2(t) + φ2(x)
)− 8φ(x)ψ(t)

(ψ2(t) + φ2(x))2

(
(φ′(x))2 + gαβ(t)

∂ψ

∂tα
(t)

∂ψ

∂tβ
(t)

)
=

(4.3) = sin
(

4 arctan
φ(x)
ψ(t)

)
.

On the other hand,

sin(4 arctan α) =
2tg(2 arctan α)

1 + tg2(2 arctan α)
=

2
2α

1− α2

1 +
(

2α

1− α2

)2 =
4α(1− α2)
(1 + α2)2

.

In view of this, the right side of (4.3) takes the form

sin
(

4 arctan
φ(x)
ψ(t)

)
=

4
φ(x)
ψ(t)

(
1− φ2(x)

ψ2(t)

)

(
1 +

φ2(x)
ψ2(t)

)2 =
4φ(x)ψ(t)

(
ψ2(t)− φ2(x)

)

(ψ2(t) + φ2(x))2
.

The equation (4.3) becomes, after some simplifications
[
ψ(t)φ′′(x) + gαβ(t)φ(x)

(
∂2ψ

∂tα∂tβ
(t)− Γγ

αβ(t)
∂ψ

∂tγ
(t)

)](
ψ2(t) + φ2(x)

)−
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−2φ(x)ψ(t)
(

(φ′(x))2 + gαβ(t)
∂ψ

∂tα
(t)

∂ψ

∂tβ
(t)

)
= φ(x)ψ(t)

(
ψ2(t)− φ2(x)

)
.

Dividing by φ(x)ψ(t), we obtain

[
φ′′(x)
φ(x)

+ gαβ(t)
1

ψ(t)

(
∂2ψ

∂tα∂tβ
(t)− Γγ

αβ(t)
∂ψ

∂tγ
(t)

)](
ψ2(t) + φ2(x)

)−

−2(φ′(x))2 − 2gαβ(t)
∂ψ

∂tα
(t)

∂ψ

∂tβ
(t) = ψ2(t)− φ2(x).

It follows that

φ′′(x)
ψ2(t)
φ(x)

+ gαβ(t)
φ2(x)
ψ(t)

(
∂2ψ

∂tα∂tβ
(t)− Γγ

αβ(t)
∂ψ

∂tγ
(t)

)
=

=
[
ψ2(t) + 2gαβ(t)

∂ψ

∂tα
(t)

∂ψ

∂tβ
(t)− gαβ(t)ψ(t)

(
∂2ψ

∂tα∂tβ
(t)− Γγ

αβ(t)
∂ψ

∂tγ
(t)

)]
+

(4.4) +
(−φ2(x) + 2(φ′(x))2 − φ(x)φ′′(x)

)
.

Differentiating (4.4) with respect to x, the equation becomes

φ′′′(x)
ψ2(t)
φ(x)

− φ′′(x)φ′(x)
ψ2(t)
φ2(x)

+ gαβ(t)
2φ(x)φ′(x)

ψ(t)

(
∂2ψ

∂tα∂tβ
(t)− Γγ

αβ(t)
∂ψ

∂tγ
(t)

)
=

= 0 + (A(x))′ .

To differentiate with respect to tδ, δ = 1, ...,m, we consider the particular case when
gαβ(t) = constant and Γγ

αβ(t) = constant. We obtain the equation

φ′′′(x)
2ψ(t)

∂ψ

∂tδ
(t)

φ(x)
− φ′′(x)φ′(x)

2ψ(t)
∂ψ

∂tδ
(t)

φ2(x)
−

−gαβ 2φ(x)φ′(x)
ψ2(t)

∂ψ

∂tδ
(t)

(
∂2ψ

∂tα∂tβ
(t)− Γγ

αβ

∂ψ

∂tγ
(t)

)
+

+gαβ 2φ(x)φ′(x)
ψ(t)

(
∂3ψ

∂tα∂tβ∂tδ
(t)− Γγ

αβ

∂2ψ

∂tγ∂tδ
(t)

)
= 0,

or, equivalently,
[
ψ(t)

(
∂3ψ

∂tα∂tβ∂tδ
(t)− Γγ

αβ

∂2ψ

∂tγ∂tδ
(t)

)
− ∂ψ

∂tδ
(t)

(
∂2ψ

∂tα∂tβ
(t)− Γγ

αβ

∂ψ

∂tγ
(t)

)]

ψ2(t)
·

·2gαβφ(x)φ′(x) +
φ′′′(x)φ(x)− φ′′(x)φ′(x)

φ2(x)
2ψ(t)

∂ψ

∂tδ
(t) = 0, δ ∈ {1, ..., m}.
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We divide the both sides by 2φ(x)ψ(t)φ′(x)
∂ψ

∂tδ
(t):

(
φ′′(x)
φ(x)

)′
· 1
φ(x)φ′(x)

+
∂

∂tδ




∂2ψ

∂tα∂tβ
(t)− Γγ

αβ

∂ψ

∂tγ
(t)

ψ(t)


 gαβ 1

ψ(t)
∂ψ

∂tδ
(t)

= 0.

It follows that

(4.5)

(
φ′′(x)
φ(x)

)′

φ(x)φ′(x)
= −gαβ

∂

∂tδ




∂2ψ

∂tα∂tβ
(t)− Γγ

αβ

∂ψ

∂tγ
(t)

ψ(t)




ψ(t)
∂ψ

∂tδ
(t)

= −4k, k ∈ R,

δ ∈ {1, ..., m}.
A function in x and a function in t can be equal if they are equal in fact with the

same constant. Let this constant be −4k, for a suitable form of the relations. We
also note that in (4.5) the function in x is the same for every δ ∈ {1, ..., m} and from
here it follows that the value of k is the same for every choice of δ.

Thus, we obtain a system of equations

(4.6)
d

dx

(
φ′′(x)
φ(x)

)
= −4kφ(x)φ′(x)

(4.7) gαβ ∂

∂tδ




∂2ψ

∂tα∂tβ
(t)− Γγ

αβ

∂ψ

∂tγ
(t)

ψ(t)


 = 4kψ(t)

∂ψ

∂tδ
(t), δ ∈ {1, ..., m},

an ODE in the unknown φ = φ(x) and m PDEs in the unknown ψ = ψ(t).
Let us transform the ODE (4.6). After integrating the two sides, the equation

becomes
φ′′(x)
φ(x)

= −4k
φ2(x)

2
+ a, a ∈ R,

that is φ′′(x) = −2kφ3(x)+aφ(x). We multiply by φ′(x), and apply a new integration
of the two sides of the equation. We find

φ′′(x)φ′(x) = −2kφ3(x)φ′(x) + aφ(x)φ′(x) ⇔

(4.8) (φ′(x))2 = −kφ4(x) + aφ2(x) + b, k, a, b ∈ R.

Since always we can relate the constants k, a, b ∈ R via the condition a2 +4kb = 0,
the equation (4.8) is a Riccati equation. Taking the curvilinear primitive, the PDE
system (4.7) is transformed into the PDE

gαβ




∂2ψ

∂tα∂tβ
(t)− Γγ

αβ

∂ψ

∂tγ
(t)

ψ(t)


 = 4k

ψ2(t)
2

+ c, c ∈ R,
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that is

(4.9) gαβ

(
∂2ψ

∂tα∂tβ
(t)− Γγ

αβ

∂ψ

∂tγ
(t)

)
= 2kψ3(t) + c ψ(t), c ∈ R.

Theorem 4.1. The biscalar solutions of the multitime sine-Gordon PDE are deter-
mined by the solutions of ODE (4.8) and PDEs (4.9).

5 Geometric characteristics of
the sine-Gordon PDE

The geometric characteristics of some PDEs give relevant link between Differential Ge-
ometry and Applied Sciences, for geometrical methods in Statistics, for mathematical
modeling in Ecology, for optimization methods on Riemannian or semi-Riemannian
manifolds etc (see also [12] - [10]).

5.1 Case of single-time sine-Gordon PDE

Let gij be a fundamental symmetric contravariant tensor field of constant signature
(1, 1) and Γi

jk be a symmetric linear connection on the manifold R × R. Denoting
x1 = x, x2 = t; i, j, k = 1, 2, and using a C2 function u : R × R → R, we introduce
the hyperbolic PDE

gij

(
∂2u

∂xi∂xj
− Γk

ij

∂u

∂xk

)
= sin u.

Identifying this PDE to the single-time sine-Gordon PDE (1.1), we obtain

g11 = 1, g12 = g21 = 0, g22 = − 1
c2

, Γk
11 −

1
c2

Γk
22 = 0.

The Lorentzian connection Γi
jk = 0, associated to the previous Lorentzian metric gij ,

is a particular case.

5.2 Two-time sine-Gordon geometric dynamics

Now let us show that the Lorentzian metric {g11 = 1, g12 = g21 = 0, g22 = − 1
c2 }

connects the theory of geometric dynamics to the theory of solitons (see [12]). For
that we introduce the source as a Lorentzian manifold

(R× R, g11 = 1, g12 = = g21 = 0, g22 = − 1
c2

)

and the target as the Riemannian manifold (R, g = 1). Let u : R × R → R, (x, t) →
u(x, t) be a C2 function. On the Riemannian manifold (R, g = 1), we introduce two
vector fields

X1(u) = 2 sin
u

2
, X2(u) = 2 sin

u

2
,

which determine the 2-flow

(5.1) ux = 2 sin
u

2
, ut = 2 sin

u

2
.
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The complete integrability condition is the sine-Gordon PDE uxt = sin u. The flow
is characterized by ln |tg u

4 | = x + t + ln k, which yields the general solution

(5.2) u(x, t) = 4 arctan(k ex+t).

We build the Lagrangian 2L = (ux−2 sin u
2 )2− 1

c2 (ut−2 sin u
2 )2. The Euler-Lagrange

PDE generated by L is the sine-Gordon PDE

∂2u

∂x2
− 1

c2

∂2u

∂t2
= (1− 1

c2
) sin u.

This sine-Gordon PDE is a prolongation of the 2-flow (5.1) since the function (5.2) is
a solution. The theory in this subsection shows that the sine-Gordon soliton PDE is
generated by a 2-flow and an appropriate geometric structure.

5.3 Case of multitime sine-Gordon PDE

Let Γγ
αβ be a symmetric linear connection and g = (gαβ) be a fundamental symmetric

contravariant tensor field of constant signature (r, z, s), r+z+s = m on the manifold
Rm. If the tensor field g = (gαβ) is nondegenerate (a Riemannian or semi-Riemannian
metric; z = 0) on Rm and (gαβ) is it inverse, then the induced linear connection is

Γγ
αβ =

1
2
gλγ

(
∂gαλ

∂tβ
+

∂gβλ

∂tα
− ∂gαβ

∂tλ

)
.

Now we look for pairs (g, Γ), that is (fundamental tensor, connection), such that the
solutions of multitime sine-Gordon PDE (2.1) are just the solutions of the single-time
PDE (1.1).

Theorem 5.1. There exists an infinity of Riemannian or semi-Riemannian struc-
tures gαβ on Rm such that a solution of the PDE (1.1) is also a solution of the PDE
(2.1).

Proof. Suppose t1 = t and u = u(x, t1) a solution of PDE (1.1). The function
u = u(x, t1) is a solution of the PDE (2.1) if the family of Riemannian structures
(gαβ) is fixed by g11 = 1

c2 ; Γγ
11 = 0, γ = 1, ..., m. A family of solutions is g11 =

c2; g1α = 0, forα = 1, ..., m; gαβ = arbitrary for α, β ≥ 2. ¤

In the sense of the previous Theorem, we can say that the PDE (2.1) is a prolon-
gation of the PDE (1.1).

6 Conclusion

This paper gives solutions to a generalized sine-Gordon PDE, different from the su-
persymmetric extension of the sine-Gordon model. The general expression of this
equation is determined by a geometric structure given by a fundamental tensor field
gαβ and a linear connection Γγ

αβ . The geometry induced by some of these geometrical
objects as well as vector solitons will be studied in a further coming paper. In fact,
the integrable models and their multitime formulation find a natural and universal
setting in terms of Differential Geometry.
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[8] C. Udrişte, Nonholonomic approach of multitime maximum principle, Balkan J.
Geom. Appl. 14, 2 (2009), 111-126.
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