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Abstract. The purpose of this paper is to study some jerk motions con-
sidering some dynamic cases, other than the classical ones and extending
the setting. We consider a special set of variations, finding a set of jerk
motions, generalizing some cases known only in some particular forms till
now. Finally we give a simple mechanical interpretation of these ideas.
The subject is topical because we model a less studied type of movements
that can lead to interesting new developments.
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1 Introduction

A lot of movements which occur in nature can be described as fast movements, which
are modeled by the so called jerk movements.

These jerk movements involve the derivative of acceleration, i.e., the third order
derivative of coordinates of the position vector. This kind of motions are present in
various real situations and have a lot of applications, most of them in biomechanics.

We have to notice that most Lagrangians studied in mechanics are of first order.
For example, the Newton dynamics is based on first order Lagrangian systems.

But there are a lot of other motions that have to be modeled using higher order
Lagrangians. This is the case when the accelerations and some of the derivatives
(higher order accelerations) are involved in the equations of motion, thus we have to
consider some higher order Lagrangians.

In this order of ideas, the optimal curves of the action (2.2) on the Euclidean
third order Lagrangian given by (2.1) are used in order to obtain some properties of
natural movements of the human body (see [6, 14, 15]). According to [6], the motions
performed by primates are based on the maximizing the smoothness; this is modeled
by minimizing the Lagrangian (2.1). The same principle can be applied to other high
speed movements, for example the movement of a hard disk drive system [10]. Some
other aspects can be stressed in mechanics of robots [2] or of the vehicle suspensions
[3]. Some cosmological aspects can be involved (see, for example the recent paper
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[8]). Some evolved mathematical tools are developed in [4, 7, 9], where one uses deep
numerical methods or in [13], where one studies some control aspects.

A third order Euclidean quadratic Lagrangian, related to jerk motions (see [12]),
is considered and used in this paper. For the sake of simplicity, in order to get simple
formulas, we do not consider other exterior forces (as, for example, friction) like in
[12].

Instead of an Euclidean Lagrangian, one may consider a third order Lagrangian
on an arbitrary manifold, using for example a calculus like in [11]. Our goal is to
stress the various influences of initial conditions on every component of the motion,
since the general cases can be developed in a similar way.

Specifically, we consider in the paper some cases and we give examples when a
curve-solution is uniquely determined giving explicitly its positions and/or velocities
and/or accelerations at its ends. Other situations can be considered, involving more
points and/or velocities and accelerations; these cases can be studied by following a
similar way like in our work.

In this paper we achieve an original description of a mathematical background
(not known in the present form in literature until now) of a jerk movement that is
generated by a variation (3.1) that involves the velocities, the accelerations and the
jerk (as the derivatives of accelerations), but not the positions. The idea can be
used also for a general situation in higher order mechanics. For example, one can
consider an accelerated motion (i.e., governed by a second order Lagrangian), where
velocities and accelerations are involved, but the variations contain also velocities and
accelerations.

A general variation, as considered in the paper, generalizes, in two different di-
rections, the variation considered in [1], where for the k-th order Lagrangian, the
variation involves the first k-1 accelerations.

One can also consider some other examples of jerk systems, involving the friction
as in [11], obtaining in this way a more general setting.

In the same line, some other jerk systems, with a more complicated behavior, can
be considered. A deep analysis of these equations, compared and correlated with
experimental data, can produce new results and provide a better image of movements
governed by a jerk Lagrangian.

The subject is topical because we model a less studied type of movements that
can lead to interesting new developments.

2 Jerk movements with fixed ends

The first cases of jerk motions that are studied in literature (see, for example [6]), are
governed by the quadratic Euclidean Lagrangian L:

(2.1) T 3R2 = R8 → R, L =
1

2
(
...
x 2 +

...
y 2)

and the motion is constrained to be performed on curves that minimize the usual
action

(2.2) IL(γ) =

∫ 1

0

Ldt,
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such that γ : I = [0, 1]→ R2 has the properties that the ends γ(0) and γ(1) are given,
and the velocities and the accelerations at these points vanish. We can consider
instead some general conditions:

γ(0) = γ0, γ(1) = γ1,(2.3)

γ′(0) = γ′0, γ
′′(0) = γ′′0 ,(2.4)

γ′(1) = γ′1, γ
′′(1) = γ′′1 .(2.5)

Thus, the third order derivatives of the coordinates are involved in the jerk formalism,
through a Lagrangian form. The minimization curves of the action (2.2) that are
subject to the conditions (2.3)-(2.5) are given by the Euler-Lagrange equations

(2.6)
∂L

∂xi
− d

dt

∂L

∂ẋi
+
d2

dt2
∂L

∂ẍi
− d3

dt3
∂L

∂
...
x i

= 0,

where x1 := x, x2 := y.
The variations of a curve

(2.7) γ(t) = (xi(t))

which provide (2.6) by means of the variational principle

(2.8)
dIL (γε)

dε |ε=0
= 0,

have the form

(2.9) γε(t) = (xiε(t) = xi(t) + εV i(t)),

where

(2.10) V i(0) = V i(1) =
dV

dt

i

(0) =
dV

dt

i

(1) = · · · = d3V

dt3

i

(0) =
d3V

dt3

i

(1) = 0.

It follows that the ends are fixed according to the conditions (2.3)-(2.5), together with
their velocities and their accelerations.

The equation (2.6), used for the specific Lagrangian (2.1), has the form

x(6)(t) = y(6)(t) = 0

and its solutions are polynomials in t of degrees at most five:

(2.11) x(t) =

5∑
j=1

Xjt
j , y(t) =

5∑
j=1

Yjt
j .

We further describe some solutions of jerk movements with fixed ends.
If we denote

(2.12) γu = (xu, yu), γ′u = (x′u, y
′
u), γ′′u = (x′′u, y

′′
u), u = 0, 1,

then the solution (2.11) that fulfills the conditions (2.3)-(2.5) has as coefficients:
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X0 = x0, X1 = x′0, X2 =
1

2
x′′0 , X3 = 10(x1 − x0)− 6x′0 − 3

2x
′′
0 − 4x′1 +

1

2
x′′1 ,

X4 = 15(x0−x1) + 8x′0 + 3
2x
′′
0 + 7x′1−x′′1 , X5 = 6(x1−x0)− 3x′0−

1

2
x′′0 − 3 +

1

2
x′′1

and similarly for Y0, ...,Y5. In particular, consider the conditions (2.3) and

γ′(0) = γ′′(0) = 0,(2.13)

γ′(1) = γ”(1) = 0.(2.14)

This case generates the free jerk movements (see [6]). If γ0 = (x0, y0) and γ1 =
(x1, y1), then there is a unique solution given by{

x(t) = x0 + 10(x1 − x0)t3 + 15(x0 − x1)t4 + 6(x1 − x0)t5,
y(t) = y0 + 10(y1 − y0)t3 + 15(y0 − y1)t4 + 6(y1 − y0)t5.

The plot of t→ x(t) = 6t5 − 15t4 + 10t3, obtained for x0 = 0 and x1 = 1, is depicted
in Fig. 1a. A mechanical interpretation of this solution can be found in [6].

Figure 1: Plot of (t, x(t)), for a): (2.3)+(2.13) +(2.14), and b): (2.3)+(2.4)+(2.14).

Another case that includes the above one, is when one considers the conditions
(2.3), (2.4) and (2.14), that give coefficients in the forms:

X0 = x0, X1 = x′0, X2 =
1

2
x′′0 , X3 = 10(x1 − x0)− 6x′0 − 3

2x
′′
0 ,

X4 = 15(x0 − x1) + 8x′0 + 3
2x
′′
0 , X5 = 6(x1 − x0)− 3x′0 −

1

2
x′′0

and similarly for Y0,. . . ,Y5. The plot of t → x(t) = t +
1

2
t2 +

5

2
t3 − 11

2
t4 +

5

2
t5,

obtained for x0 = 0, x′1 = x′′1 = 0, x1 = x′0 = x′′0 = 1 is depicted in Fig. 1b.

3 Jerk movements with no necessarily fixed ends

Let us consider the Lagrangian (2.1), the action (2.2) on curves the form (2.7), but

we reconsider the variation (2.9). The curve γε given by (2.9) lifts to a curve γ
(3)
ε :

I → T 3R2 =
(
R2
)4

,

γ(3)ε (t) =

(
xi (t) + εV i(t),

dxi

dt
+ ε

dV i

dt
, . . . ,

d3xi

dt3
+ ε

d3V i

dt3

)
.

We consider a new set of variations Γ
(3)
ε : I → T 3R2, having the form

(3.1) Γ(3)
ε (t) =

(
xi (t) ,

dxi

dt
, . . . ,

d3xi

dt3
+ ε

d3V i

dt3

)
.
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A variation in this form extends a variation considered in [1]: for a k-th order
Lagrangian L : T kM → R one considers an action (2.2) and a set of variations

Γ
(k)
ε : I → T kM having the form

(3.2) Γ(k)
ε (t) =

(
xi (t) ,

dxi

dt
, . . . ,

dk−1xi

dt3
(t) + εV i,

dkxi

dtk
+ ε

dV i

dt

)
,

where the curve has the local form (2.7) and second we consider a more general form
of variations

(3.3) V i(0) = V i(1) =
dV i

dt
(0) =

dV i

dt
(1) = · · · = dk−1V i

dtk−1
(0) =

dk−1V i

dtk−1
(1) = 0.

Here M is a differentiable manifold. The critical curves of the actions, according to
this set of variations, are solutions of the equations (see [1, eqn. (5)]):

∂L

∂x(k−1)i
− d

dt

∂L

∂x(k)i
= 0.

In a similar way one can prove the following result.

Theorem 3.1. Let L : T 3M → R be a third order Lagrangian on a differentiable
manifold M . Let us consider the variational principle (2.8) applied to the action
(2.2) on curves, according to the set of variations having the form (3.2). Then the
critical curves are solutions of the equation

∂L

∂ẋi
− d

dt

∂L

∂ẍi
+
d2

dt2
∂L

∂
...
x i

= 0.

The equation (3.3), used for the specific Lagrangian (2.1), has the form
x(5)(t) = y(5)(t) = 0, and their solutions are polynomials in t of degrees at most
four:

(3.4) x(t) =

4∑
j=1

Xjt
j , y(t) =

4∑
j=1

Yjt
j .

In the sequel we consider again the notations (2.12).

3.1 Solutions of jerk movements generated by variations on
velocities of curves, when the second end point is not given

First we construct the solutions (3.7) that fulfill the conditions

(3.5) γ(0) = γ0

together with the conditions (2.4) and (2.5). In this case one obtains a curve of the
form (3.4), whose coefficients are

X0 = x0, X1 = x′0, X2 = 1
2x
′′
0 , X3 = −x′0 − 2

3x
′′
0 + x′1 − 1

3x
′′
1 ,

X4 = 1
2x
′
0 + 1

4x
′′
0 − 1

2x
′
1 + 1

4x
′′
1 and similarly for Y0,... ,Y4.
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Figure 2: Plot of (t, x(t)), for a): (3.5)+(2.4)+(2.5) and b): (3.5)+(2.4)+(2.14).

In this case, the expected end point γ(1) = γ1 is

γ1 = (X0 + ...+X4, Y0 + ...+ Y4) =(
x0 + 1

2x
′
0 + 1

12x
′′
0 + 1

2x
′
1 − 1

12x
′′
1 , y0 + 1

2y
′
0 + 1

12y
′′
0 + 1

2y
′
1 − 1

12y
′′
1

)
.

A graphical representation of t → x(t) = 1
2 t + 1

12 t
2 + 1

2 t
3 − 1

12 t
4, obtained for x′0 =

x′′0 = x′1 = x′′1 = 1, x0 = 0 is depicted in Figure 2a. Using the above case, one can
consider the conditions (3.5), (2.4) and (2.14) giving together as solution a curve (3.4)
that has as coefficients

X0 = x0, X1 = x′0, X2 = x′′0 , X3 = −x′0 + 2
3x
′′
0 , X4 = 1

2x
′
0 + 1

4x
′′
0

and similarly for Y0,... ,Y4. In this case, the expected end point γ(1) = γ1 is
γ1 = (X0 + ...+X4, Y0 + ...+ Y4) = (x0 + 1

2x
′
0 + 1

12x
′′
0 , y0 + 1

2y
′
0 + 1

12y
′′
0 ).

A graphical representation of t→ x(t) = t+ 1
2 t

2 − 5
3 t

3 + 3
4 t

4, obtained for x′0 = x′1 =
x′′1 = 0, x′0 = x′′0 = 1 is depicted in Figure 2b.

Another case is when one considers the conditions (3.5), (2.13) and (2.5), that
give together as solution a curve (3.4) that has as coefficients

X0 = x0, X1 = 0, X2 = 0, X3 = x′1 −
1

3
x′′1 , X4 = −1

2
x′1 +

1

4
x′′1

and similarly for Y0,... ,Y4. In this case, the expected end point γ(1) = γ1 is

γ1 = (X0 + ...+X4, Y0 + ...+ Y4) = (x0 +
1

2
x′1 −

1

12
x′′1 , y0 +

1

2
y′1 −

1

12
y′′1 ).

A graphical representation of t→ x(t) = 2
3 t

3 − 1
4 t

4, obtained for x0 = x′0 = x′1 =
x′′1 = 0, x1 = 1 is depicted in Figure 3a.

Figure 3: Plot of (t, x(t)), for a): (3.5)+(2.13)+(2.5) and b): (2.3)+(2.4)+(3.6).
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3.2 Solutions of jerk movements for which the second end
point is an initial point

First we construct the solutions (3.4) that fulfill the conditions (2.3), (2.4) and also
the condition

(3.6) γ′(1) = γ′1.

In this case one obtains a curve (3.4) that has as coefficients

X0 = x0, X1 = x′0, X2 =
1

2
x′′0 , X3 = 4(x1 − x0)− 4x′1 − x′′0 − x′1,

X4 = 3(x1 − x0) + 3x′0 +
1

2
x′′0 + x′1

and similarly for Y0,... ,Y4. A graphical representation of t→ x(t) = t+ 1
2 t

2−2t3+ 3
2 t

4,
obtained for x0 = 0, x′0 = x′′0 = x1 = x′1 = 1 is depicted in Figure 3b.

Another case is when we consider the conditions (2.3), (3.7) with γ′0 = 0 and
(2.14). One obtains a curve (3.4) that has as coefficients

X0 = x0, X1 = 0, X2 = 0, X3 = 4(x1 − x0), X4 = 3(x0 − x1)

and similarly for Y0,... ,Y4. A graphic of t → x(t) = 4t3 − 3t4, for x′0 = x1 = x′1 =
x′′1 = 0, x1 = 1 is depicted in Figure 4a.

Figure 4: Path (t, x(t)), for a): (2.3)+(3.7,γ′0 = 0)+(2.14) and b): (2.3)+(3.7)+(2.5).

In the case of solutions (3.4) that fulfill the conditions (2.3), (2.5) and

(3.7) γ′(0) = γ′0,

one obtains a curve (3.4) having as coefficients:

X0 = x0, X1 = x′0, X2 = 6(x1 − x0)− 3(x′0 + x′1) +
1

2
x′′0 ,

X3 = 8(x0 − x1) + 3x′0 + 5x′1 − x′′1 , X4 = 3(x1 − x0)− x′0 − 2x′1 +
1

2
x′′1

and similarly for Y0,... ,Y4. A graphical representation of t→ x(t) = t− 11
2 t

2+7t3− 5
2 t

4,
obtained for x0 = 0, x1 = x′0 = x′1 = x′′1 = 1 is depicted in Figure 4b. A special case
of this is when the conditions (2.3), (3.7) and (2.14) give together as a solution a
curve (3.4), the case represented in Fig. 4a.
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4 Conclusions

Jerk motions are involved in various fast movements, where the derivative of the
acceleration, i.e., the third order derivative of the position vector coordinates are
involved. This kind of motions are involved in various real situations, according to
various bibliographical sources.

The original jerk case, as studied in [6], starts from a critical situation (with null
velocity and acceleration) and ends also at a critical point. We depict here some cases
when the end points are not necessarily both critical, but also some cases when none
of them is critical. Thus, our approach can be used to control the free jerk motions.

The above new and original description considered in our paper contains a math-
ematical background (not known in the present form in literature until now) of a
jerk movement that is generated by a variation (3.1) that involves the velocities, the
accelerations and the jerk (as the derivatives of accelerations), but not positions. The
idea can be used in some general settings from the higher order mechanics.

A mechanical interpretation of the variation (2.10) studied in the paper can be
performed using two joint (united) moving bodies such that the motion is initially
(for t < 0) generated only by one of the moving bodies; then, at a given time (t = 0),
the second moving body (initially inactive) has an accelerated motion during a given
period of time (for example t ∈ [0, 1]), such that at the end point (t = 1) the second
moving body stops its action or, at most, its acceleration remains a constant, while
the first moving body continues its programmed action.

The settings of our paper open new directions of investigation, that can be studied
in other subsequent works. The mathematical models presented in the paper can
be related to specific mechanical models, in various situations, in order to validate
the theoretical assumptions. Using the settings of this paper and [12], one can also
construct a mathematical model in order to involve other exterior forces, such as
frictions. Moreover, the study can involve a set of constraints (as in [5]) or a control
(as in [13]).

References

[1] I. Bucataru, Canonical semisprays for higher order Lagrange spaces, C. R. Acad.
Sci. Paris Ser. I, 345 (2007), 269–272.

[2] B. Cao, G. I. Dodds, Time-optimal and smooth joint path generation for robot
manipulators, Control’94. International Conference, 21-24 March 1994, Vol. 2.,
IET (1994), 1122 - 1127.

[3] J. H. Crews, M. G. Mattson, G. D. Buckner, D. Gregory, Multi-objective control
optimization for semi-active vehicle suspensions, Journal of sound and Vibration,
330, 23 (2011), 5502–5516.

[4] R. Eichhorn, J. L. Stefan, P. Hänggi, Simple polynomial classes of chaotic jerky
dynamics, Chaos, Solitons & Fractals 13, 1 (2002), 1-15.

[5] P. Freeman, Minimum jerk trajectory planning for trajectory constrained redun-
dant robots, Ph.D. Thesis, 2012, http://openscholarship.wustl.edu/etd/.

[6] N. Hogan, An organizing principle for a class of voluntary movements, The Jour-
nal of Neuroscience, 11, 4 (1984), 2745–2754.



On some variations related to jerk motions 75

[7] K. F. Kolsti, D.L. Kunz, A time-marching collocation method based on quintic
Hermite polynomials and adjustable acceleration and jerk constraints, Interna-
tional Journal for Numerical Methods in Engineering 99, 8 (2014), 547–565.

[8] O. Luongo, Dark energy from a positive jerk parameter, Modern Physics Letters
A 28, 19 (2013), 1350080.

[9] M. Muenchhof, S. Tarunraj, Jerk limited time optimal control of flexible struc-
tures, Transactions-American Society of Mechanical Engineers Journal of Dy-
namic Systems Measurement and Control 125, 1 (2003), 139–142.

[10] H. Numasato, T. Masayoshi, Settling control and performance of a dual-actuator
system for hard disk drives, IEEE/ASME Trans. on Mechatronics, 8, 4 (2003),
431-438.

[11] P. Popescu, M. Popescu, Affine Hamiltonians in higher order geometry, Int. J.
Theor. Phys., 46, 10 (2007), 2531–2549.

[12] M. Popescu, P. Popescu, Mechanical systems of third order and jerk curves, In
Proc. 13th IFToMM World Congress, Guanajuato (Mexico), IMD-123, 2011.
http://www.diciva.ugto.mx/directorio/IFToMM/

[13] I. Storey, A. Bourmistrova, A. Subic, Smooth control over jerk with displace-
ment constraint, Proceedings of the Institution of Mechanical Engineers, Part C:
Journal of Mechanical Engineering Science 226, 11 (2012), 2656–2673.

[14] P. Viviani, T. Flash, Minimum-Jerk, Two-Thirds Power Law and Isochrony:
Converging Approaches to Movement Planning, Journal of Experimental Psy-
chology: Human Perception and Performance, 21, 1 (1995), 32–53.

[15] H. J. Wyatt, Detecting saccades with jerk, Vision Res. 38, 14 (1998), 2147-2153.

Authors’ address:

Paul Popescu and Marcela Popescu
Department of Applied Mathematics, University of Craiova,
PO Box 1473, Postal Office 4, Craiova, Romania.
E-mail: paul p popescu@yahoo.com , marcelacpopescu@yahoo.com.


