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1 Introduction

Let G×M →M be a differentiable action of a Lie group G on a differentiable manifold
M and consider the orbit space M

G with the quotient topology. The dimension of M
G

which we will denote by Coh(M,G), is called the cohomogeneity of the action of
G on M . The study of orbit spaces has many important applications in invariant
function theory and G-invariant variational problems associated to M . Many G-
invariant objects associated to M can be related to similar objects associated to the
orbit space.

Therefore, we can effectively reduce many problems about G-invariant objects
of M to generally easier problems on M

G . Because of this motivation, many math-
ematicians studied topological properties of the orbit spaces of Lie group actions
on manifolds. A pioneer theorem in this area is the following theorem proved by P.
Mostert in 1957 ([11]): If M is a differentiable manifold and G is a compact Lie group
acting on M such that Coh(M,G) = 1, then the orbit space M

G is homeomorphic to
one of the spaces [0, 1], (0, 1], S1 or R.

This theorem has been generalized to noncompact Lie groups with proper actions
on manifolds. Moreover, If M is endowed with a Riemannian metric, and G is a
closed and connected subgroup of the isometries of M , which acts by cohomogeneity
one on M , there are more interesting results about the orbit space and orbits ( see
[10], [11], [13]). It is proved in [13] that if M is a Riemannian manifold of negative
curvature and G is a connected and closed subgroup of isometries of M , acting on
M with Coh(M,G) = 1, then the orbit space is not homeomorphic to [0, 1], so by
(generalized) Mostert’s theorem, it would be homeomorphic to (0, 1) or S1 or R, and
if in addition M is simply connected then the orbit space is homeomorphic to (0, 1)
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or R. This result, generalized to flat Riemannian manifolds in [10], and recently it
is proved for Riemannian manifolds of non-positive curvature. To extend Mostert’s
theorem, it is natural to ask, what may be the orbit space M

G , when Coh(M,G) = 2.
There is no classification for orbit spaces of cohomogeneity two G-manifolds in gen-
eral. Cohomogeneity two actions of compact Lie groups on Rn, n > 1, are polar (in
the sense of Dadok) and all such actions and their orbits are classified (see [12]). It is
clear in this case that the orbit space is homeomorphic to plane or half-plane. Also,
It is proved in [8] that if G is a connected (compact or non-compact) group of the
isometries of Rn such that Coh(Rn, G) = 2, then the orbit space Rn

G is homeomorphic
to plane or half-plane. Classification of orbit spaces of cohomogeneity two actions on
the standard sphere Sn has been described in [1].

This article follows a series of papers [6]-[9], where we are trying to study orbits
and orbit spaces of cohomogeneity two Riemannian manifolds under conditions on
curvature. In [7] the following theorem is proved which gives a topological description
of cohomogeneity two flat riemannian manifolds and their orbits.

Theorem A. Let Mn, n ≥ 3, be a complete connected nonsimply connected and
flat Riemannian manifold, which is of cohomogeneity two under the action of a closed
and connected Lie group G of isometries. Then, one of the following is true:

(a) π1(M) = Z and each principal orbit is isometric to Sn−2(c), for some c > 0
(c depends on orbits).

(b) There is a positive integer l, such that π1(M) = Zl and one of the following
is true:
(b1) There is a positive integer m, 2 < m < n, such that each principal orbit is cov-
ered by Nm−2(c)×Rn−m, where Nm−2(c) is a homogeneous hypersurface of Sm−1(c)
( c > 0 depends on orbits). There is a unique orbit diffeomorphic to T l × Rn−m−l.
(b2) Each principal orbit is covered by Sr × Rn−r−2, for some positive integer r.
(b3) Each principal orbit is covered by H × Rn−m, such that H is a helix in Rm.
There is an orbit diffeomorphic to T l × Rt, for some non-negative integer t.

(c) Each orbit is diffeomorphic to Rt × T l, for some non-negative integer t.

To complete the study of flat cohomogeneity two Riemannian manifolds, it re-
mains to characterize the orbit space, which is the aim of the present paper. For any
flat surface S there exists a cohomogeneity two flat Riemannian G-manifold M such
that all orbits are flat and M

G is homeomorphic to S ( put M = S×Rn, G = {I}×H
such that I is the identity map on S and H is a closed and connected subgroups of
Iso(Rn) which acts transitively on Rn).

Thus, study of the orbit space of cohomogeneity two flat Riemannian manifolds
is interesting when there are some non-flat orbits. We will prove the following theorem.

Theorem B. Let M be a flat Riemannian manifold and G be a closed and con-
nected subgroup of the isometries of M such that Coh(M,G) = 2. If there are some
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non-flat orbits then M
G is homeomorphic to one of the following spaces:

[0,+∞)× R, S1 × R, S1 × [0,∞),R2

2 Preliminaries

In the following, Mn is a Riemannian manifold of dimension n, G is a closed and
connected subgroup of Iso(M), and π : M → M

G denotes the projection on to the
orbit space. We know that the fixed point set of the action of G on M , given by

MG = {x ∈M : G(x) = x}

is a totally geodesic submanifold of M .
We will write A = B if A and B are homeomorphic topological spaces, isomorphic
groups or diffeomorphic manifolds.

Fact 2.1. If Coh(G,M) = m ≥ 1 then there are two types of points in M called
principal and singular points (for definition and details about singular and principal
points, we refer to [1] and [13]. If x is a principal(singular) point then π(x) is an
interior(boundary) point of M

G . Also, if x is a principal point, the orbit G(x) is called
a principal (singular) orbit and we have dimG(x) = n−m (dimG(x) ≤ n−m). The
union of all principal orbits is an open and dense subset of M .

Remark 2.2. If Coh(G,Rn) = 1 then one of the following is true:
(1) All orbits are isometric to Rn−1. So, by suitable choice of coordinates, each orbit
will be equal to {b} × Rn−1 for some b ∈ R related to the orbit, and Rn

G = R.
(2) Each principal orbit is diffeomorphic to Sn−m−1 ×Rm for some m ≥ 0, there is a
unique singular orbit isometric to Rm and Rn

G = [0,+∞).
(3) If G is compact then each principal orbit is diffeomorphic to Sn−1, the unique
singular orbit is a one point set, and Rn

G = [0,∞).

Proof. See [10], proof of the theorems 3.1 and 3.5. �

Definition 2.3. If G,H ⊂ Iso(M) then we say that G and H are orbit equivalent
and we denote it by G ' H, if for each x ∈M , G(x) = H(x).

We recall that the connected component of Iso(Rn) is equal to SO(n) × Rn, such
that the standard action of SO(n)× Rn on Rn is in the following way:

(A, b)x = Ax+ b, (A, b) ∈ SO(n)× Rn, x ∈ Rn.

Also, SO(d)×Re acts on Rd×Re in the following way, which is called direct product
action:

(A, b)(x, y) = Ax+ (y + b), (A, b) ∈ SO(d)× Re, x ∈ Rd, y ∈ Re

Definition 2.4.
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(a) Let G be a connected subgroup of Iso(Rn) and d,e be positive integers such that
d+ e = n. If G is not compact and it is a subgroup of SO(d)×Re ( direct product),
then we say that G is d-helicoidical on Rn.
(b) Following (a), let

K = {A ∈ SO(d) : (A, b) ∈ G, for some b ∈ Re}
T = {b ∈ Re : (A, b) ∈ G, for some A ∈ SO(d)}

If x = (x1, x2) ∈ (Rd − {o})× Re, T (x2) = Re and K(x1) = Sd−1(|x1|), then G(x) is
called a d-helix around Sd−1(|x1|)× Re.

Definition 2.5. Let G be a closed and connected subgroup of Iso(Rn), n ≥ 3.
We say that G has compact (or helicoidical) factor, if there is an integer 0 < m < n
and there are Lie groups G1 ⊂ Iso(Rn−m) , G2 ⊂ Iso(Rm), such that
(1) G2 is compact (or helicoidical on Rm).
(2) G ' G2 ×G1.
(3) For some(so each) x ∈ Rn−m, G1(x) = Rn−m.

Corollary 2.6 ([7]). If G is a connected and closed subgroup of Iso(Rn),n ≥ 3,
and Coh(G,Rn) = 2. Then one of the following is true:
(I) G is compact. (II) G has compact factor on Rn. (III) G is helicoidical on Rn.
(IV) G has helicoidical factor on Rn. (V) All G-orbits are Euclidean.

3 Orbit spaces

By Lemma 3.6 in [7] and its proof, we get the following fact.

Fact 3.1. If the action of G on Rn is helicoidical then one of the following
assertions is true:
(1) G action on Rn is orbit equivalent to the action of a product H×T ⊂ SO(d)×Re

on Rd×Re, d+ e = n, such that each principal H-orbit in Rd is isometric to Sd−1(r),
r > 0, and T acts by cohomogeneity one on Re such that all T -orbits on Re are
isometric to Re−1.
(2) Each principal G-orbit is isometric to a d-helix around Sd−1(r)×Re, e > 1, r > 0,
and G acts transitively on {o} × Re = Re.

Fact 3.2. Let M be a Riemannian manifold and M̃ be the Riemannian universal
covering of M , by the covering map k : M̃ →M , and let G be a closed and connected
subgroup of Iso(M). Then there is a connected covering G̃ for G such that G̃ acts

isometrically on M̃ and the following assertions are true:
(1) Coh(G,M) =Coh(G̃, M̃).

(2) If D = G̃(x) is a G̃-orbit in M̃ then k(D) is a G-orbit in M , and each G-orbit in

M is equal to k(D) for some G̃-orbit D in M̃ .

(3) If ∆ is the deck transformation group of the covering k : M̃ → M then for each

δ ∈ ∆ and each g ∈ G̃, δog = goδ. Thus δ maps G̃-orbits in M̃ on to G̃-orbits.

(4) M̃ G̃ = κ−1(MG).
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Proof. See [1], pages 63-64. �

Fact 3.3. Let ∆ be a discrete subgroup of the isometries of Rm, m > 1, and
suppose that for each a ∈ R, there is a1 ∈ R such that ∆({a}×Rm−1) = {a1}×Rm−1.
Put

Γ = {δ ∈ ∆ : δ({a} × Rm−1) = {a} × Rm−1 for all a ∈ R}.

Then, Γ is a normal subgroup of ∆ and we have ∆
Γ = Z.

Proof. It is clear from the definition of Γ that Γ is normal in ∆. Consider the function
p : Rm(= R× Rm−1)→ R defined by p(a, x) = a, and put

θ : ∆× R→ R, θ(δ, a) = pδ(a, o), o = (0, ..., 0) ∈ Rm−1.

Since for all a ∈ R, ∆({a}×Rm−1) = {a1}×Rm−1 for some a1 related to a, then for
each x = (a, b) ∈ R× Rm−1 and δ ∈ ∆, we have pδ(a, b) = pδ(a, o), so

pδ(x) = pδ(px, o) (∗)

Therefore, if δ1, δ2 ∈ ∆ then

θ(δ1, θ(δ2, a)) = θ(δ1, pδ2(a, o)) = pδ1(pδ2(a, o), o).

We get from (*) that
pδ1(pδ2(a, o), o) = pδ1δ2(a, o).

Thus, θ(δ1, θ(δ2, a)) = θ(δ1δ2, a). This means that θ is an action of ∆ on R. The
action of ∆ induces an effective action of ∆

Γ on R, which is clearly an isometric action

and no element of ∆
Γ has a fixed point in R. So, ∆

Γ can be considered as a discrete
subgroup of (R,+) and must be isomorphic to (Z,+). �

Lemma 3.4 ([9]). If M is a connected and complete cohomogeneity k Riemannian
G-manifold then k > dimMG.

Theorem 3.5 ([8]). If G is a closed and connected subgroup of IsoRn, n ≥ 2, and
Coh(G,Rn) = 2, then Rn

G = [0,∞)× R or R2.

Lemma 3.6. Let M be a flat Riemannian manifold, dimM > 2, and let G be
a closed and connected subgroup of the isometries of M . If Coh(M,G) = 2 and

MG 6= f� , then M
G is homeomorphic to one of the following spaces:

[0,+∞)× R, S1 × [0,∞),R2

Proof. Consider M̃ = Rn the universal Riemannian covering manifold of M , and use

the symbols used in Fact 3.2. Since MG 6= f� then by Fact 3.2(4), M̃ G̃ 6= f� . Put

L = M̃ G̃ and let m =dimL. By Lemma 3.4, we have 2 > m, so m = 0 or m = 1.

If m = 0 then from the fact that M̃ G̃ is a (connected) totally geodesic submanifold
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of Rn, we get that M̃ G̃ is a one point set and by Fact 3.2(4), M is simply connected,

so M = Rn, G = G̃. Then, by Theorem 3.5, M
G = [0,∞)× R or R2.

If m = 1 and M is not simply connected, then L is a line in Rn. Since the elements of
G̃ and ∆ are commutative, then ∆(L) = L. If a ∈ L, denote by Wa the hyperplane
of Rn which is perpendicular to L at a. Without lose of generality we can suppose
that L = {o} × R ⊂ Rn−1 × R = Rn. Since G̃ leaves L invariant point wisely, then

G̃ decomposes as G̃ = Ĝ × {I}, where Ĝ ⊂ SO(n − 1) and I is the identity map on

R. So, for all a ∈ L and all x ∈ Wa, G̃(x) ⊂ Wa. Now, it is easy to show that the
following map is a homeomorphism:{

ψ : Rn

G̃
→ Rn−1

Ĝ
× R

ψ(G̃(x)) = (Ĝ(x1), x2) , x = (x1, x2) ∈ Rn−1 × R

Since Coh(Rn−1, Ĝ) = 1 then by Remark 2.2(3), Rn−1

Ĝ
= [0,∞), so Rn

G̃
= [0,∞)× R.

Since the members of ∆ map G̃-orbits to G̃-orbits, then by curvture reasons, for each
(x1, x2) ∈ Rn−1 × R, ∆(Ĝ(x1), x2) = (Ĝ(x1), y2) for some y2 ∈ R. So, we get from
∆(L) = L that ∆ decomposes as ∆ = {I} × Γ ⊂Iso(Rn−1)×Iso(L). Thus ∆ can be
considered as a discrete subgroup of the isometries of L = R without fixed point, then
∆ = Z, and we have

M

G
=

[0,∞)× R
∆

= [0,∞)× R
Z

= [0,∞)× S1.

�

Remark 3.7.
(1) Let E = R2 or [0,∞)×R, and Γ be a nontrivial discrete subgroup of the isometries
of E such that Γ(o) = o, then E

Γ is homeomorphic to R2 or [0,∞)× R.

(2) If Γ = Z and E = [0,∞)× R, then E
Γ = [0,∞)× S1.

Proof. (1) Let E = R2 and consider the circles S1(r) of radius r > 0 around the
origin of R2, and put S1(o) = o. Since Γ ⊂ O(2) is compact and discrete, it is finite.
Consider a point a ∈ S1(1) and let Γ(a) = {a1 = a, a2, ..., an} ordered in clockwise.
Then, we have

Γ(ra) = {ra1, ra2, ..., ran}, ra ∈ S1(r).

If b is the length of the arc â1a2 (clockwise arc) on S1(1) then the length of the arc

r̂a1ra2 on S1(r) is equal to rb and we have S1(r)
Γ = S1(rb). So,

R2

Γ
=

⋃
r≥0

S1(r)

Γ
=

⋃
rb≥0

S1(rb) = R2.

Now, let E = [0,∞)× R. We know that the isometries of plane are combinations of
three kind of isometries called rotations, reflections respect to lines, gelid reflections
(see[3]). Since Γ(E) = E and Γ(o) = o then Γ can only contain a reflection respect
to the line [0,∞)× {0} and the identity, then E

Γ is equal to [0,∞)× [0,∞), which is
homeomorphic to [0,∞)× R.
(2) Proof is similar to (1). �
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4 Theorem B

Proof. Consider M̃ = Rn the universal covering manifold of M and use the symbols
of Fact 3.2. Put

∆′ = {δ ∈ ∆ : δ(D) = D for all G̃− orbits D in Rn}.

Since ∆′ is normal in ∆, we can consider the quotient group ∆̃ = ∆
∆′ . It is not hard

to show that ∆̃ acts effectively on the orbit space Ω̃ = Rn

G̃
and M

G = Ω̃

∆̃
. By Corollary

2.6, one of the following cases is true:
a) G̃ is compact

b) G̃ is helicoidical

c) G̃ has compact factor

d) G̃ has helicoidical factor
e) All orbits are Euclidean.

a) Since G̃ is compact then M̃ G̃ 6= f� , so MG 6= f� and we get the result from
Theorem 3.6.

b) By Fact 3.1 and by suitable choice of ordinates, two cases may occur:

(1) G̃ action is orbit equivalent to the action of a product S × T ⊂ So(d) × Re,
d+ e = n, on Rd ×Re such that each principal S-orbit in Rd is isometric to Sd−1(r),
r > 0, and T acts by cohomogeneity one on Re such that all T -orbits are isometric to
Re−1.
(2) Each principal G̃-orbit is isometric to a helicoid around Sd−1(r) × Re, e > 1,

r > 0, and G̃ acts transitively on {o} × Re = Re.

In the case (1), we have Ω̃ = Rn

G̃
= Rd

S ×
Re

T . Thus, by Remark 2.2 (3,1), Ω̃ =

[0,∞) × R. If x ∈ {o} × Re then dimG̃(x) = e − 1 and if x /∈ {o} × Re then

dimG̃(x) = d − 1 + e − 1 = d + e − 2. Since d > 1, by dimensional reasons and the

fact that each δ ∈ ∆ maps orbits to orbits, we get that ∆(Re) = Re. Since G̃ acts
by cohomogeneity one on Re and all orbits are Euclidean, then by Remark 2.2(1),

and without lose of generality, we can suppose that each G̃-orbit in Re is equal to
{b} × Re−1 for some b ∈ R related to the orbit. Put

Γ = {δ ∈ ∆ : δ(D) = D, for all orbits D in Re}.

By Fact 3.3, we have ∆
Γ = Z. It is not hard to show that Γ = ∆′, so ∆̃ = ∆

Γ = Z.

Then M
G = Ω̃

∆̃
= Ω̃

Z . Since Ω̃ = [0,∞) × R, then we get from Remark 3.7(2), that
M
G = [0,∞)× S1.

In the case (2), First note that by Theorem 3.5, Ω̃ = Rn

G̃
= R2 or [0,∞) × R.

Since the elements of ∆ are isometries which map orbits to orbits, then by curvature
reasons, ∆({o}×Re) = {o}×Re. Without lose of generality we can suppose that the
corresponding point of the orbit {o} ×Re on the orbit space Rn

G̃
(= R2 or [0,∞)×R)

is the point o the origin of R2 or [0,∞)× R. Then o is a fixed point of the action of
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∆̃ on Ω̃. Then, by Remark 3.7(1), M
G = Ω̃

∆̃
= [0,∞)× R or R2.

c, d) If G̃ has compact factor or helicoidical factor, then we have G̃ = G1 × G2

and Rn = Rn1 × Rn2 such that G1 is compact or helicoidical on Rn1 and G2 acts
transitively on Rn2 . So, we have

Rn

G̃
=

Rn1

G1
× Rn2

G2
=

Rn1

G1

The effective action of ∆̃ on Rn

G̃
induces an effective action of ∆̃ on Rn1

G1
in the follow-

ing way:
Each G̃-orbit is in the form D×Rn2 such that D is a G1-orbit in Rn1 . For each δ̃ ∈ ∆̃,
we have δ̃(D × Rn2) = D′ × Rn2 . Put δ̃(D) = D′. Then we get the from previous
arguments that theorem is true in this case.

e) In this case all G̃-orbits in Rn are isometric to Rn−2 then each G-orbit is flat,
which is contradiction by assumptions of the theorem. �
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