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Abstract. The mixed gravitational field equations have been recently in-
troduced for codimension one foliated spacetimes. These Euler-Lagrange
equations for the total mixed scalar curvature (as analog of Einstein-
Hilbert action) involve a new kind of Ricci curvature. In the work, based
on variation formulas for the quantities of extrinsic geometry, we derive
Euler-Lagrange equations of the action for arbitrary codimension foli-
ations, in fact, for a closed Riemannian almost-product manifold and
adapted variations of metric (i.e., preserving orthogonality of the distribu-
tions). Examples of critical metrics of the action are found among twisted
products, isoparametric foliations and K-contact metrics.
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Introduction

The problem of minimizing geometric quantities has been studied for a long time:
recall, for example, isoperimetric inequalities and estimates of total curvature of sub-
manifolds. In the context of foliations (i.e., partitions of manifolds by submanifolds of
a constant dimension), Gluck and Ziller [5] studied the problem of minimizing func-
tions like volume and total bending defined for k-plane fields on manifolds. In the
cases mentioned above, the authors consider a fixed Riemannian manifold and look
for geometric objects (e.g. submanifolds, foliations) minimizing geometric quantities
defined usually as integrals of curvatures of different types. In [10] the following
approach to problems in geometry of codimension-one foliations is presented: given
a foliated manifold and a property Q of a submanifold, depending on the principal
curvatures of the leaves, study Riemannian metrics, which minimize the integral of Q
in the class of variations of metrics such that the unit vector field orthogonal to the
leaves is the same for all metrics of the variation family. Certainly (like in some of
the cases mentioned before) such Riemannian structures may not exist, but if they
do, they usually have interesting geometric properties.

Let M be a connected manifold endowed with a Riemannian metric g and com-
plementary orthogonal distributions (subbundles of the tangent bundle TM) D̃ and
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D of ranks dimR D̃x = n and dimR Dx = p for every x ∈ M ; the pair (D̃,D) is called
an almost-product structure on (M, g). The following convention is adopted for the
range of indices: 1 ≤ a, b, . . . ≤ n, 1 ≤ i, j , . . . ≤ p. In [2], a tensor calculus, adapted

to the decomposition TM = D̃ ⊕ D, is developed to study the geometry of both the
distributions and the ambient manifold. Let R∇(X,Y ) = ∇Y ∇X −∇X∇Y +∇[X,Y ]

be the curvature tensor of the Levi-Civita connection ∇. A plane σ ⊂ TxM is mixed
if σ = span(v, w) for some v ∈ D̃x and w ∈ Dx. The mixed scalar curvature (that is
an averaged mixed sectional curvature) is one of the simplest curvature invariants of
an almost product manifold, see [4, 14], and [7] for generalized subbundles. It is

(0.1) Smix =
∑

a,i
K(Ea, Ei) =

∑
a,i

g(R∇(Ea, Ei)Ea, Ei) ,

where {Ea ⊂ D̃, Ei ⊂ D} is a local g-orthonormal frame on M . If one of the distri-
butions is spanned by a unit vector field N then Smix is the Ricci curvature in the
N -direction. Our objectives are to deduce Euler–Lagrange equations of the action

(0.2) Jmix : g 7→
∫
M

Smix(g) d volg

for adapted (i.e., preserving orthogonality of D̃ and D) variations gt (|t| < ε), of met-
ric g0 = g, and to characterize critical metrics in several classes of almost-product
structures. Functional (0.2) is defined like the gravitational part of classical Einstein-
Hilbert action, the difference being the fact that the scalar curvature is replaced by
Smix. The action and its physical meaning for a globally hyperbolic spacetime have
been studied in [1], where the Euler-Lagrange equations (called the mixed gravita-
tional field equations) were derived using variation formulas for the curvature tensor,
then their linearization and solution for an empty space have been obtained, see also
[3] for contact metric structures. As we shall see shortly, the Euler-Lagrange equations
of (0.2) involve the partial Ricci tensor rD (introduced in [9]) with Tr g rD = Smix,

(0.3) rD(X,Y ) =
∑

a
g(R∇(Ea, X

⊥)Ea, Y
⊥), X, Y ∈ Γ(TM),

and a new Ricci type curvature RicD (the mixed Ricci tensor, introduced in [1] for
codimension-one foliations), whose properties need to be further investigated.

In Section 1, we derive Euler-Lagrange equations of the action for a closed Rie-
mannian almost-product manifold and adapted variations of metric (i.e., preserving
orthogonality of the distributions). All of that done by discovering variation formulas
for two types of variations (the second of which preserves the volume of M) for the
quantities of extrinsic geometry, i.e., quantities depended on the second fundamental
forms and integrability tensors, of an almost-product manifold. Section 2 is devoted
to applications of the action to foliations, including flows and codimension-one case,
and gives examples of critical metrics of (0.2) among twisted products, isoparamet-
ric foliations and K-contact metrics. Our work is restricted to the Riemannian case
(g ∈ Riem(M)) on a closed manifold, but the arbitrary (and Lorentzian) signature
case on an open manifold will be on board in a separate forthcoming study.
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1 Einstein-Hilbert type action on almost-product
manifolds

1.1 Preliminaries

We will define several tensors for one of distributions (say, D, similar tensors for D̃ are
introduced using ˜ notation). For a section X ∈ Γ(TM), let X⊥ be the D-component

of X with respect to (D̃,D). Let Sym2(M) be the space of all symmetric (0, 2)-
tensors tangent to M , and Riem(M) the subspace of positive definite tensors (i.e.,
Riemanian metrics). A tensor B ∈ Sym2(M) is said to be adapted if B(X⊤, Y ⊥) = 0

for any X,Y ∈ Γ(TM). Let M consist of all adapted symmetric tensors on (M, D̃,D).

The domain of (0.2) is a priori the space Riem(M, D̃, D) ≡ Riem(M) ∩ M of all
adapted metrics. We say that B ∈ Sym2(M) is D-truncated if B(X⊤, ·) = 0 for any
X ∈ Γ(TM). This notion can be extended to (1, 1)-tensors. For B ∈ Sym2(M) define
the D-truncated component B⊥ ∈ Sym2(M) by setting B⊥(X,Y ) = B(X⊥, Y ⊥) for
any X,Y ∈ Γ(TM). Let MD ⊂ M be the space of D-truncated symmetric (0, 2)-
tensors. There is orthogonal decomposition

(1.1) M = MD ⊕MD̃ ,

with respect to the inner product g∗ induced on M by g ∈ Riem(M, D̃, D). If B ∈
Sym2(M) then B ∈ M ⇐⇒ B = B⊥ + B̃, see (1.1). Our aim is to compute the
directional derivatives

DgJmix : Tg Riem(M, D̃, D) ≡ M → R

for any g ∈ Riem(M, D̃, D), i.e., g = g⊥+ g̃, and study the critical points of Jmix with
respect to adapted variations of metric. Certainly, in Section 1 we restrict ourselves
to the case of D-variations.

The “musical” isomorphisms ♯ and ♭ are used for rank one tensors, e.g. if ω ∈
T 1
0 (M) is a 1-form and X ∈ XM then ω(X) = g(ω♯, X) = X♭(ω♯). Moreover, if

B ∈ T 0
2M then the tensor B♯ ∈ T 1

1M is defined by g(B♯X,Y ) = B(X,Y ) for X,Y ∈
Γ(TM). For (0, 2)-tensors A and B we have

⟨A,B⟩ = AijBij = Tr g(A
♯B♯) = ⟨A♯, B♯⟩.

Let T, h : D̃ × D̃ → D be the integrability tensor and the 2nd fundamental form of D̃,

T (X,Y ) = (1/2) [X, Y ]⊥, h(X,Y ) = (1/2) (∇XY +∇Y X)⊥.

The mean curvature vector of D̃ is H = Tr g h. A distribution D̃ is called totally
umbilical, harmonic, or totally geodesic, if h = 1

nH g̃, H = 0, or h = 0, respectively.

Let AZ be the Weingarten operator of D̃ with respect to Z ∈ D, i.e., g(AZ(X), Y ) =

g(h(X,Y ), Z). The operator T ♯
Z is given by g(T ♯

Z(X), Y ) = g(T (X,Y ), Z).
The Divergence Theorem states that

∫
M
(div ξ) d volg = 0 when M is closed.

The D-divergence of ξ is defined by div⊥ ξ =
∑

i g(∇i ξ, Ei). Thus, div ξ = div⊥ ξ +

d̃iv ξ. We have

div⊥ X = divX + g(X, H), X ∈ Γ(D).(1.2)
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For a (1, 2)-tensor P , define (0, 2)-tensor (divP )(X,Y ) = div⊥P + d̃ivP , where

(div⊥ P )(X,Y ) =
∑

i
g((∇i P )(X,Y ), Ei).

For a D̃-valued P , we have
∑

i g((∇i P )(X,Y ), Ei) = −g(P (X,Y ), H̃); hence,

d̃ivP = divP + ⟨P, H̃⟩ ,(1.3)

where ⟨P, H̃⟩(X,Y ) := g(P (X,Y ), H̃) is a (0, 2)-tensor. For example, div⊥ h =
div h + ⟨h, H⟩. To study rD (e.g. in Proposition 1.1) we introduce several tensors.
The D-deformation of a vector field Z is the symmetric part of ∇Z restricted to D,

2DefD Z(X,Y ) = g(∇XZ, Y ) + g(∇Y Z,X), X, Y ∈ Γ(D).

The antisymmetric part of ∇Z restricted to D is regarded as a 2-form dD Z.
Define the D-truncated symmetric (0, 2)-tensor Ψ by the identity

Ψ(X,Y ) = Tr g(AY AX +T ♯
Y T

♯
X), X, Y ∈ Γ(D) .

Define (1, 1)-tensors A :=
∑

i A
2
i and T :=

∑
i(T

♯
i )

2. The extrinsic curvature of D̃:

R ex(X, Y, Z, W ) = g(h(X⊤, Z⊤), h(Y ⊤,W⊤))− g(h(X⊤, W⊤), h(Z⊤, Y ⊤))

is useful in the study of extrinsic geometry of foliations, see [8, 10]. The traces (on D̃)

Ricex(X, Y ) = Tr g R
ex(X, Y, ·, ·), S ex = Tr g Ric

ex

are called the extrinsic Ricci and scalar curvature of D̃. Note that S ex = ∥H∥2−∥h∥2.

Proposition 1.1. Let g ∈ Riem(M, D̃, D). Then the following identities hold:

rD = div h̃+ ⟨h̃, H̃⟩ − Ã♭ − T̃ ♭ −Ψ+DefD H ,(1.4)

dD H = − d̃iv T̃ +
∑

a

(
ÃaT̃

♯
a + T̃ ♯

aÃa

)♭
.(1.5)

Proof. For X,Y ∈ Γ(D) and U, V ∈ Γ(D̃) we have, see [8, Lemma 2.25],

(1.6) g(R∇(U, X)V, Y ) = g(((∇U C̃)V −C̃V C̃U )X,Y )+g(((∇X C)Y −CY CX)U, V ),

where conullity tensors C̃ : Γ(D̃) × Γ(D) → Γ(D) and C : Γ(D) × Γ(D̃) → Γ(D̃) are
defined by

C̃U (X) = −(∇X U)⊥, CX(U) = − (∇U X)
⊤

.

Assume ∇X Y ∈ D̃x and ∇X Ea ∈ Dx at a given point x ∈ M . Note that∑
a
g((∇X C)Y (Ea), Ea) = ∇X

(
g
(∑

a
h(Ea, Ea), Y

))
= g(∇XH, Y ).

Write d̃iv C̃ =
∑n

a=1(∇a C̃)a. Thus, tracing (1.6) over D̃x yields

(1.7) rD(X,Y ) = g(d̃iv C̃(X), Y )− g(
∑

a
C̃2

a(X), Y ) + g(∇XH,Y )− Tr g(CY CX) .

Using Tr g(AY T
♯
X) = 0 = Tr g(T

♯
Y AX) (since h is symmetric and T is antisymmetric),

we extract (1.4)–(1.5) as the symmetric and antisymmetric parts of (1.7). �
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Tracing (1.4) (over D) and applying the equalities

Tr g Ψ = ∥h∥2 − ∥T∥2, Tr A = ∥h∥2, Tr T = −∥T∥2,
Tr g (div h) = divH, Tr g (DefD H) = divH + ∥H∥2,

yields (see also [14])

(1.8) Smix = S ex + S̃ ex + ∥T∥2 + ∥T̃∥2 + div(H + H̃) .

1.2 Variation formulas

In order to apply the methods of variational calculus to Jmix, consider smooth 1-
parameter variations

{
gt ∈ Riem(M, D̃, D) : |t| < ε

}
of an adapted metric g0 = g.

We adopt the notations

∂t ≡ ∂/∂t, B ≡ {∂tgt}|t=0.

Taking into account (1.1), it is sufficient to work with special curves {gt}|t|<ε issuing

at g ∈ Riem(M, D̃, D) called D-variations, as the associated infinitesimal variations

B lie in MD̃. An adapted variation of a metric g ∈ Riem(M, D̃, D) has the form
{g⊥t + g̃t : |t| < ε}. The corresponding D-variation of g is

(1.9)
{
gt = g⊥t + g̃ : |t| < ε

}
.

For adapted variations and X,Y, Z ∈ Γ(TM) we have, see for example [10, 13],

2 gt(∂t(∇t
X Y ), Z) = (∇t

X B)(Y, Z) + (∇t
Y B)(X,Z)− (∇t

Z B)(X,Y ).(1.10)

Lemma 1.2. Let a local (D̃, D)-adapted frame {Ea, Ei} evolves by adapted variation
gt as

∂tEa = −(1/2)B♯
t (Ea), ∂tEi = −(1/2)B♯

t (Ei).

Then, for all t, {Ea(t), Ei(t)} is a gt-orthonormal frame adapted to (D̃,D).

Proof. For {Ea(t)} (and similarly for {Ei(t)}) we have

∂t(gt(Ea, Eb)) = gt(∂tEa(t), Eb(t)) + gt(Ea(t), ∂tEb(t)) + (∂tgt)(Ea(t), Eb(t))

= Bt(Ea(t), Eb(t))−
1

2
gt(B

♯
t (Ea(t)), Eb(t))−

1

2
gt(Ea(t), B

♯
t (Eb(t))) = 0

that completes the proof. �

Lemma 1.3 (see [11]). For D-variations of g we have

2 ∂th̃(X,Y ) = (h̃− T̃ )(B♯(X), Y ) + (h̃+ T̃ )(X,B♯(Y ))−∇̃B(X,Y ),

2 ∂tH̃ = −∇̃(Tr B♯), ∂th = −B♯ ◦ h, ∂tH = −B♯(H).

Hence, D-variations preserve total umbilicity, total geodesy and harmonicity of D̃.
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Define symmetric (0, 2)-tensor Φh and symmetric (0, 2)-tensor ΦT , which vanish
when n = 1, using the identities (with arbitrary B ∈ M)

⟨Φh, B⟩ = B(H, H)−
∑

a, b
B(h(Ea, Eb), h(Ea, Eb)),

⟨ΦT , B⟩ = −
∑

a, b
B(T (Ea, Eb), T (Ea, Eb)).

We have
Tr g Φh = S ex, Tr g ΦT = −∥T∥2.

Define a self-adjoint (1, 1)-tensor with zero trace

K =
∑

i
[T ♯

i , Ai] =
∑

i
(T ♯

i Ai −AiT
♯
i ).

Observe that if D̃ is integrable then K = 0 (since T ♯
i = 0). Also, if D̃ is totally

umbilical, then every operator Ai is a multiple of identity and K vanishes as well.

Lemma 1.4. For D-variations of g ∈ Riem(M, D̃, D) we have

∂t S̃ ex(g) = ⟨(div H̃) g − div h̃− K̃♭, B⟩+ div(⟨h̃, B⟩ − (Tr g B)H̃),

∂t S ex(g) = −⟨Φh, B⟩,
∂t ∥ T̃ ∥2 = ⟨2 T̃ ♭, B⟩, ∂t ∥T ∥2 = −⟨ΦT , B⟩ .(1.11)

Proof. Assume ∇a Ei ∈ D̃x at a point x ∈ M . In the calculations below we use (1.10)
and Lemmas 1.2 and 1.3. First we obtain (1.11)3:

∂t ∥ T̃ ∥2 = 2
∑

i,j,a
g(T̃ (Ei, Ej), Ea) g

(
T̃ (∂tE i, Ej) + T̃ (Ei, ∂tEj), Ea

)
= −

∑
i,j,a

g(T̃ ♯
a(Ei), Ej) g((T̃ ♯

aB
♯ +B♯T̃ ♯

a)(Ei), Ej)

= −
∑

i,a
g((T̃ ♯

aB
♯+B♯T̃ ♯

a)(Ei), T̃ ♯
a(Ei))

=
∑

i,a
g(((T̃ ♯

a)
2B♯ + T̃ ♯

aB
♯T̃ ♯

a)(Ei), Ei)

= 2
∑

a
Tr g((T̃

♯
a)

2B♯) = 2Tr g(T̃ B♯) = ⟨2 T̃ ♭, B⟩.

Next, by (1.3), we obtain

∂t ∥ h̃ ∥2 =
∑
i,j,a

g(h̃(Ei, Ej), Ea)
(
g(T̃ (Ei, B♯(Ej))− T̃ (B♯(Ei), Ej), Ea)−∇a B(Ei, Ej)

)
=

∑
i,j,a

(
g(Ãa(Ei), Ej) g([B♯, T̃ ♯

a](Ei), Ej)−∇a

(
g(B(Ei, Ej) h̃(Ei, Ej), Ea)

)
− ∇a g(h̃(Ei, Ej), Ea)B(Ei, Ej)

)
= ⟨d̃iv h̃− ⟨h̃, H̃⟩+ K̃♭, B⟩ − div(⟨h̃, B⟩).

Applying B(H̃, H̃) = 0 (since B is D-truncated) we get

∂t ∥ H̃ ∥2 = ∂tg(H̃, H̃) = 2 g(∂tH̃, H̃) = −g(∇(Tr B♯), H̃).

Notice that g(∇(Tr B♯), H̃) = div((Tr B♯)H̃)− (div H̃)Tr B♯; hence, (1.11)1 follows.
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Next we have

∂t ∥H ∥2 = ∂tg(H, H) = B(H,H) + 2 g(∂tH, H)

= B(H,H)− 2 g(B♯(H), H) = −B(H,H),

∂t ∥h ∥2 = ∂t
∑

i, a, b
g(h(Ea, Eb), Ei)2 = −

∑
a, b

B(h(Ea, Eb), h(Ea, Eb)) .

From the above, (1.11)2 follows. Finally, we have (1.11)4:

∂t ∥T ∥2 = 2
∑

i, a, b
g(T (Ea, Eb), Ei) ∂t(g(T (Ea, Eb), Ei))

= 2
∑

i, a, b
g(T (Ea, Eb), Ei)

(
B(T (Ea, Eb), Ei) + g(T (Ea, Eb), ∂tEi)

)
=

∑
i, a, b

g(T (Ea, Eb), Ei) g(T (Ea, Eb), B
♯(Ei))

=
∑

a, b
B(T (Ea, Eb), T (Ea, Eb)).

This completes the proof. �

1.3 Euler-Lagrange equations

In this section we compute directional derivatives of Jmix and then derive Euler-
Lagrange equations of the variational principle δJmix(g) = 0 on a closed Riemannian
almost-product manifold. For every f ∈ L1(M, d volg), denote by

f(M, g) = Vol−1(M, g)

∫
M

f d volg

the mean value of f on M . Together with gt of (1.9), consider the metrics

ḡt = ϕtg
⊥
t + g̃, ϕt ≡

(
Vol(M, gt)/Vol(M, g)

)−2/p
, |t| < ε.(1.12)

We will show that Vol(M, ḡt) = Vol(M, g) for all t.

Proposition 1.5. The D-variations of the action (0.2), corresponding to ḡt and gt,
are related by

(1.13)
d

dt

{
Jmix(ḡt)

}
|t=0

=
d

dt

{
Jmix(gt)

}
|t=0

− 1

2
S∗mix(M, g)

∫
M

(
Tr g B

)
d volg ,

where S∗mix = Smix − 2
p (S ex + 2 ∥T̃∥2 − ∥T∥2).

Proof. By (1.8) and the Divergence Theorem, we have

Jmix(g) =

∫
M

Q(g) d volg ,

where Q(g) := Smix − div(H + H̃) is represented using (1.8) as

(1.14) Q(g) = S ex(g) + S̃ ex(g) + ∥T∥2g + ∥T̃∥2g .
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Let us fix a D-variation (1.9). The volume form evolves as (cf. [10])

(1.15) ∂t
(
d volgt

)
=

1

2
(Tr gt Bt) d volgt .

Thus,

(1.16)
d

dt

{
Jmix(gt)

}
|t=0

=

∫
M

{
∂tQ(gt)|t=0 +

1

2
Q(g)Tr g B

}
d volg .

As ḡt are D-conformal to gt with constant scale ϕt, their volume forms are related as

(1.17) d vol ḡt = ϕ
p/2
t d vol gt ;

hence, Vol(M, ḡt) =
∫
M

d vol ḡt = Vol(M, g). Let us differentiate (1.17) in order to
obtain

∂t (d vol ḡt) = (ϕ
p/2
t )′ d volgt +ϕ

p/2
t ∂t (d volgt)

=
1

2

(
Tr B♯

t −
1

Vol(M, gt)

∫
M

(Tr gt Bt) d vol gt

)
d vol ḡt .

We used (1.15) and the fact that ϕ0 = 1 and ϕ′
t = − ϕt

pVol(M,gt)

∫
M
(Tr gt Bt) d vol gt .

For the D-scaling ḡ = ϕ g⊥ + g̃ of g = g⊥ + g̃, using (1.11), we have

∥T∥2ḡ = ϕ ∥T∥2g, ∥h∥2ḡ = ϕ−1∥h∥2g, ∥h̃∥2ḡ = ∥h̃∥2g,
∥T̃∥2ḡ = ϕ−2∥T̃∥2g, ∥H∥2ḡ = ϕ−1∥H∥2g, ∥H̃∥2ḡ = ∥H̃∥2g.

Introducing into Q(ḡ) formula (1.14), we obtain

Q(ḡ) = Q(g) + (ϕ−1 − 1) S ex(g) + (ϕ−2 − 1) ∥T̃∥2g + (ϕ− 1) ∥T∥2g .

(For example, Q(ḡ) = Q(g) when n = 1 and T̃ = 0). Differentiating the above we get

∂tQ(ḡt)|t=0 = ∂tQ(gt)|t=0 − ϕ ′
0

(
S ex(g) + 2 ∥T̃∥2g − ∥T∥2g

)
,

where ϕ ′
0 = − 1

p
1

Vol(M,g)

∫
M

(Tr g B) d vol g. From the above (1.13) follows, that com-

pletes the proof. �

Remark 1.1. (i) It should be stressed that we work with two types of variations,
(1.9) and (1.12); the second of which preserves the volume of M . Formulas containing
S∗mix correspond to 1-parameter variations (1.12). To obtain similar formulas, corre-
sponding to 1-parameter variations of the form (1.9), one should merely delete the
mean value terms S∗mix in the previous identities.

(ii) In general, (1.9) do not preserve the volume of M , and one may obtain only

Jmix(g) = 0 for critical metrics. Let D̃ be integrable of codimension-one. Define
functions τ1 = Tr g h and τ2 = ∥h∥2g. For a D-variation gt = g⊥t + g̃ with g⊥t =

(1 + t) g⊥0 (|t| < 1), we have ∂tgt = 1
1+t g

⊥
t and d volt = (1 + t)1/2d vol. Since

(τ21 − τ2)t =
1

1+t (τ
2
1 − τ2)0, by (2.23) in Sect. 2.3, we find that

Jmix(gt) =

∫
M

(τ21 −τ2) d volt = (1+ t)−
1
2 Jmix(g) ⇒ d

dt

{
Jmix(gt)

}
|t=0

= −1

2
Jmix(g).

Thus, if g is a D-critical point of the action Jmix, then Jmix(g) = 0.
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Euler-Lagrange equations of the variational principle δJmix(g) = 0 on a closed
almost-product manifold have a view P = λ g⊥ or P = λ g̃ for certain tensor P and
function λ on M .

Theorem 1.6 (Euler-Lagrange equations). Let D̃ and D be complementary dis-

tributions on a closed manifold M . If g ∈ Riem(M, D̃, D) is a critical point of Jmix

for D-variations then

(1.18) div h̃− 2 T̃ ♭ +Φh +ΦT + K̃♭ =
1

2

(
Smix − S∗mix(M, g) + div(H̃ −H)

)
g⊥,

or equivalently, in terms of rD,

rD − ⟨h̃, H̃⟩+ Ã♭ − T̃ ♭ +Φh +ΦT +Ψ−DefD H + K̃♭

=
1

2

(
Smix − S∗mix(M, g) + div(H̃ −H)

)
g⊥.(1.19)

Proof. Applying Lemma 1.4 to (1.14), and using (1.3) and the Divergence Theorem,
we get∫

M

∂tQt|t=0 d volg =

∫
M

⟨
− div(h̃− H̃ g⊥) + 2 T̃ ♭ − Φh − ΦT − K̃♭, B

⟩
d volg,

where B = ∂tgt |t=0 ∈ MD. Notice that Tr g B = ⟨B, g⊥⟩. By (1.16) and Proposi-
tion 1.5 we have

d

dt

{
Jmix(ḡt)

}
|t=0

=

∫
M

⟨
− div(h̃− H̃ g⊥) + 2 T̃ ♭ − Φh − ΦT − K̃♭

+
1

2

(
Smix − S∗mix(M, g)− div(H̃ +H)

)
g⊥, B

⟩
d volg .(1.20)

If g is D-critical for Jmix then the integrand in (1.20) is zero for any B ∈ MD; that
yields (1.18). By Proposition 1.1 and replacing div h̃ in (1.18) due to (1.4), we obtain
(1.19). �

Remark 1.2. The above mixed field equations admit a number of solutions, see
Section 2, which may find applications in theoretical physics (see discussion in [1]).

Example 1.3. Consider any of the Hopf fibrations π : S 2m+1 → CPm, π : S4m+3 →
HPm, π : CP 2m+1 → HPm, endowed with standard metrics g. Let D̃ be the
distribution tangent to the fibers. Thus, D̃ is integrable. Since both distributions
are totally geodesic, the critical metric g should satisfy

rD − T̃ ♭ +ΦT +Ψ =
1

2

(
Smix − S∗mix(M, g)

)
g⊥

and its ’dual’. Certainly, the identities (1.4) and (1.8) yield: rD = −T̃ ♭, and rD =
1
p Smix g

⊥, where Smix = ∥T̃∥2 = const > 0. Thus, g is critical for Jmix for all
adapted variations.
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2 Einstein-Hilbert type action on foliations

In this section we study an n-dimensional foliation F (i.e., D̃ = TF) of a closed Rie-
mannian manifold (M, g). There are many geometrically different types of foliations,
e.g. totally geodesic (h = 0), Riemannian (h̃ = 0), totally umbilical (h = 1

nH g̃) and

conformal (h̃ = 1
p H̃ g⊥). We write rF = rD̃, thus, ’dual’ to (1.4)–(1.5) equations read

rF = div h+ ⟨h, H⟩ − A♭ − Ψ̃ + DefF H̃ , dF H̃ = 0 .(2.1)

2.1 Critical adapted metrics

From Theorem 1.6, we obtain the following.

Corollary 2.1 (Euler-Lagrange equations). Let F be a foliation with a transver-
sal distribution D on a closed manifold M . If g ∈ Riem(M, TF , D) is a critical point
of Jmix with respect to adapted variations, then

rD − ⟨h̃, H̃⟩+ Ã♭ − T̃ ♭ +Φh +Ψ−DefD H + K̃♭

=
1

2

(
Smix − S∗mix(M, g) + div(H̃ −H)

)
g⊥ (for D−variations),(2.2)

rF − ⟨h, H⟩+A♭ +Φh̃ +ΦT̃ + Ψ̃−DefF H̃

=
1

2

(
Smix − S∗mix(M, g) + div(H − H̃)

)
g̃ (for TF−variations),(2.3)

where Ψ(X,Y ) = Tr g(AY AX) and definition of S∗mix has the form

(2.4) S∗mix = Smix −

{
2
p

(
S ex + 2 ∥T̃∥2

)
for D−variations,

2
n

(
S̃ ex − ∥T̃∥2

)
for TF−variations .

Example 2.1. Let F be a totally umbilical foliation (i.e., h = 1
n Hg̃ and T = 0).

Then

Φh =
n− 1

n
H♭ ⊗H♭, A♭ =

1

n2
∥H∥2 g̃, Ψ =

1

n
H♭ ⊗H♭, S ex =

n− 1

n
∥H∥2.

Hence, (2.2) reads

rD − ⟨h̃, H̃⟩+ Ã♭ − T̃ ♭ +H♭ ⊗H♭ −DefD H + K̃♭

=
1

2

(
Smix − S∗mix(M, g) + div(H̃ −H)

)
g⊥ (for D−variations).(2.5)

We find sufficient conditions for D-critical (and similarly for D̃-critical) metrics.

Theorem 2.2. Let a metric g ∈ Riem(M, TF , D) be D-critical for (0.2), n, p > 1,

and D and D̃ are tangent to totally umbilical foliations. Then the leaves of D̃ are
totally geodesic and

(2.6) rD = (Smix/p) g
⊥ ≥ 0, if p = 2 then Smix = const.
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Proof. We have the identity, see (1.4) with T̃ = 0 and h̃ = 1
p H̃ g⊥,

(2.7) rD +
1

n
H♭ ⊗H♭ −DefD H =

(p− 1

p2
∥H̃∥2 + 1

p
div H̃

)
g⊥ .

Hence, or by (1.8), Smix = n−1
n ∥H∥2 + p−1

p ∥H̃∥2 + div(H + H̃) and Jmix(g) ≥ 0.

Let the metric g be D-critical. By (2.5) we have

(2.8) rD+H♭⊗H♭−DefD H =
1

2

(
Smix−S∗mix(M, g)+

2(p− 1)

p2
∥H̃∥2+div(H̃−H)

)
g⊥.

The difference of (2.8) and (2.7) is

n− 1

n
H♭ ⊗H♭ =

1

2

(n− 1

n
∥H∥2 + p− 1

p
∥H̃∥2 − S∗mix(M, g) +

2(p− 1)

p
div H̃

)
g⊥.

As the symmetric (0, 2)-tensor H♭ ⊗ H♭ has rank ≤ 1, and g⊥ has rank p, then for

n, p > 1, we obtain H = 0; hence, the leaves of D̃ are totally geodesic, and by (2.7),
rD is D-conformal and Smix = S∗mix(M, g)− p−2

p div H̃ holds. �

Example 2.2. Let M = M1 ×M2 be a product of Riemannian manifolds (Mi , gi)
(i ∈ {1, 2}), and let πi : M → Mi and dπi : TM → TMi be the canonical projections.
Given twisting functions fi ∈ C∞(M), a double-twisted product M1 ×(f1,f2) M2 is

M1×M2 with the metric g = ef1 π∗
1g1+ef2 π∗

2g2. If f1 = const then we have a twisted
product (a warped product if, in addition, f2 = F ◦ π1 for some F ∈ C∞(M1)). The

leaves M1 × {y} (tangent to D̃) and the fibers {x} ×M2 (tangent to D) are totally
umbilical in (M, g) and this property characterizes double-twisted products (cf. [6]).
For any double-twisted product, we have T = T̃ = 0 and

AY = −Y (f1) ĩd , h = −(∇⊥f1) g̃, H = −n∇⊥f1,

where Y ∈ D is a unit vector. Define theD-Laplacian of f1 by ∆⊥ f1 = div⊥((∇ f1)
⊥).

The identity div(ϕ ξ) = ϕ div ξ + ξ(ϕ) together with (1.2) for ξ = ∇⊥f1 imply

∆⊥ f1 = div(∇⊥ f1 + f1H)− ( divH)f1.

In our case, divH = −n∆⊥f1 − n2∥∇⊥f1∥2. By (1.8),

Smix = div(H + H̃) +
n− 1

n
∥H ∥2 + p− 1

p
∥H̃∥2, Jmix(g) ≥ 0.

If M is closed then, by Theorem 2.2, H = 0, the leaves are totally geodesic, and (2.6)
holds. Summarizing, we have: a double-twisted product metric on a closed manifold
M = Mn

1 ×Mp
2 (n, p > 1) is D-critical for (0.2) if and only if f1 does not depend on

M2 i.e., (M, g) the twisted product of (M1 , e
f1g1) and (M2 , g2), and (2.6) holds.

The following theorem continues Example 1.3.

Theorem 2.3. Let a metric g ∈ Riem(M, TF , D) be D-critical for (0.2), and D̃ be
tangent to a totally geodesic Riemannian foliation. Then

(2.9) rD = (Smix/p) g
⊥ ≥ 0, if p ̸= 4 then Smix = const.
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Proof. Since h = 0 = T , then (1.4) reads

rD = −T̃ ♭.(2.10)

By (1.8), Smix = ∥T̃∥2 is nonnegative. From Euler-Lagrange (2.2) we obtain

rD − T̃ ♭ =
1

2

(
Smix − S∗mix(M, g)

)
g⊥.(2.11)

Adding (2.10) and (2.11), we obtain rD = 1
4

(
Smix−S∗mix(M, g)

)
g⊥, see (2.9)1. Tracing

this, we find (p− 4) Smix = p Smix(M, g), that proves (2.9)2. �

Remark 2.3. From the Euler-Lagrange equations (2.2)–(2.3) we observe the follow-
ing: if F is a totally geodesic foliation of a closed Riemannian manifold (M, g) with
integrable normal bundle, and

(2.12) div
(
h̃− (H̃/p) g⊥

)
= 0, Φh̃ = (S̃ ex/n) g̃ ,

then g is critical for the action Jmix with respect to all adapted variations of (M, g).
Note that (2.12)1 is satisfied, if D = (TF)⊥ is totally umbilical, i.e., h̃ = 1

p H̃ g⊥ with

H̃ ̸= 0. Then (2.12)2 reduces itself to (p − 1)[H̃♭ ⊗ H̃♭ − 1
n ∥H̃∥2g̃ ] = 0, hence, is

identically satisfied only when p = 1 or n = 1.

2.2 Flows

let D̃ be spanned by a nonsingular vector field N , then N defines a flow (a one-
dimensional foliation). An example is provided by a circle action S1×M → M without
fixed points. In this case, rD̃ = RicN g̃ and rD = (RN )♭, where RN = R∇(N, · )N .
Then (0.2) reduces itself to

(2.13) Jmix(g) =

∫
M

RicN d volg .

We have h̃ = h̃scN and g(ÃNX,Y ) = g(h̃sc(X,Y ), N), where h̃sc = ⟨h̃, N⟩ is the
scalar second fundamental form and ÃN the Weingarten operator of D. Define the
functions τ̃i = Tr (Ã i

N ) (i ≥ 0). It is easy to check that S̃ ex = τ̃21 − τ̃2 and

divN = −τ̃1, div(τ̃1N) = N(τ̃1)− τ̃21 .

From Theorem 1.6 (of Corollary 2.1), we obtain the following.

Corollary 2.4 (Euler-Lagrange equations). Let a distribution D̃ be spanned by a

unit vector field N on a closed manifold M . If g ∈ Riem(M, D̃, D) is a critical point
of (2.13) with respect to adapted variations then(

RN + Ã2
N − (T̃ ♯

N )2 + [T̃ ♯
N , ÃN ]

)♭− τ̃1h̃sc +H♭ ⊗H♭ −DefD H

=
1

2

(
RicN −S∗mix(M, g) + div(τ̃1N −H)

)
g⊥ (for D−variations),(2.14)

RicN = −S∗mix(M, g) + 4 ∥T̃∥2 + div(τ̃1N +H) (for D̃−variations).(2.15)
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Proof. An easy computation shows that

Ã = Ã2
N , ⟨h̃scN, H̃⟩ = τ̃1h̃sc, Ψ = H♭ ⊗H♭, Ψ̃ = (τ̃2 − ∥T̃∥2) g̃,

A = ∥H∥2 ĩd , T = 0, ⟨h, H⟩ = ∥H∥2g̃,
H = ∇N N, h = H g̃, ∥h∥ = ∥H∥,
H̃ = τ̃1N, τ̃1 = Tr g h̃sc, ∥h̃∥2 = τ̃2, DefD̃ H̃ = N(τ̃1) g̃ .(2.16)

Notice that (H♭ ⊗H♭)(X,Y ) = g(H,X) g(H,Y ). Introducing the values

Φh = 0 = S ex, S̃ ex = τ̃21 − τ̃2, T̃ = T̃ ♯ 2
N ,

h = H g̃, Φh̃ = (τ̃21 − τ̃2) g̃, ΦT̃ = −∥T̃∥2g̃

and (2.16) into (1.19) and its ’dual’, yield (2.14) and (2.15). �

By (1.3), we have div(h̃sc N) = ∇N h̃sc − τ̃1h̃sc and div h = (divH) g̃. Then, see
(1.4) and (1.8), (

RN + Ã2
N + (T̃ ♯

N )2
)♭

= ∇N h̃sc −H♭ ⊗H♭ +DefD H,

RicN = div(τ̃1N +H) + τ̃21 − τ̃2 + ∥T̃∥2.(2.17)

Remark that the known formula (2.17)2 is simply the trace of (2.17)1.
A flow of a unit vector field N is geodesic if the orbits are geodesics (i.e., h = 0),

and a flow is Riemannian if the metric is bundle-like (i.e., h̃ = 0). A nonsingular
Killing vector field clearly defines a Riemannian flow; moreover, a Killing vector field
of constant (nonzero) length generates a geodesic Riemannian flow, see [12, Ch. 10].

Proposition 2.5. Let a unit vector field N generates a geodesic Riemannian flow on
a closed Riemannian manifold (Mp+1, g). If g is a D-critical point of the functional
(2.13) then

(2.18) RN = (1/p) RicN id⊥, where RicN = const when p ̸= 4;

and g is D̃-critical, too. Furthermore, Kmix ≥ 0 is a function of a point only: if p is
odd then Kmix = 0 and M splits, and if Kmix > 0 then p is even.

Proof. From Theorem 2.3, (2.18) follows, and (2.10) reads RN = −(T̃ ♯
N )2. For such

N -flows, (2.14)–(2.15) reduces to

RN − (T̃ ♯
N )2 =

1

2

(
RicN −S∗mix(M, g)

)
g⊥ (for D−variations),(2.19)

RicN = −S∗mix(M, g) + 4 ∥T̃∥2 (for D̃−variations);(2.20)

moreover, (2.20) is the trace of (2.19). Thus, g is critical for D̃-variations, too. If p

is odd then the skew-symmetric operator T̃ ♯
N has zero eigenvalue; hence, RN = 0 and

T̃ = 0; using de Rham Decomposition Theorem completes the proof. �

Recall [3] that a manifold M2n+1 with a 1-form η such that dη(ξ, ·) = 0 and
η(ξ) = 1 is called a contact manifold, and ξ is called the characteristic vector field.
A Riemannian metric g on (M,η) is associated if there exists a (1, 1)-tensor ϕ such that

η = g(ξ, ·), dη(X,Y ) = g(X,ϕ(Y )), ϕ2 = −I + η ⊗ ξ (X,Y ∈ TM).



14 E.Barletta, S.Dragomir and V.Rovenski

The above (ϕ, ξ, η, g) is called a contact metric structure on M , and the integral curves
of ξ are geodesics. A contact metric structure for which ξ is Killing is calledK-contact.
In [3], the action (2.13) has been studied on the set of metrics associated to a given
contact form: An associated metric g on a contact manifold (M,η) is critical for the
action (2.13) considered on the set of metrics associated to η if and only if it is K-
contact. For a K-contact structure, ξ spans a geodesic Riemannian flow. We can use
Proposition 2.5 to show that K-contact structures are still critical points of (2.13) on
a set of adapted metrics.

Proposition 2.6. Any K-contact metric g is critical for the action (2.13) considered
on the set of adapted metrics.

Proof. By [3, Theorem 7.2], if (M, g) is K-contact then (2.18) holds for RicN = p. �

Proposition 2.6 and [3, Theorem 10.12] yield the following characteristic of some
critical metrics on contact manifolds.

Corollary 2.7. Let g be an associated metric on a contact manifold (M,η). Then g
is critical for the action (2.13) considered on the set of adapted metrics on M if and
only if g is K-contact.

2.3 Codimension-one foliations

Examples of codimension-one foliations are the level surfaces of a function u : M →
R without critical points. The structure theory and dynamics of codimension-one
foliations on closed manifolds are fairly well understood. Let F be a codimension-one
foliation with a unit normal N ∈ Γ(TM) on a closed Riemannian manifold (Mn+1, g).
We have, see (0.3) and its ’dual’,

rD = RicN g⊥, rF = (RN )♭.

Let h sc be the scalar second fundamental form, and AN the Weingarten operator of
F . We have T = 0 = T̃ and

h sc(X,Y ) = g(∇X Y, N), AN (X) = −∇X N, (X,Y ∈ TF).

Power sums of the eigenvalues of AN are given by τα = Tr (Aα
N ) (α ≥ 0), cf. [10]. For

example, τ1 = Tr AN = − divN , τ2 = Tr (A2
N ), and H = τ1N . It is easy to see that

(2.4) takes the form

(2.21) S∗mix =

{
RicN −2 (τ21 − τ2) for D−variations,

RicN for TF−variations .

Notice that A = A2
N and Ã = ∥H̃∥2N , where H̃ = ∇N N is the curvature vector of

N -curves. By (2.1)1 and Ψ̃ = H̃♭ ⊗ H̃♭, we obtain

(2.22) (RN +A2
N )♭ = ∇N h sc − H̃♭ ⊗ H̃♭ +DefF H̃.

Then we find, taking trace of (2.22), that (cf. also [10, 14])

(2.23) RicN = div(τ1N + H̃) + τ21 − τ2.

Since M is a closed manifold, we have Jmix(g) =
∫
M
(τ21 − τ2) d volg .

From Theorem 1.6 or Corollary 2.1 we obtain the following.
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Corollary 2.8. Let F be a codimension-one foliation of a closed manifold Mn+1,
whose transversal distribution D is spanned by a nonzero vector field N . If g ∈
Riem(M, TF , D) is a critical point of the functional (2.13) with respect to adapted
variations, then the following Euler-Lagrange equations are satisfied:

RicN +S∗mix(M, g)− div(τ1N + H̃) = 0 (for D−variations),(2.24)

(RN +A2
N )♭ − τ1h sc + H̃♭ ⊗ H̃♭ −DefF H̃(2.25)

=
1

2

(
RicN − S∗mix(M, g) + div(τ1N − H̃)

)
g̃ (for TF−variations).

Remark 2.4. Using (2.22)–(2.23), one may rewrite (2.24)–(2.25) as

τ21 − τ2 = −S∗mix(M, g) (for D−variations),(2.26)

div(h scN)− div(τ1N) g̃ =
1

2

(
τ21 − τ2 − S∗mix(M, g)

)
g̃ (for TF−variations).(2.27)

(i) By (2.26), if n = 1 then Jmix(g) = 0, and if n > 1, then τ21 − τ2 = const,
(respectively, τ21 − τ2 = 0 when the variations do not preserve the volume of M).

(ii) Equation (2.27) is equivalent to result in [10, Example 2.5], where notation
Jmix = 2EN is used and the Euler-Lagrange equations are given in the form

(2.28) −2 div(T1(h sc)N) = (τ21 − τ2 − S∗mix(M, g)) g̃ (for TF−variations).

Here, T1(h sc) = τ1g̃ − h sc corresponds to the first Newton transformation. Indeed,
by the above,

− div(T1(h sc)N) = ∇N h sc − τ1h sc − div(τ1N) g̃.

By (1.3), div(h scN) = ∇N h sc − τ1h sc is valid. Hence (2.28) reduces itself to (2.27).
(iii) Note that adapted variations provide the same Euler-Lagrange equations as

in [1], where the action (2.13) was examined in a foliated globally hyperbolic space-
time. There, D was spanned by a unit (for initial metric g), time-like vector field

N with integrable orthogonal distribution D̃. Equations (2.26) and (2.27) are there
formulated in terms of a newly introduced tensor RicD(g),

RicD(g)(X,Y ) =
(
∇N hsc − τ1hsc

)
(X,Y ),

RicD(g)(X,N) = div(AN (X)), RicD(g)(N,X) = − div(AN (X)),

RicD(g)(N,N) = − div H̃,

whose trace is denoted by ScalD(g). The Euler-Lagrange equations for the action
(2.13) are presented in the following form [1]:

(2.29) RicD(g)−
1

2
ScalD(g) g − RicN

(
N ♭ ⊗N ♭ +

1

2
g
)
= 0 ,

where one should actually use only the symmetric part of RicD(g) in (2.29). Also,
(2.29) reduces to (2.26) when evaluated on D (with S∗mix(Ω, g) = 0, because in [1]
the volume preserving variations are not considered), while evaluating (2.29) on TF
yields (2.27).
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Theorem 2.9. Let (Mn+1, g) (n > 1) be a codimension-one foliated closed Rieman-
nian manifold with a unit normal vector field N . Then g is a critical point of Jmix

with respect to adapted variations preserving the volume of (M, g) if and only if

(2.30) τ1 = 0, τ2 = −RicN (M, g), ∇N h sc = 0.

In particular, conditions (2.30) are satisfied trivially when F is totally geodesic.

Proof. By (2.23), Jmix =
∫
M
(τ21 − τ2) d volg. Taking trace of (2.27), we obtain

(2.31) (1− n)
(
N(τ1)− τ21

)
=

n

2
(τ21 − τ2 − S∗mix(M, g)) (for TF−variations).

By (2.26), τ21 − τ2 = const. Hence, and due to (2.21), rhs of (2.31) vanishes. Since
n > 1, we get the ODE N(τ1) = τ21 along complete N -curves, whose solution is τ1 = 0.
Thus, (2.26) and (2.21) yield τ2 = −RicN (M, g). By (2.27), we find div(h scN) =
∇N h sc = 0. �

The next example shows that there are many solutions to (2.30), but assuming
that a critical metric is bundle-like we obtain isoparametric foliations.

Definition 2.5 (see Chap. 8 in [12]). A smooth function f : M → R without critical
points on a Riemannian manifold (M, g) is called isoparametric if for any vector X
tangent to a level hypersurface of f the following conditions are satisfied:

X(g(∇f,∇f)) = 0, X(∆f) = 0.

Example 2.6 (Isoparametric foliations). Let (x0 = t, x1, . . . xn) be biregular
foliated coordinates on Mn+1, see for example [10, Sect. 2.2.1], with the leaves {x0 =
c}, gij = 0 for i ̸= j and N = (g00)

−1/2 ∂t. Let g be a critical point of the action (2.13)
with respect to adapted variations, then τ1 = 0. Then (2.27) becomes the system of
n independent equations:

(2.32) gii, 00 −
1

gii
(gii, 0)

2 − 1

2
gii, 0 (log g00), 0 = 0 (i = 1, . . . n).

We seek solutions of (2.32) in the following form:

(2.33) gii = fi(x1, . . . xn) e
−2

∫ √
g00 yi(t) d t,

where fi (i = 1, . . . n) are positive functions. It follows that the Weingarten operator
has diagonal form and y1, . . . , yn are the principal curvatures. Hence,

y1(t) + . . .+ yn(t) = τ1, y21 + . . .+ y2n = τ2 = −RicN (M, g).

The metric (2.33) is critical for adapted variations if and only if y′i(t) = 0 and τ1 =
0; hence, all yi are constant with zero sum. By (2.31)3, RicN (M, g) ≤ 0 (and if
RicN (M, g) = 0 then the only solution is a totally geodesic foliation). For a function
of the view g00 = P (t) > 0, we have RicN = const ≤ 0. Recall (see [12]), that for a
foliation F of (M, g) by the level hypersurfaces of a function f without critical points
on M the following conditions are equivalent: (i) F is a Riemannian foliation, and
every its leaf has constant mean curvature; (ii) f is an isoparametric function. Thus,
our foliation is given by an isoparametric function x0.

The reader can find more examples for codimension-one foliations in [1].
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