A class of Finsler metrics with almost vanishing H-curvature

Xiaohuan Mo

Abstract

In this paper, we study a class of Finsler metrics with orthogonal invariance. We find an equation that characterizes these Finsler metrics of almost vanishing H-curvature. As a consequence, we show that all orthogonally invariant Finsler metrics of almost vanishing H-curvature are of almost vanishing Ξ-curvature and corresponding one forms are exact, generalizing a result previously only known in the case of metrics with vanishing H-curvature.

M.S.C. 2010: 58E20, 53B40.

Key words: Finsler metric; H-curvature; orthogonally invariant; exact one form; E-curvature.

1 Introduction

Finsler geometry is just Riemannian geometry without the quadratic restriction on its metrics [2]. There are several non-Riemannian quantities in Finsler geometry, such as the Cartan torsion, the S-curvature, the Ξ-curvature and the H-curvature. The Ξ-curvature is obtained from the S-curvature (see (2.1) below) and the H-curvature is determined by the Ξ-curvature. In fact, we have the following [13, Lemma 2.1]

$$
\begin{equation*}
H_{i j}=\frac{1}{4}\left(\Xi_{i \cdot j}+\Xi_{j \cdot i}\right), \tag{1.2}
\end{equation*}
$$

where $\boldsymbol{\Xi}:=\Xi_{j} d x^{j}$ and $\mathbf{H}:=H_{i j} d x^{i} \otimes d x^{j}$ denote the Ξ-curvature and the H-curvature of F respectively, "." denotes the vertical covariant derivative. These quantities vanish for Riemannian metrics, hence they are said to be non-Riemannian. The H curvature gives a measure of failure of a Finsler metric of scalar curvature to be of constant flag curvature. Thus the quantity H deserves further investigation.

One of the important problems in Finsler geometry is to understand geometric meaning of non-Riemannian curvature. Many Finslerian geometers have studied

[^0]Finsler metrics with special curvature properties. See [1, 8, 9, 14, 15, 13]. By (1.2), one can see that the H-curvature almost vanishes, i.e.

$$
\begin{equation*}
H_{i j}=\frac{n+1}{2} \theta F_{y^{i} y^{j}} \tag{1.3}
\end{equation*}
$$

if the Ξ-curvature almost vanishes, i.e.

$$
\begin{equation*}
\Xi_{j}=-(n+1) F^{2}\left(\frac{\theta}{F}\right)_{y^{j}} \tag{1.4}
\end{equation*}
$$

where θ is a 1 -form on M and $n=\operatorname{dim} M$. However, the converse might not be true. Recently, Shen, Xia and Tang have showed that (1.3) is equivalent to (1.4) for Randers metrics [$1,14,15,13$]. For example, the following Randers metric on $\mathbb{B}^{n}(\nu)$

$$
F=\sqrt{f(|x|)|y|^{2}+\kappa^{2} f^{2}(|x|)\langle x, y\rangle^{2}}+\kappa f(|x|)\langle x, y\rangle
$$

has isotropic S-curvature, $\mathbf{S}=(n+1) c F$, where f is any positive differentiable function, κ is a constant and [3, Theorem 1.2]

$$
c=\frac{\kappa}{4} \frac{2 f(|x|)+|x| f_{r}(|x|)}{1+\kappa^{2}|x|^{2} f(|x|)}
$$

Thus F satisfies the following properties $[1,14,15,13]$:
(a) (almost vanishing H-curvature)

$$
H_{i j}=\frac{n+1}{2} \theta F_{y^{i} y^{j}}
$$

(b) (almost vanishing Ξ-curvature and exact 1 -form)

$$
\Xi_{j}=-(n+1) F^{2}\left(\frac{\theta}{F}\right)_{y^{j}}, \quad \theta=d c
$$

(c) (orthogonal invariance)

$$
\begin{equation*}
F(A x, A y)=F(x, y) \tag{1.5}
\end{equation*}
$$

where $x \in \mathbb{B}^{n}(\nu), y \in T_{x} \mathbb{B}^{n}(\nu)$ and $A \in O(n)$. Orthogonally invariant (spherically symmetric Finsler metrics form, in an alternative terminology (see [5, 4, 11]), a rich class of Finsler metrics. The above example leads to the study orthogonally invariant Finsler metrics of almost vanishing H-curvature. In this paper, we obtain the following main result:

Theorem 1.1. On $\mathbb{B}^{n}(\nu)$, any spherically symmetric Finsler metric $F(x, y)=|y| \phi\left(|x|, \frac{\langle x, y\rangle}{|y|}\right)$ has almost vanishing H-curvature, i.e.,

$$
H_{i j}=\frac{n+1}{2} \theta F_{y^{i} y^{j}}, \quad \theta=\theta_{j}(x) y^{j}
$$

if and only if

$$
\begin{equation*}
u s\left[(n+1) \frac{\partial R_{1}}{\partial s}+3\left(r^{2}-s^{2}\right) \frac{\partial R_{2}}{\partial s}+2(n+1) R_{4}\right]=3(n+1) \theta\left(\phi-s \phi_{s}\right), \quad \theta=\theta_{j}(x) y^{j} \tag{1.6}
\end{equation*}
$$

where R_{1}, R_{2} and R_{4} are given in (2.2), (2.3) and (2.5) respectively, and

$$
u:=|y|, \quad r:=|x|, \quad s:=\frac{\langle x, y\rangle}{|y|} .
$$

The proof of Theorem 1.1 is given in Section 4. As an application of Theorem 1.1, we prove that (a) and (c) implies (b).

Corollary 1.2. Let F be a orthogonally invariant Finsler metric on $\mathbb{B}^{n}(\nu)$. Then the H-curvature almost vanishes given by (1.3) if and only if the Ξ-curvature almost vanishes given by (1.4). In this case, the corresponding 1 -form θ is an exact form.

See Section 4 for the proof of Corollary 1.2. As a consequence of Corollary 1.2, for $\theta=0$, we get the following result

Corollary 1.3. [12] Let F an orthogonally invariant Finsler metric on $\mathbb{B}^{n}(\nu)$. Then the H-curvature vanishes if and only if the Ξ-curvature vanishes.

A Finsler metric is said to be R-quadratic if its Riemann curvature R_{y} is quadratic in $y \in T_{x} M[3,9]$. In [9], author showed that all of R-quadratic Finsler metrics have vanishing H-curvature. Together with Corollary 1.3, we have the following:

Corollary 1.4. Let F an orthogonally invariant Finsler metric on $\mathbb{B}^{n}(\nu)$. Suppose that F is R-quadratic, then F has vanishing Ξ-curvature.

For recent results of (α, β)-metrics of almost vanishing H-curvature, we refer the reader to [17].

2 Preliminaries

Let $F=F(x, y)$ be a Finsler metric on a manifold M. Let $\gamma(t)$ be the geodesic with $\gamma(0)=x$ and $\dot{\gamma}(0)=y$. Let

$$
\mathbf{S}(x, y)=\frac{d}{d t}\left[\tau(\gamma(t), \dot{\gamma}(t)]_{t=0}\right.
$$

where $\tau(x, y)$ is the distortion of $F . \mathbf{S}(x, y)$ is called the S-curvature $[1,3,13]$. We consider the following non-Riemannian quantity, $\boldsymbol{\Xi}=\Xi_{j} d x^{j}$, on the tangent bundle $T M$:

$$
\begin{equation*}
\Xi_{j}:=\mathbf{S}_{\cdot j \mid i} y^{i}-\mathbf{S}_{\mid j}, \tag{2.1}
\end{equation*}
$$

where "|" denotes the horizontal covariant derivative. $\boldsymbol{\Xi}$ is called the $\boldsymbol{\Xi}$-curvature of $F[13]$ (χ-curvature in an alternative terminology in [1]).

The H-curvature $\mathbf{H}_{y}=H_{i j} d x^{i} \otimes d x^{j}$ is defined in (1.2). Let F be a Finsler metric on $\mathbb{B}^{n}(\nu):=\left\{x \in \mathbb{R}^{n} ;|x|<\nu\right\}$. F is said to be spherically symmetric if it satisfies $F(A x, A y)=F(x, y)$ for all $x \in \mathbb{B}^{n}(\nu), y \in T_{x} \mathbb{B}^{n}(\nu)$ and $A \in O(n)$. Let $|$,$| and \langle$, be the standard Euclidean norm and inner product on \mathbb{R}^{n}. In [5], Huang-Mo showed the following:

Lemma 2.1. A Finsler metric F on $\mathbb{B}^{n}(\nu)$ is orthogonally invariant if and only if there is a function $\phi:[0, \nu) \times \mathbb{R} \rightarrow \mathbb{R}$ such that

$$
F(x, y)=|y| \phi\left(|x|, \frac{\langle x, y\rangle}{|y|}\right)
$$

where $(x, y) \in \mathcal{T} \mathbb{B}^{n}(\nu):=T \mathbb{B}^{n}(\nu) \backslash\{0\}$.
Let us recall a formula for the Riemann curvature of an orthogonally invariant Finsler metric $F=|y| \phi\left(|x|, \frac{\langle x, y\rangle}{|y|}\right)$.

$$
\begin{align*}
& \text { Let } R_{1}:=P^{2}-\frac{1}{r}\left(s P_{r}+r P_{s}\right)+2 Q\left[1+s P+\left(r^{2}-s^{2}\right) P_{s}\right] \\
& R_{2}:=2 Q\left(2 Q-s Q_{s}\right)+\frac{1}{r}\left(2 Q_{r}-s Q_{r s}-r Q_{s s}\right)+\left(r^{2}-s^{2}\right)\left(2 Q Q_{s s}-Q_{s}^{2}\right) \tag{2.2}\\
& R_{3}:=-s R_{2} \tag{2.3}\\
& R_{4}:=\frac{2}{r} P_{r}-Q_{s}-P_{s s}-\frac{s}{r} P_{r s}+2 Q\left(P-s P_{s}\right)+2\left(r^{2}-s^{2}\right) Q P_{s s}-s P Q_{s}-\left(r^{2}-s^{2}\right) P_{s} Q_{s}-P P_{s} \tag{2.4}\\
& R_{5}:=-R_{1}-s R_{4}, \tag{2.5}
\end{align*}
$$

where $P_{s}:=\frac{\partial P}{\partial s}, P_{r}:=\frac{\partial P}{\partial r}, Q_{s}:=\frac{\partial Q}{\partial s}, Q_{r}:=\frac{\partial Q}{\partial r}, Q_{s s}:=\frac{\partial^{2} Q}{\partial s^{2}}, r:=|x|, s:=\frac{\langle x, y\rangle}{|y|}, P$ and Q are given by

$$
Q:=\frac{1}{2 r} \frac{r \phi_{s s}-\phi_{r}+s \phi_{r s}}{\phi-s \phi_{s}+\left(r^{2}-s^{2}\right) \phi_{s s}}, \quad P:=\frac{r \phi_{s}+s \phi_{r}}{2 r \phi}-\frac{Q}{\phi}\left[s \phi+\left(r^{2}-s^{2}\right) \phi_{s}\right] .
$$

We have the following [7, 4]
Lemma 2.2. Let $F=|y| \phi\left(|x|, \frac{\langle x, y\rangle}{|y|}\right)$ be an orthogonally invariant Finsler metric on $\mathbb{B}^{m}(\nu)$. Then the Riemann curvature of F is given by

$$
\begin{equation*}
R_{j}^{i}=u^{2} R_{1} \delta^{i j}+u^{2} R_{2} x^{i} x^{j}+u R_{3} x^{i} y^{j}+u R_{4} x^{j} y^{i}+R_{5} y^{i} y^{j}, \tag{2.7}
\end{equation*}
$$

where $u=|y|$.

3Ξ-curvature and H-curvature

In this section, we are going to give expressions of non-Riemannian quantities \mathbf{H} and $\boldsymbol{\Xi}$ of orthogonally invariant Finsler metrics (see (3.15) and (3.16) below).

By (2.4), (2.6) and Lemma 2.2, we can easily get a formula for the Ricci curvature Ric $=\sum_{j=1}^{m} R_{j}^{j}$.

$$
\begin{equation*}
\text { Ric }=n u^{2} R_{1}+u^{2}|x|^{2} R_{2}+u\langle x, y\rangle R_{3}+u\langle x, y\rangle R_{4}+|y|^{2} R_{5}=u^{2} R \tag{3.1}
\end{equation*}
$$

where

$$
\begin{equation*}
R:=(n-1) R_{1}+\left(r^{2}-s^{2}\right) R_{2} \tag{3.2}
\end{equation*}
$$

We have

$$
\begin{align*}
\frac{\partial}{\partial y^{j}} \text { Ric } & =\frac{\partial}{\partial y^{j}}\left(u^{2} R\right) \\
& =\frac{\partial u^{2}}{\partial y^{j}} R+u^{2} \frac{\partial R}{\partial s} s_{y^{j}}=u R_{s} x^{j}+\left(2 R-s R_{s}\right) y^{j} \tag{3.3}
\end{align*}
$$

where $R_{s}:=\frac{\partial R}{\partial s}$ and we have used

$$
\begin{equation*}
\frac{\partial u^{2}}{\partial y^{j}}=2 y^{j}, \quad s_{y^{j}}=\frac{u x^{j}-s y^{j}}{u^{2}} \tag{3.4}
\end{equation*}
$$

By simple calculations, we have

$$
\begin{equation*}
s_{y^{k}} y^{k}=0, \quad s_{y^{k}} x^{k}=\frac{r^{2}-s^{2}}{u} \tag{3.5}
\end{equation*}
$$

We denote $\frac{\partial R_{j}}{\partial s}$ by $R_{j s} j=1, \cdots, 5$. By using (2.7), we obtain

$$
\begin{aligned}
\frac{\partial R_{j}^{i}}{\partial y^{k}}= & 2 y^{k} R_{1} \delta_{j}^{i}+u^{2} R_{1 s} s_{y^{k}} \delta_{j}^{i}+2 y^{k} R_{2} x^{i} x^{j}+u^{2} R_{2 s} s_{y^{k}} x^{i} x^{j} \\
& +\frac{y^{k}}{u} R_{3} x^{i} y^{j}+u R_{3 s} s_{y^{k}} x^{i} y^{j}+u R_{3} x^{i} \delta_{k}^{j} \\
& +\frac{y^{k}}{u} R_{4} x^{j} y^{i}+u R_{4 s} s_{y^{k}} x^{j} y^{i}+u R_{4} x^{j} \delta_{k}^{i} \\
& +R_{5 s} s_{y^{k}} y^{i} y^{j}+R_{5} \delta_{k}^{i} y^{j}+R_{5} y^{i} \delta_{k}^{j}
\end{aligned}
$$

It follows that

$$
\begin{align*}
\sum_{i} \frac{\partial R_{j}^{i}}{\partial y^{i}}= & u\left[R_{1 s}+2 s R_{2}+\left(r^{2}-s^{2}\right) R_{2 s}+R_{3}+(n+1) R_{4}\right] x^{j} \\
& +\left[2 R_{1}-s R_{1 s}+s R_{3}+\left(r^{2}-s^{2}\right) R_{3 s}+(n+1) R_{5}\right] y^{j} \tag{3.6}
\end{align*}
$$

where we have used (3.5) and the second equation of (3.4). By (2.4), we have

$$
R_{3 s}=-R_{2}-s R_{2 s}
$$

Taking this together with $(2.3),(2.5)$ and (3.6), we obtain

$$
\begin{equation*}
\sum_{i} \frac{\partial R_{j}^{i}}{\partial y^{i}}=u \mathfrak{M} x^{j}+\mathfrak{N} y^{j} \tag{3.7}
\end{equation*}
$$

where

$$
\begin{equation*}
\mathfrak{M}:=R_{1 s}+s R_{2}+\left(r^{2}-s^{2}\right) R_{2 s}+(n+1) R_{4}, \tag{3.8}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathfrak{N}:=(1-n) R_{1}-s R_{1 s}-r^{2} R_{2}-s\left(r^{2}-s^{2}\right) R_{2 s}-(n+1) s R_{4} . \tag{3.9}
\end{equation*}
$$

The following lemma is well-known [13]:

Lemma 3.1. [9, 13]

$$
\begin{equation*}
\Xi_{j}=-\frac{1}{3}\left(2 \sum_{i} \frac{\partial R_{j}^{i}}{\partial y^{i}}+\frac{\partial}{\partial y^{j}} R i c\right) \tag{3.10}
\end{equation*}
$$

Plugging (3.3) and (3.7) into (3.10), we obtain

$$
\begin{equation*}
\Xi_{j}=-\frac{1}{3}\left[u\left(2 \mathfrak{M}+R_{s}\right) x^{j}+\left(2 \mathfrak{N}+2 R-s R_{s}\right) y^{j}\right] . \tag{3.11}
\end{equation*}
$$

By using (3.2) we have

$$
\begin{equation*}
R_{s}=(n-1) R_{1 s}+\left(r^{2}-s^{2}\right) R_{2 s}-2 s R_{2} \tag{3.12}
\end{equation*}
$$

From which together with (3.8) we have

$$
\begin{equation*}
2 \mathfrak{M}+R_{s}=(n+1) R_{1 s}+3\left(r^{2}-s^{2}\right) R_{2 s}+2(n+1) R_{4}:=\kappa . \tag{3.13}
\end{equation*}
$$

By (3.2), (3.9), (3.12) and (3.13),

$$
\begin{equation*}
2 \mathfrak{N}+2 R-s R_{s}=-s \kappa . \tag{3.14}
\end{equation*}
$$

Substituting (3.13) and (3.14) into (3.11), we obtain the following formula for $\boldsymbol{\Xi}$:

$$
\begin{equation*}
\Xi_{j}=-\frac{\kappa}{3}\left(u x^{j}-s y^{j}\right), \tag{3.15}
\end{equation*}
$$

where κ is given in (3.13). Taking this together with (3.4) yields

$$
\Xi_{j \cdot i}=-\frac{\kappa_{s}}{3 u^{2}}\left(u x^{j}-s y^{j}\right)\left(u x^{i}-s y^{i}\right)-\frac{\kappa}{3}\left(\frac{x^{j} y^{i}-x^{i} y^{j}}{u}+\frac{s}{u^{2}} y^{j} y^{i}-s \delta^{j i}\right),
$$

where $\kappa_{s}:=\frac{\partial \kappa}{\partial s}$. Plugging this into (1.2) yields

$$
\begin{align*}
H_{i j} & =-\frac{\kappa_{s}}{6 u^{2}}\left(u x^{j}-s y^{j}\right)\left(u x^{i}-s y^{i}\right)-\frac{s \kappa}{6}\left(\frac{1}{u^{2}} y^{j} y^{i}-\delta^{j i}\right) \tag{3.16}\\
& =\frac{1}{6}\left[s \kappa \delta^{j i}-\kappa_{s} x^{i} x^{j}+\frac{s \kappa_{s}}{u}\left(x^{j} y^{i}+x^{i} y^{j}\right)-\frac{s}{u^{2}}\left(\kappa+s \kappa_{s}\right) y^{j} y^{i}\right] .
\end{align*}
$$

4 Almost vanishing H-curvature

In this section, we will prove Theorem 1.1 and 1.2. Using (3.4), we obtain

$$
\begin{align*}
u_{y^{i} y^{j}} & =\frac{u^{2} \delta^{i j}-y^{i} y^{j}}{u^{3}} \tag{4.1}\\
s_{y^{i} y^{j}} & =\frac{3 s y^{i} y^{j}-u x^{i} y^{j}-u x^{j} y^{i}-s u^{2} \delta_{i j}}{u^{4}} \tag{4.2}
\end{align*}
$$

Proof of Theorem 1.1. F can be rewritten as $F=u \phi(r, s)$, where $u=|y|, r=$ $|x|, s=\frac{\langle x, y\rangle}{|y|}$. It follows that

$$
\begin{equation*}
F_{y^{j}}=u_{y^{j}} \phi+u \phi_{s} s_{y^{j}} \tag{4.3}
\end{equation*}
$$

and

$$
\begin{equation*}
F_{y^{j} y^{k}}=u_{y^{j} y^{k}} \phi+\left(u_{y^{j}} s_{y^{k}}+u_{y^{k}} s_{y^{j}}\right) \phi_{s}+u s_{y^{j}} s_{y^{k}} \phi_{s s}+u s_{y^{j} y^{k}} \phi_{s} \tag{4.4}
\end{equation*}
$$

Plugging (3.4), (4.1) and (4.2) into (4.4) yields

$$
\begin{align*}
u^{3} F_{y^{i} y^{j}}= & \left(u \delta^{i j}-y^{i} y^{j}\right) \phi+\left[y^{i}\left(u x^{j}-s y^{j}\right)+y^{j}\left(u x^{i}-s y^{i}\right)\right] \phi_{s} \\
& +\left(u x^{i}-s y^{i}\right)\left(u x^{j}-s y^{j}\right) \phi_{s s} \\
& +\left[3 s y^{i} y^{j}-u\left(x^{i} y^{j}+x^{j} y^{k}\right)-s u^{2} \delta_{i j}\right] \phi_{s} \tag{4.5}\\
= & u^{2}\left(\phi-s \phi_{s}\right) \delta_{i j}+u^{2} \phi_{s s} x^{i} x^{j}-u \phi_{s s}\left(x^{i} y^{j}+x^{j} y^{i}\right) \\
& -\left(\phi-s \phi_{s}-s^{2} \phi_{s s}\right) y^{i} y^{j} .
\end{align*}
$$

By (3.16) and (4.5), (1.3) holds if and only if

$$
\begin{align*}
& s \kappa \delta^{j i}-\kappa_{s} x^{i} x^{j}+\frac{s \kappa_{s}}{u}\left(x^{j} y^{i}+x^{i} y^{j}\right)-\frac{s}{u^{2}}\left(\kappa+s \kappa_{s}\right) y^{j} y^{i} \\
& =\frac{3(n+1) \theta}{u^{3}}\left[u^{2}\left(\phi-s \phi_{s}\right) \delta^{i j}+u^{2} \phi_{s s} x^{i} x^{j}-u \phi_{s s}\left(x^{i} y^{j}+x^{j} y^{i}\right)-\left(\phi-s \phi_{s}-s^{2} \phi_{s s}\right) y^{i} y^{j}\right] . \tag{4.6}
\end{align*}
$$

It is easy to see that (4.6) holds if and only if

$$
\begin{gather*}
s \kappa=\frac{3(n+1) \theta}{u}\left(\phi-s \phi_{s}\right), \tag{4.7}\\
-\kappa_{s}=\frac{3(n+1) \theta}{u} \phi_{s s}, \tag{4.8}\\
s \kappa_{s}=-\frac{3(n+1) \theta}{u} s \phi_{s s} \tag{4.9}\\
s\left(\kappa+s \kappa_{s}\right)=\frac{3(n+1) \theta}{u}\left(\phi-s \phi_{s}-s^{2} \phi_{s s}\right) . \tag{4.10}
\end{gather*}
$$

By using (3.13), we obtain that (4.7) is equivalent to the first equation of (1.6). Hence it is sufficient to show that (4.7) implies (4.8), (4.9) and (4.10). Since F is a Finsler metric, we see that $\phi-s \phi_{s}>0$ [11]. Suppose that (4.7) holds. Note that

$$
\begin{equation*}
s=\frac{\langle x, y\rangle}{u} \tag{4.11}
\end{equation*}
$$

It follows that the 1-form θ can be expressed by

$$
\begin{equation*}
\theta=\frac{\kappa}{3(n+1)\left(\phi-s \phi_{s}\right)}\langle x, y\rangle . \tag{4.12}
\end{equation*}
$$

Furthermore, $\frac{\kappa}{3(n+1)\left(\phi-s \phi_{s}\right)}$ is independent of y. In fact, it is only dependent of $|x|$. Let

$$
\begin{equation*}
\frac{\kappa}{3(n+1)\left(\phi-s \phi_{s}\right)}:=\sigma\left(\frac{|x|^{2}}{2}\right) . \tag{4.13}
\end{equation*}
$$

Plugging (4.13) into (4.12) yields

$$
\begin{equation*}
\theta=\sigma\left(\frac{|x|^{2}}{2}\right)\langle x, y\rangle \tag{4.14}
\end{equation*}
$$

Together with (4.11) we have

$$
\begin{equation*}
\frac{\theta}{u}=s \sigma\left(\frac{|x|^{2}}{2}\right) . \tag{4.15}
\end{equation*}
$$

By using (4.13) and (4.15), we obtain

$$
\begin{aligned}
\kappa_{s} & =\left[3(n+1) \sigma\left(\frac{r^{2}}{2}\right)\left(\phi-s \phi_{s}\right)\right]_{s} \\
& =-3(n+1) \sigma\left(\frac{r^{2}}{2}\right) s \phi_{s s}=-3(n+1) \frac{\theta}{u} \phi_{s s} .
\end{aligned}
$$

Thus we obtain (4.8). $(4.8) \times(-s)$ yields (4.9). Finally, (4.10) is easy to obtain from (4.7) and (4.8).

Proof of Corollary 1.2. It suffices to show that the Ξ-curvature almost vanishes given by (1.4) if the H-curvature almost vanishes given by (1.3) and in this case corresponding 1 -form is exact. Suppose that $F=|y| \phi\left(|x|, \frac{\langle x, y\rangle}{|y|}\right)$ has almost vanishing H-curvature. Then (4.7), (4.13) and (4.14) hold. By using (4.14), we have

$$
d\left[f\left(\frac{|x|^{2}}{2}\right)\right]=f^{\prime}\left(\frac{|x|^{2}}{2}\right) d\left(\frac{|x|^{2}}{2}\right)=\sigma\left(\frac{|x|^{2}}{2}\right) \Sigma_{j} x^{j} d x^{j}=\theta
$$

where $f(t):=\int \sigma(t) d t$. Hence θ is an exact form. Plugging (3.4) into (4.3) yields

$$
F_{y^{j}}=\phi_{s} x^{j}+\frac{\phi-s \phi_{s}}{u} y^{j} .
$$

Combining with (4.14) we get

$$
\left(\frac{\theta}{F}\right)_{y^{j}}=\frac{\sigma\left(\frac{|x|^{2}}{2}\right)}{F^{2}}\left(\phi-s \phi_{s}\right)\left(u x^{j}-s y^{j}\right)
$$

Together with (3.15) and (4.13) we obtain that the Ξ-curvature almost vanishes given by (1.4).

References

[1] X. Cheng and Z. Shen, Finsler geometry. An approach via Randers spaces, Science Press Beijing, Beijing; Springer, Heidelberg, 2012.
[2] S. S. Chern, Finsler geometry is just Riemannian geometry without the quadratic restriction, Notices Amer. Math. Soc. 43 (1996), 959-963.
[3] E. Guo, H. Liu and X. Mo, On spherically symmetric Finsler metrics with isotropic Berwald curvature, Int. J. Geom. Meth. Mod. Phys. 10 (2013), 1350054.
[4] L. Huang and X. Mo, On spherically symmetric Finsler metrics of scalar curvature, J. Geom. Phys. 62 (2012), 2279-2287.
[5] L. Huang and X. Mo, Projectively flat Finsler metrics with orthogonal invariance, Annales Polonici Mathematici, 107 (2013), 259-270.
[6] B. Li, On the classification of projectively flat Finsler metrics with constant flag curvature, Adv. Math. 257 (2014), 266-284.
[7] H. Liu and X. Mo, Examples of Finsler metrics with special curvature properties, Mathematische Nachrichten 288 (2015), 1527-1537.
[8] X. Mo, On some Finsler metrics of constant (or scalar) flag curvature, Houston J. Math. 38 (2012), 41-54.
[9] X. Mo, On the non-Riemannian quantity H of a Finsler metric, Diff. Geom. Appl. 27 (2009), 7-14.
[10] X. Mo, Z. Shen and H. Liu, A new quantity in Riemann-Finsler geometry, Glasgow Math. J. 54(2012), 637-645.
[11] X. Mo, N. M. Solorzano and K. Tenenblat, On spherically symmetric Finsler metrics with vanishing Douglas curvature, Diff. Geom. Appl. 31 (2013), 746-758.
[12] E. S. Sevim, Z. Shen, S. Ülgen, Spherically symmetric Finsler metrics with constant Ricci and flag curvature, Publ. Math. Debrecen 87 (2015), 463-472.
[13] Z. Shen, On some non-Riemannian quantities in Finsler geometry, Canad. Math. Bull. 56 (2013), 184-193.
[14] D. Tang, On the non-Riemannian quantity H in Finsler geometry, Diff. Geom. Appl. 29 (2011), 207-213.
[15] Q. Xia, Some results on the non-Riemannian quantity H of a Finsler metric, Int. J. Math. 22 (2011), 925-936.
[16] L. Zhou, Projective spherically symmetric Finsler metrics with constant flag curvature in \mathbb{R}^{n}, Geom. Dedicata, 158 (2012), 353-364.
[17] M. Zohrehvand and M. M. Rezaii, On the non-Riemannian quantity H of an (α, β)-metric, Diff. Geom. Appl. 30 (2012), 392-404.

Author's address:
Xiaohuan Mo
Key Laboratory of Pure and Applied Mathematics,
School of Mathematical Sciences, Peking University, Beijing 100871, China.
E-mail: moxh@pku.edu.cn

[^0]: Balkan Journal of Geometry and Its Applications, Vol.21, No.1, 2016, pp. 58-66.
 (C) Balkan Society of Geometers, Geometry Balkan Press 2016.

