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Abstract. We give a topological classification of the orbit space of
cohomogeneity two isometric actions on flat Riemannian manifolds.
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1 Introduction

Let Gx M — M be a differentiable action of a Lie group G on a differentiable manifold
M and consider the orbit space % with the quotient topology. The dimension of %
which we will denote by Coh(M,G), is called the cohomogeneity of the action of
G on M. The study of orbit spaces has many important applications in invariant
function theory and G-invariant variational problems associated to M. Many G-
invariant objects associated to M can be related to similar objects associated to the
orbit space.

Therefore, we can effectively reduce many problems about G-invariant objects
of M to generally easier problems on % Because of this motivation, many math-
ematicians studied topological properties of the orbit spaces of Lie group actions
on manifolds. A pioneer theorem in this area is the following theorem proved by P.
Mostert in 1957 ([11]): If M is a differentiable manifold and G is a compact Lie group
acting on M such that Coh(M,G) = 1, then the orbit space % is homeomorphic to
one of the spaces [0,1],(0,1], St or R.

This theorem has been generalized to noncompact Lie groups with proper actions
on manifolds. Moreover, If M is endowed with a Riemannian metric, and G is a
closed and connected subgroup of the isometries of M, which acts by cohomogeneity
one on M, there are more interesting results about the orbit space and orbits ( see
[10], [11], [13]). Tt is proved in [13] that if M is a Riemannian manifold of negative
curvature and G is a connected and closed subgroup of isometries of M, acting on
M with Coh(M,G) = 1, then the orbit space is not homeomorphic to [0, 1], so by
(generalized) Mostert’s theorem, it would be homeomorphic to (0,1) or S* or R, and
if in addition M is simply connected then the orbit space is homeomorphic to (0, 1)
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or R. This result, generalized to flat Riemannian manifolds in [10], and recently it
is proved for Riemannian manifolds of non-positive curvature. To extend Mostert’s
theorem, it is natural to ask, what may be the orbit space %, when Coh(M, G) = 2.
There is no classification for orbit spaces of cohomogeneity two G-manifolds in gen-
eral. Cohomogeneity two actions of compact Lie groups on R™, n > 1, are polar (in
the sense of Dadok) and all such actions and their orbits are classified (see [12]). It is
clear in this case that the orbit space is homeomorphic to plane or half-plane. Also,
It is proved in [8] that if G is a connected (compact or non-compact) group of the
isometries of R™ such that Coh(R™, G) = 2, then the orbit space % is homeomorphic
to plane or half-plane. Classification of orbit spaces of cohomogeneity two actions on
the standard sphere S™ has been described in [1].

This article follows a series of papers [6]-[9], where we are trying to study orbits
and orbit spaces of cohomogeneity two Riemannian manifolds under conditions on
curvature. In [7] the following theorem is proved which gives a topological description
of cohomogeneity two flat riemannian manifolds and their orbits.

Theorem A. Let M™, n > 3, be a complete connected nonsimply connected and
flat Riemannian manifold, which is of cohomogeneity two under the action of a closed
and connected Lie group G of isometries. Then, one of the following is true:

(a) (M) = Z and each principal orbit is isometric to S"~2(c), for some ¢ > 0
(¢ depends on orbits).

(b) There is a positive integer 1, such that m (M) = Z' and one of the following
18 true:

(b1) There is a positive integer m, 2 < m < n, such that each principal orbit is cov-
ered by N™=2(c) x R"=™, where N™~2(c) is a homogeneous hypersurface of S™~1(c)
( ¢ >0 depends on orbits). There is a unique orbit diffeomorphic to T' x R*~m~L,
(b2) Each principal orbit is covered by S™ x R"~"=2 for some positive integer r.
(b3) Each principal orbit is covered by H x R"™™  such that H is a heliz in R™.
There is an orbit diffeomorphic to T' x Rt, for some non-negative integer t.

(c) Each orbit is diffeomorphic to R* x T', for some non-negative integer t.

To complete the study of flat cohomogeneity two Riemannian manifolds, it re-
mains to characterize the orbit space, which is the aim of the present paper. For any
flat surface S there exists a cohomogeneity two flat Riemannian G-manifold M such
that all orbits are flat and %% is homeomorphic to S ( put M = S xR", G = {I} x H
such that I is the identity map on S and H is a closed and connected subgroups of
Iso(R™) which acts transitively on R™).

Thus, study of the orbit space of cohomogeneity two flat Riemannian manifolds
is interesting when there are some non-flat orbits. We will prove the following theorem.

Theorem B. Let M be a flat Riemannian manifold and G be a closed and con-
nected subgroup of the isometries of M such that Coh(M,G) = 2. If there are some
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non-flat orbits then % 18 homeomorphic to one of the following spaces:

[0, +00) x R, S* x R, S x [0, 00), R?

2 Preliminaries

In the following, M™ is a Riemannian manifold of dimension n, G is a closed and
connected subgroup of Iso(M), and 7 : M — % denotes the projection on to the
orbit space. We know that the fixed point set of the action of G on M, given by

MC={zeM: Gz)=ux}

is a totally geodesic submanifold of M.
We will write A = B if A and B are homeomorphic topological spaces, isomorphic
groups or diffeomorphic manifolds.

Fact 2.1. If Coh(G, M) = m > 1 then there are two types of points in M called
principal and singular points (for definition and details about singular and principal
points, we refer to [1] and [13]. If x is a principal(singular) point then 7(z) is an
interior(boundary) point of % Also, if z is a principal point, the orbit G(z) is called
a principal (singular) orbit and we have dim G(z) = n —m (dim G(z) < n—m). The
union of all principal orbits is an open and dense subset of M.

Remark 2.2. If Coh(G,R"™) = 1 then one of the following is true:
(1) All orbits are isometric to R"~1. So, by suitable choice of coordinates, each orbit
will be equal to {b} x R*~! for some b € R related to the orbit, and % =R
(2) Each principal orbit is diffeomorphic to S*~™~1 x R™ for some m > 0, there is a
unique singular orbit isometric to R™ and ]%" = [0, +00).
(3) If G is compact then each principal orbit is diffeomorphic to S™"~!, the unique
singular orbit is a one point set, and %ﬁ = [0, 00).

Proof. See [10], proof of the theorems 3.1 and 3.5. O

Definition 2.3. If G, H C Iso(M) then we say that G and H are orbit equivalent
and we denote it by G ~ H, if for each z € M, G(z) = H(x).

We recall that the connected component of Iso(R™) is equal to SO(n) x R™, such
that the standard action of SO(n) x R™ on R™ is in the following way:

(A, b)x = Az +b, (A,b) € SO(n) xR", x € R™.

Also, SO(d) x R¢ acts on R? x R in the following way, which is called direct product
action:

(A, b)(z,y) = Az + (y + 1), (A,b) € SO(d) x R, =z € R?, y € R®

Definition 2.4.
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(a) Let G be a connected subgroup of Iso(R™) and d,e be positive integers such that
d+ e =n. If G is not compact and it is a subgroup of SO(d) x R ( direct product),
then we say that G is d-helicoidical on R™.

(b) Following (a), let

K={AeSO(): (A,b) €, for some b € R}
T={beR¢: (Ab) € G, for some Ac SO(d)}

If x = (z1,72) € (R — {0}) x R, T'(x5) = R® and K(z1) = S !(|z1|), then G(z) is
called a d-heliz around S¢~1(|z;|) x Re.

Definition 2.5. Let G be a closed and connected subgroup of Iso(R™), n > 3.
We say that G has compact (or helicoidical) factor, if there is an integer 0 < m < n
and there are Lie groups Gy C Iso(R"™™) | G5 C Iso(R™), such that
(1) G2 is compact (or helicoidical on R™).

(2) G~ GQ X Gl.
(3) For some(so each) x € R*™™, Gy(z) = R ™.

Corollary 2.6 ([7]). If G is a connected and closed subgroup of Iso(R™),n > 3,
and Coh(G,R™) = 2. Then one of the following is true:
(I) G is compact. (II) G has compact factor on R™. (III) G is helicoidical on R™.
(IV) G has helicoidical factor on R™. (V) All G-orbits are Euclidean.

3  Orbit spaces

By Lemma 3.6 in [7] and its proof, we get the following fact.

Fact 3.1. If the action of G on R™ is helicoidical then one of the following
assertions is true:
(1) G action on R™ is orbit equivalent to the action of a product H x T' C SO(d) x R
on R? x R®, d+e = n, such that each principal H-orbit in R? is isometric to S%~*(r),
r > 0, and T acts by cohomogeneity one on R® such that all T-orbits on R are
isometric to R~ L.
(2) Each principal G-orbit is isometric to a d-helix around S9! (r) xR¢, e > 1, r > 0,
and G acts transitively on {o} x R® = R®.

Fact 3.2. Let M be a Riemannian manifold and M be the Riemannian universal
covering of M, by the covering map k: M — M, and let G be a closed and connected
subgroup of Iso(M). Then there is a connected covering G for G such that G acts
isometrically on M and the following assertions are true:

(1) Coh(G, M) =Coh(G, M).

(2) If D = G(z) is a G-orbit in M then k(D) is a G-orbit in M, and each G-orbit in
M is equal to k(D) for some G-orbit D in M.

(3) If A is the deck transformation group of the covering % : M — M then for each
0 € ,Avand each g € é7 dog = god. Thus § maps G-orbits in M on to G-orbits.

(4) MG = k=1 (ME).
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Proof. See [1], pages 63-64. O

Fact 3.3. Let A be a discrete subgroup of the isometries of R™, m > 1, and
suppose that for each a € R, there is a; € R such that A({a} xR™1) = {a; } x R™~ L.
Put

Ir={0cA:6({a} xR™ ) ={a} xR™ ' for all acR}.

Then, I' is a normal subgroup of A and we have % =7.

Proof. 1t is clear from the definition of I" that I' is normal in A. Consider the function
p:R™ (=R x R™"1) — R defined by p(a,z) = a, and put

0:AxR—=R, 6(5,a)=pd(a,o),0=(0,..,0) €R" "

Since for all @ € R, A({a} x R™™1) = {a;} x R™~! for some a; related to a, then for
each z = (a,b) € R x R™~! and § € A, we have pd(a,b) = pd(a,0), so

pé(x) = pd(pz,0) (%)
Therefore, if §1,d2 € A then
0(1,0(02,a)) = 6(61,pd2(a,0)) = pd1(pa(a, 0),0).

We get from (*) that
pd1(pd2(a, 0),0) = pd1d2(a, o).

Thus, 6(d1,0(d2,a)) = 6(6192,a). This means that € is an action of A on R. The
action of A induces an effective action of % on R, which is clearly an isometric action

and no element of % has a fixed point in R. So, % can be considered as a discrete
subgroup of (R, +) and must be isomorphic to (Z, +). O

Lemma 3.4 ([9]). If M is a connected and complete cohomogeneity k Riemannian
G-manifold then k > dimM®C.

Theorem 3.5 ([8]). If G is a closed and connected subgroup of IsoR™, n > 2, and
Coh(G,R™) = 2, then ]%" =1[0,00) x R or R2,

Lemma 3.6. Let M be a flat Riemannian manifold, dimM > 2, and let G be
a closed and connected subgroup of the isometries of M. If Coh(M,G) = 2 and

MC 4 &, then % 1s homeomorphic to one of the following spaces:

[0, +00) x R, S* x [0, 00), R?

Proof. Consider M = R" the universal Riemannian covering manifold of M, and use
the symbols used in Fact 3.2. Since MY # & then by Fact 3.2(4), MC £ . Put
L = MS and let m =dimL. By Lemma 3.4, we have 2 > m, som =0 or m = 1.

If m = 0 then from the fact that MY is a (connected) totally geodesic submanifold



30 R. Mirzaie

of R™, we get that M6 is a one point set and by Fact 3.2(4), M is simply connected,
so M =R", G = G. Then, by Theorem 3.5, M =10,00) x R or R2.

If m =1 and M is not simply connected, then L is a line in R™. Since the elements of
G and A are commutative, then A(L) = L. If a € L, denote by W, the hyperplane
of R™ which is perpendicular to L at a. Without lose of generality we can suppose
that L = {0} x R C R""! x R = R". Since G leaves L invariant point wisely, then
G decomposes as G=0Gx {I}, where G c SO(n — 1) and I is the identity map on
R. So, for all @ € L and all z € W,, G(z) C W,. Now, it is easy to show that the
following map is a homeomorphism:

(U ]%" — Rgl xR
"/’(é(l’)) = (é(l‘l),xg) , T = (.1‘1,3?2) ER™1I xR

Since Coh(R"!, &) = 1 then by Remark 2.2(3), R"é_l = [0, 00), so ]%n = [0,00) x R.
Since the members of A map G-orbits to é—orbits7 then by curvture reasons, for each
(r1,72) € R*" ! x R, A(G(21),22) = (G(x1),y2) for some y € R. So, we get from
A(L) = L that A decomposes as A = {I} x I" CIso(R""!)xIso(L). Thus A can be
considered as a discrete subgroup of the isometries of L = R without fixed point, then
A = Z, and we have

M [0,00) xR

_ _ R _ 1
Yein A f[O,oo)fo[O,oo)xS.

O

Remark 3.7.
(1) Let E = R? or [0,00) xR, and I be a nontrivial discrete subgroup of the isometries
of E such that I'(0) = o, then £ is homeomorphic to R? or [0, 00) x R.
(2) fT' = Z and E = [0,00) x R, then £ = [0,00) x S'.

Proof. (1) Let E = R? and consider the circles S'(r) of radius r > 0 around the
origin of R?, and put S'(0) = o. Since I' C O(2) is compact and discrete, it is finite.
Consider a point a € S'(1) and let I'(a) = {a1 = a,as,...,a,} ordered in clockwise.
Then, we have

I'(ra) = {ra,ras, ...,ra,}, ra € S*(r).

If b is the length of the arc ajas (clockwise arc) on S1(1) then the length of the arc

rajraz on S*(r) is equal to rb and we have % = S*(rb). So,

R? 51(7") 1 2
—=UF=Us'tn=xr"
r>0 rb>0

Now, let E = [0,00) x R. We know that the isometries of plane are combinations of
three kind of isometries called rotations, reflections respect to lines, gelid reflections
(see[3]). Since I'(E) = E and I'(0) = o then I' can only contain a reflection respect
to the line [0, 00) x {0} and the identity, then £ is equal to [0, 00) x [0, 00), which is
homeomorphic to [0,00) x R.

(2) Proof is similar to (1). O
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4  Theorem B

Proof. Consider M = R the universal covering manifold of M and use the symbols
of Fact 3.2. Put

A ={6eA:6D)=D for all G—orbits D in R"}.

Since A’ is normal in A, we can consider the quotient group A= %. It is not hard

to show that A acts effectively on the orbit space Q= % and % = %. By Corollary
2.6, one of the following cases is true:

a) G is compact

b) G is helicoidical

c) G has compact factor

d) G has helicoidical factor

e) All orbits are Euclidean.

a) Since G is compact then MC £ & so MY # & and we get the result from
Theorem 3.6.

b) By Fact 3.1 and by suitable choice of ordinates, two cases may occur:
(1) G action is orbit equivalent to the action of a product S x T C So(d) x R®,
d+ e =n, on R? x R® such that each principal S-orbit in R¢ is isometric to S%~1(r),
r > 0, and T acts by cohomogeneity one on R® such that all T-orbits are isometric to
Re~ 1L,
(2) Each principal G-orbit is isometric to a helicoid around S4=1(r) x R¢, e > 1,
r >0, and G acts transitively on {0} x R® = R°.
In the case (1), we have Q = ]%" = &;~>< ]R%. Thus, by Remark 2.2 (3,1), Q =
[0,00) x R. If € {0} x R then dimG(z) = e — 1 and if x ¢ {0} x R® then
dimG(x) =d—14e—1=d+e—2. Since d > 1, by dimensional reasons and the
fact that each 6 € A maps orbits to orbits, we get that A(R®) = R°. Since G acts
by cohomogeneity one on R¢ and all orbits are Euclidean, then by Remark 2.2(1),
and without lose of generality, we can suppose that each G-orbit in R€ is equal to
{b} x R~ for some b € R related to the orbit. Put

I'={6e€A:0(D)=D, for all orbits D in R°}.
By Fact 3.3, we have % = Z. It is not hard to show that I' = A’, so A= % =
Then % = % = 2. Since Q = [0,00) x R, then we get from Remark 3.7(2), that
M =10,00) x St
In the case (2), First note that by Theorem 3.5, € = & = R2? or [0,00) x R.
Since the elements of A are isometries which map orbits to orbits, then by curvature
reasons, A({o} x R¢) = {0} x R®. Without lose of generality we can suppose that the
corresponding point of the orbit {0} x R® on the orbit space £ (= R? or [0,00) x R)

G
is the point o the origin of R? or [0,00) x R. Then o is a fixed point of the action of
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A on Q. Then, by Remark 3.7(1), M =12 =10,00) xR or R

>

c, d) If G has compact factor or helicoidical factor, then we have G = G x Gy
and R™ = R™ x R™ such that G is compact or helicoidical on R™ and G5 acts
transitively on R™2. So, we have

R" _R% R: _R©
G G1 Ga G

The effective action of A on % induces an effective action of A on % in the follow-
ing way: o
Each G-orbit is in the form D x R™2 such that D is a Gi-orbit in R™. For each § € A,
we have 6(D x R™) = D' x R™. Put (D) = D’. Then we get the from previous

arguments that theorem is true in this case.

e) In this case all G-orbits in R™ are isometric to R"2 then each G-orbit is flat,
which is contradiction by assumptions of the theorem. ([
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