Seiberg—Witten equations on 8 —dimensional
manifolds with different self—duality
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Abstract. Seiberg—Witten equations, which are defined on any 4—mani-
folds, consist of two equations [3, 6, 7]. The first of these equations is
called Dirac equation and the latter curvature equation. In higher dimen-
sions, generalized self—duality is used to describe Seiberg—Witten equa-
tions [1, 6, 4]. In this paper, Seiberg—Witten equations were obtained by
choosing different self—duality and by means of Spin®—structure which
was given in [5]. Then, non—trivial solutions are given by choosing diffe-
rent self—duality.
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1 Introduction

On 4—dimensional manifolds, the self—duality of 2—forms in the sense of Hodge is
meaningful. But, if the dimension is not 4, self—duality of 2—forms in the sense of
Hodge is meaningless. Consequently, there is no natural generalization of the curva-
ture equation. The purpose of this paper is to determine the Seiberg—Witten equation
on 8—dimensional manifolds with different self—duality and to give non—trivial solu-
tions to the Seiberg—Witten equations.

This paper is organized as follows: we begin with a section introducing some basic
definitions and notations. In the following section, some basic facts concerning the
Seiberg—Witten equations on 4—dimensional manifolds are given. Then, on 8 —dimen-
sional manifolds, the Seiberg—Witten equations are written, depending on a different
self—duality. Finally, non—trivial solutions for these equations are given.

2 Definitions and notations

Definition 2.1. A complex vector bundle S, called spinor bundle, can be constructed
by making use of a given Spin€ representation, k,, : Spin® — Aut(A,). The sections

Batkan Journal of Geometry and Its Applications, Vol.22, No.2, 2017, pp. 37-43.
© Balkan Society of Geometers, Geometry Balkan Press 2017.



38 Serhan Eker

of this complex vector bundle are called spinor fields on M. Spinor bundles split into
two pieces S = ST ® S~ in case of the dimension of M is even [3]. For a given linear
map K, : R® — End(S), which meet the following conditions:

En(V)* 4+ kp(v) =0, (V) K (V) = |0]2T
for every v € R",
p: A2(T*M) — End(S)

n=7y 77z'j€i ANl = p(n) = nijr(ei)r(e;)
i<j i<j

can be defined on the orthonormal frame {ej,es,...,e,} by extending the map  :
TM — End(S) of k.

We note that p can be extended to complex valued 2—forms [6], such that
p: A*(T*M) ® C — End(S).

The half—spinor bundle S* are invariant under p(n) for all n € A*(T*(M) ® C).
Then p*(n) =p(n)| ,and p~(n) = p(n)| can be defined.
5+ 5-
By means of a spinor covariant derivative operator V4 on S, the definition of
Dirac operator D : T'(ST) — I'(S™) can be given as

NE!

D4(T) =Y k(e;) VAT,

i=1

for any local orthonormal frame {e1, es, ..., e, } of TM.

3 Seiberg-Witten equations on 4—manifolds

The Seiberg—Witten equations on 4—dimensional Spin® manifold can be expressed
as follows:

1. Da¥ =0,
2. p*(Fa) = (\I“I/*>o’

where Fi € Q?(M,iR),¥ € I'(ST) and (0¥*) are the tracefree parts of ¥.0* [6].
The first part of these equations is called Dirac equation and the other one is called
curvature equation. For 4—dimensional manifolds, Seiberg—Witten equations are
examined in [3, 6, 7].

In the following section, Seiberg—Witten equations are constructed on 8—dimensional
manifolds by choosing a self—duality which is different from the self—duality concept
given in [1, 5]. Then solutions to these equations are given.
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4  Seiberg-Witten equations on 8—manifolds

On an 8—dimensional manifold M with structure group Spin(7), there exists a fun-
damental 4—form ®, which is nonzero everywhere. By means of this 4—form, Q2(M)
splits up into two parts as:

0*(M) = Q3(M) @ 03, (M),
where
Q2(M) = {w e Q*(M)] * (® Aw) = 3w}

and
035, (M) = {w € BP}(M)[ (P Aw) = ~w}.

In this paper 3, (M) is considered as the space of self— dual 2—forms. Also this
decomposition can be extended to ‘R valued 2—form as follows:

Q*(M,iR) = Q**(M,iR) @ Q*~ (M, iR).

If F4 € Q2(M,iR), then it can be written as Fq = Fj +F,, where Fi{ € Q3 (M,iR)
and F; € Q2(M,iR). The explicit form of F} is

Fi = Projoz (v Fa.

Definition 4.1. Let x : TM — End(S) be a Spin®—structure on n—dimensional
orientable M manifold. In this case, o is defined as follows:

o:T(S) — Q*(M,iR),
U — o(0),

VX,Y € x(M), o(¥)(X,Y) = (X, Y)|V]® + (k(X)(Y)¥,¥) is iR valued 2—form
[3].

Then the Seiberg—Witten equations on 8—dimensional (M, g, ®) Spin® manifolds
with Spin(7)—structure are given as follows:

1. Df(¥) =0,

2. Ff = Llo(0)",

where F is the self—dual part of F4 and o(¥)* is the projection of o(¥) onto
Q3, (M, iR).

4.1 Some local discussions
Let M be a Spin® manifold endowed with Spin®—structure which was given in [5]

8 .
and let A = Y A;dz" be the connection 1—form on Pg:. If so, its curvature 2—form
i=1

is Fy =dA =Y Fyjde' Adz? € Q2(M,iR), where Fj; = (%35 — 24y 1 <j < j <8

h . 811‘ - 31,’]‘
1<)
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The covariant derivative VAW of a spinor ¥ € I'(S*) is computed according to
this formula
VAU = q¥ + L Zw”eze]\ll—i— AW,
z<]
where w;; = g(Ve,,€;) are forms defining the Levi—Civita connection. w;; are van-
ished in the case of M = R83. Then the local expression of the covariant derivative
Vf‘i\IJ of ¥ in the direction e; is

VAU = (d\If+%A\IJ)(ei) = dU(e;) + LAT(e)).
Since
dijy dine)] [
d¥(e;) = dih (ei) = d'(/)Q:(ei) = |
v dis(er)) |2

8
and %Aq’(ei) = % S Aidzt(e;)V = %Ai\lf, then
i=1

% Y1 awl + 3 A1
92 ¥ 31!’2 1
: 2 2 + A1/)2
o I T A '
6. ) 0
Tqﬁf w8 ws + 1A21/)8

According to the above data the explicit form of the first equation DX\II =0is
%dﬂ + %1/12 - %'Im + {%71/18 + i(%dﬂ - %1#2 + %W + %'MJS)
+1 (—wlAl + P2 As — PaAs + YsAr +i(1 Az — P2 As + PaAs + 1/J8A8)>= 0
~ o5Vt~ 5er ¥z — 5eg s + ooy ¥r Hil = oy ¥t — oy Ve + pog¥s + pog¥r)
—tho A1 — Y1 Az — P3As + pr A7 + i (Y2 Ay — 1 As + psAs + 1/17148)3: 0

8275 Y2 — 3271 Ps + azg P4+ 327 Y6 + Z(al‘g P2 + 322 ¥s + 324 (T 328 )
+1 (*?/J3A1 + ads + 2 As + Y6 A7 + (Y3 Az + YaAs + P2 As + h6 As) )

%1/’1 87)3 Y3 — 89&1 Ya + am Vs + l(ax@» Y1+ a;c41/’3 37)2 Ya + 828 1/’5)

%(_1/14A1 VY3As + 1 As + s A7 +i( — ads + psAs + Y1 As + wsAs))f 0

—idhx - 8%11/15 + 8%231/16 - st + i(%im + 6%21/15 - %wa Pog 1/18)
( Y5 A1 + 6 As — PsAs — Ya A7z + i(s Az — e As — PsAs + YaAs ):

52 *m *5711/16 w7+ (amd) *mwsﬂL@m *57077[1)
( Ve A1 — Y5 Az — Y7 As — ¢3A7 +i( — e Az — Y5 As — Y7 As + h3As ))

ﬁllﬂz-f— %1% 8I1¢7+ 3231/18+Z(3z81/)2 aiﬁlﬁe-i— %d’?*“%ﬂﬁs)
—thr A1 + s As + Y6 As — 2 A7 + i(Yr Az + YsAs — YeAs + 1/J2A8))=

_%% + %1% 811:3 Y7 — algwl + Z(azg 1 — azﬁ s + 824 Y7 + 922 wg)
—tpg A1 — Y7 As — Y5 As — 1 A7 +i( — s A + rAs — PsAs + 1/11148)):
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8 .
where A = 3 A;dx’ € QY(M,iR) and ¥ € I'(S™T).
i=1
In the following, by using orthogonal basis of Q3% (M, iR), the explicit form of
curvature equation is obtained. Then, the non—trivial solution to these equations is
given.

4.1.1 Curvature Equation on R®

The second part of the Seiberg—Witten equation, which is called the curvature

equation and denoted by F{ = 1o(¥)", is described by the orthogonal basis of

03, (R®,4R), which are given as follows [2]:

g1 =dx1 Ndrs — dxa N\ dre — drs N\ daxy 4+ daxg A dxs
g2 = dx1 N\ dxo — dxs N\ dxs + dzs A\ drg — dxr A dzs
gs = dl‘l A\ d:IJg + dil)g N dm5 + dl‘g N d:IJg + d:I)4 N dm7
ga =dx1 Ndzs + dra A drg + des A\ dey 4+ das A dxs
gs = dx1 N\ dx7 — dxo N\ dxg + dzs A dxs — dxa A dzg
ge = dl‘l AN d:IJ4 — dil)g A\ d.’rg =+ dl‘5 AN d:IJg — d:I)G A\ dm7
g7 =dx1 Ndzxs + dxa A drr — drs N\ dxe — daxg A dxs

gs = dx1 Ndxs + dxo A dre — dxs A dry — dxa A dzs
go =dx1 Ndxs + dxs A dxg + dxs A dxg + dxr A dzs
gio =dx1 Ndxe —dxe Adxs + dxs AN dxs — dxa N\ drr
g1 = dzi N\ dxs — dzs A dxg + dxs A dxr — dxe N dzs
gi2 =dx1 Adxy + dze Adrs + dxs A dxs + dxa A dxs
g1z = dx1 ANdxg + dxe Adxs + dxs A dxs + dxe N drr
gia = dzi N\ dxg — dza A dx7 — dxs A dxg + dxa A dzs

gis =dx1 ANdxs — dre Adre + drs A dry — dxa N das
gie = dx1 Ndxe —dxs ANdxs — dxs N\ dre + drr A dxs
gir = dx1 A dxe + dzo A dxs — dxs A dxg — dxa N dxr
gis = dx1 ANdxs + dre Adrsa — dxs A\ dxr — dxe N das
g9 =dx1 Ndxy — dxe ANdxs — dxs N\ drs + drg A dxg
g0 = dx1 N\ dxy — dzo A dxs — dxs A dxs + dxe A dzr
g21 = dx1 Ndxs + dre Adrr 4+ dxs A dre + dxa N dxs.

According to these orthogonal basis Fii = %o(\ll)"r is equivalent to the equation

and the more explicit form of the equation F{ = $o(¥)7T is
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(4.1)

Fi5 — Fog — F37 + Fug

Fi3 — F34 + Fs6 — Fis
Fi6 + Fos + F38 + Fur

Fi3 + Foy + Fs7 + Fes
Fi7 — Fog + F35 — Fis
F14 — F23 +F58 - F67

Fig + For — F36 — Fus

Fi5 + Fog — F37 — Fug

Fio + F34 + Fs6 + Frs
Fi¢ — Fos + F3g — Fur

Fis — Foq + Fs7 — Fis

Fi7 + Fog + F35 + Fug

Fi4 + Fo3 + Fsg + Fer

Fig — For — F36 + Fis

F15 —F26+F37_F48

Fi2 — F34 — Fs6 + Fis

Fig + Fos — F38 — Fyr

Fi3 + Foy — Fs7 — Fes

Fi7 — Fog — F35 + Fug

Fi4 — Fo3 — Fsg + Fer

Fig + For + F36 + Fus

3 (—aths + aths + 1hatha — P3ihs
+Psths — hsths — st + Ysis)
31 (Y292 — Ys59)s) B B
—3i(Vaths — otPs + 3t + P3ihs
+iPsths — hsths — Ystd2 — Ysis)

1 (W1ha — 195 — hathr — Yaths
+s1 + ¥ste + Peth2 — Yes)
i(—lliﬂ/ls + 198 + Psh1 + P3ibs
—eths + Yerbs — Ysih1 — Psibes)
(192 4+ 195 + b2ty + Paids
5101 + Y516 + Peth2 + Petds)
31013 — Y1ds + P31 — Paids
—evs + ety — Ysih1 + Psihs)

3 (=19a — 1epr + Yarhr + Parde
—Pea — Yo7 + Yrib1 + ride)
—qi(ss —Psiis) ,
— 1119 + 17 + Yarhr — Patde
—P6vs — Y67 + Yrihr — Yrifs)
i(q/)B'EM + 1%?7 — 1#'41?3 + 1?4’(}'8

— P73 + Prbs — Psha — Psir)

1 (2004 4 Y2tbr — Yaths + arhs
—s5tha — P57 — Yriha + Prips)
—Li(ypstpa + Parhr + Yatds + Yaids
+ribs + Yribs + Pstha + YsiPr)
—ii(@ﬂh + Y27 + Path2 + Yarhs
+1Psa + Y57 + Priha 4 Yris).

i(ﬂ/}z%f;s — oths + Y3tha + Y3t
—5ths — Pss + Ystha + Psihs)
—%i(il)ﬂ/;l )

*ii(d)z?ﬁ:& + P28 + atha — Ysids
—5th3 — YsPs + Psih2 — Psihs)
i(wﬂfz + 115 — Paihr + P2is
=51 + sve — Yetb2 — Yeths)
i(il)lw_s + P1tbs — Pathr + Pats
—hets — Yeths — Ysih1 + Psihs)
ii(wﬂ/ﬁ — 15 + P2v1 — Yatde
=51 + ¥sihe — Yetb2 + Pet)s)
—ii(d)ll/;s + 118 + 31 + Yside
+610s + Yetbs + Psth1 + Ysids).
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8
A=Y 2ixjdad,
j=1

and

8 8

> —4a?
(4.2) ¥ =(0,0,0,e=t '

2%

Z _in2
70,0, 770)
is the non—trivial solution of the equation. Although this solution is non—trivial, it
is flat since F4 = 0. It is possible to give a non—flat solution for these equations.

Namely, if we assume that way

A1 :O7 AQZO, A3:0, A4:0, A5:2ix17
A6 = 2i$2, A7 = 2i£L‘3, Ag = 2i$L‘4,

and
=0, gy =0, s = 0, gy = ¢ (Prrsheazstasartrae)
s =0, "/)6 _ 07,(/J7 _ e—i(x1x5+$2$6+9339€7+$4$8)’ T/)S —0.

Also if the curvature equation is defined by
o+
pr(ER) = (we) 7,

where (\I/\II*)+ is the projection of Y¥* onto p™ (Q%l(M, iR)), the same results are

obtained as in the (4.1). Moreover, if we define Seiberg—Witten equations according
to the Q2!(M,iR), then (4.2) is the non—trivial but flat solution of [5].
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